Magdeburg, 02.11.2003

Exercises to the classes Numerical Methods in Sciences and Technics

Exercises no. 5 to 17.11.2003

The solution of exercise 1 is to submit in the exercise classes on Monday, 17.11.2003 !

Statements given in the lecture can be used in the solution of the exercises without proof. All other statements have to be proved.

- 1. Write a matlab script for a coarse grid correction scheme applied to the model problem. The smoother should be the damped Jacobi iteration with damping factor ω . The input parameters of the coarse grid correction scheme should be
 - the number of intervals on the fine grid N (even positive integer),
 - the damping factor ω .

Solve the model problem with $f = 0 \implies \text{solution}$ is u = 0 for different N and $\omega = 0.5$ using the initial iterate

$$u^{0}(x) = \sin(\pi x) - 6\sin(7\pi x) + 12\sin(64\pi x).$$

(Take the values of $u^0(x)$ in the nodes of the grids to define the initial vector u^0). Stop the coarse grid correction scheme if the l^2 -norm of the residual is less than 10^{-10} . Count the number of iteration for achieving this accuracy and present a table with the results.