Faculty of Mathematics Institute for Analysis and Numerical Mathematics PD Dr. V. John DM T. Mitkova

Magdeburg, 12.01.2004

Exercises to the classes Numerical Methods in Sciences and Technics

Exercises no. 11

to 19.01.2004

The solution of exercise 2 is to submit in the exercise classes on Monday, 19.01.2004 !

Statements given in the lecture can be used in the solution of the exercises without proof. All other statements have to be proved.

1. Prove Gronwall's lemma: Let $\phi(t) : [t_0, t_e] \to \mathbb{R}$ be continuous with

$$\phi(t) \le \alpha + \beta \int_{t_0}^t \phi(\xi) d\xi$$

for all $t \in [t_0, t_e]$, $\alpha, \beta \in \mathbb{R}$, $\alpha, \beta > 0$. Then

$$\phi(t) \le \alpha \exp(\beta(t - t_0)).$$

Hint : use the result of

$$\frac{d}{dt}\ln\left(\alpha+\beta\int_{t_0}^t\phi(\xi)d\xi\right)$$

2. Compute the differentiation index of the DAE

$$0 = g(v)$$

$$v' = f(v, w)$$

$$w' = k(v, w, u)$$

where $g_v f_w k_u$ has a bounded inverse.