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Finite Element Methods

A.1 Finite Element Spaces

Remark A.1. Mesh cells, faces, edges, vertices. A mesh cell K is a compact
polyhedron in R

d, d ∈ {2, 3}, whose interior is not empty. The boundary ∂K
of K consists of m-dimensional linear manifolds (points, pieces of straight
lines, pieces of planes), 0 ≤ m ≤ d− 1, which are called m-faces. The 0-faces
are the vertices of the mesh cell, the 1-faces are the edges, and the (d−1)-faces
are just called faces. 2

Remark A.2. Finite dimensional spaces defined on K. Let s ∈ N. Finite ele-
ment methods use finite dimensional spaces P (K) ⊂ Cs(K) which are defined
on K. In general, P (K) consists of polynomials. The dimension of P (K) will
be denoted by dimP (K) = NK . 2

Example A.3. P (K) = P1(K).The space consisting of linear polynomials on a
mesh cell K is denoted by P1(K):

P1(K) =

{

a0 +
d

∑

i=1

aixi : x = (x1, . . . , xd)
T ∈ K

}

.

There are d+1 unknown coefficients ai, i = 0, . . . , d, from which dimP1(K) =
NK = d+ 1 follows. 2

Remark A.4. Linear functionals defined on P (K). For the definition of finite
elements, linear functional which are defined on P (K) are of importance.

Consider linear and continuous functionals ΦK,1, . . . , ΦK,NK
: Cs(K) → R

which are linearly independent. There are different types of functionals which
can be utilized in finite element methods:

• point values: Φ(v) = v(x), x ∈ K,
• point values of a first partial derivative: Φ(v) = ∂iv(x), x ∈ K,
• point values of the normal derivative on a face E of K: Φ(v) = ∇v(x) ·nE ,
nE is the outward pointing unit normal vector on E,



80 A Finite Element Methods

• integral mean values on K: Φ(v) = 1

|K|

∫

K
v(x) dx,

• integral mean values on faces E: Φ(v) = 1

|E|

∫

E
v(s) ds.

The smoothness parameter s has to be chosen such that the functionals
ΦK,1, . . . , ΦK,NK

are continuous. If, e.g., a functional requires the evaluation
of a partial derivative or a normal derivative, then one has to choose at least
s = 1. For the other functionals given above, s = 0 is sufficient. 2

Definition A.5. Unisolvence of P (K) with respect to the functionals ΦK,1,
. . . , ΦK,NK

. The space P (K) is called unisolvent with respect to the functionals
ΦK,1, . . . , ΦK,NK

if there is for each a ∈ R
NK , a = (a1, . . . , aNK

)T , exactly one
p ∈ P (K) with

ΦK,i(p) = ai, 1 ≤ i ≤ NK .

2

Remark A.6. Local basis. For each vector a = (a1, . . . , aNK
)T ∈ R

NK there is
exactly one preimage in P (K) such that ai is the image of the i-th functional,
i = 1, . . . , NK .

Choosing in particular the Cartesian unit vectors for a, then it follows
from the unisolvence that a set {φK,i}

NK

i=1 exists with φK,i ∈ P (K) and

ΦK,i(φK,j) = δij .

That means, the set {φK,i}
NK

i=1 forms a basis of P (K). This basis is called local
basis. 2

Remark A.7. Transform of an arbitrary basis to the local basis. If an arbitrary
basis {pi}

NK

i=1 of P (K) is known then the local basis can be computed by
solving a linear system of equations. To this end, represent the local basis in
terms of the known basis

φK,j =

NK
∑

k=1

cjkpk, cjk ∈ R, j = 1, . . . , NK ,

with unknown coefficients cjk. Applying the definition of the local basis leads
to the linear system of equations

ΦK,i(φK,j) =

NK
∑

k=1

cjkaik = δij , i, j = 1, . . . , NK , aik = ΦK,i(pk).

Because of the unisolvence, the matrix A = (aij) is non-singular and the
coefficients cjk are determined uniquely. 2

Example A.8. Local basis for the space of linear functions on the reference tri-
angle. Consider the reference triangle K̂ with the vertices (0, 0), (1, 0), and
(0, 1). A linear space on K̂ is spanned by the functions 1, x̂, ŷ. Let the func-
tionals be defined by the values of the functions in the vertices of the reference
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triangle. Then, the given basis is not a local basis because the function 1 does
not vanish at the vertices.

Consider first the vertex (0, 0). A linear basis function ax̂ + bŷ + c which
has the value 1 in (0, 0) and which vanishes in the other vertices has to satisfy
the following set of equations





0 0 1
1 0 1
0 1 1









a
b
c



 =





1
0
0



 .

The solution is a = −1, b = −1, c = 1. The two other basis functions of the
local basis are x̂ and ŷ, such that the local basis has the form {1− x̂− ŷ, x̂, ŷ}.

2

Remark A.9. Triangulation, grid, mesh, grid cell. For the definition of global
finite element spaces, a decomposition of the domain Ω in polyhedrons K is
needed. This decomposition is called triangulation T h and the polyhedrons
K are called mesh cells. The union of the polyhedrons is called grid or mesh.

A triangulation is called regular, see the definition in Ciarlet [Cia78], if:

• It holds Ω = ∪K∈T hK.

• Each mesh cell K ∈ T h is closed and the interior K̊ is non-empty.
• For distinct mesh cells K1 and K2 there holds K̊1 ∩ K̊2 = ∅.
• For each K ∈ T h, the boundary ∂K is Lipschitz-continuous.
• The intersection of two mesh cells is either empty or a common m-face,
m ∈ {0, . . . , d− 1}.

2

Remark A.10. Global and local functionals. Let Φ1, . . . , ΦN : Cs(Ω) → R con-
tinuous linear functionals of the same types as given in Remark A.4. The re-
striction of the functionals to Cs(K) defines local functionals ΦK,1, . . . , ΦK,NK

,
where it is assumed that the local functionals are unisolvent on P (K). The
union ∪Kj of all mesh cells Kj for which there is a p ∈ P (Kj) with Φi(p) 6= 0
will be denoted by ωi. 2

Example A.11. On subdomains ωi. Consider the two-dimensional case and let
Φi be defined as nodal value of a function in x ∈ K. If x ∈ K̊, then ωi = K.
In the case that x is on a face of K but not in a vertex, then ωi is the union
of K and the other mesh cell whose boundary contains this face. Last, if x is
a vertex of K, then ωi is the union of all mesh cells which possess this vertex,
see Fig. A.1. 2

Definition A.12. Finite element space, global basis. A function v defined on
Ω with v|K ∈ P (K) for all K ∈ T h is called continuous with respect to the
functional Φi : Ω → R if

Φi(v|K1
) = Φi(v|K2

)
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Fig. A.1. Subdomains ωi.

for all K1,K2 ∈ ωi.
The space

S =
{

v ∈ L∞(Ω) : v|K ∈ P (K) and v is continuous with respect to

Φi, i = 1, . . . , N
}

is called finite element space.
The global basis {φj}

N
j=1 of S is defined by the following condition:

φj ∈ S, Φi(φj) = δij , i, j = 1, . . . , N.

2

Example A.13. Piecewise linear global basis function. Figure A.2 shows a
piecewise linear global basis function in two dimensions. Because of its form,
such a function is called hat function. 2

Fig. A.2. Piecewise linear global basis function, hat function.
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Remark A.14. On global basis functions. A global basis function coincides on
each mesh cell with a local basis function. This fact gives the uniqueness of
the global basis functions.

For many finite element spaces it follows from the continuity with respect
to {Φi}

N
i=1 the continuity of the finite element functions themselves. Only in

this case, one can really speak of values of finite element functions on m-faces
with m < d. 2

Definition A.15. Parametric finite elements. Let K̂ be a reference mesh cell
with the local space P (K̂), the local functionals Φ̂1, . . . , Φ̂N̂

, and a class of bi-

jective mappings {FK : K̂ → K}. A finite element space is called a parametric
finite element space if:

• The images {K} of {FK} form the set of admissible mesh cells.
• The local spaces are given by

P (K) =
{

p : p = p̂ ◦ F−1

K , p̂ ∈ P̂ (K̂)
}

. (A.1)

• The local functionals are defined by

ΦK,i(v(x)) = Φ̂i (v(FK(x̂))) , (A.2)

where x̂ = (x̂1, . . . , x̂d)
T are the coordinates of the reference mesh cell and

it holds x = FK(x̂).

Remark A.16. Motivations for using parametric finite elements. Definition
A.12 of finite elements spaces is very general. For instance, different types
of mesh cells are allowed. However, as well the finite element theory as the
implementation of finite element methods is much simpler if only parametric
finite elements are considered. 2

A.1.1 Finite Elements on Simplices

Definition A.17. d-simplex. A d-simplex K ⊂ R
d, is the convex hull of d+1

points a1, . . . ,ad+1 ⊂ R
d which form the vertices of K.

Remark A.18. On d-simplices. It will be always assumed that the simplex is
not degenerated, i.e. its d-dimensional measure is positive. This property is
equivalent to the non-singularity of the matrix

A =















a11 a12 . . . a1,d+1

a21 a22 . . . a2,d+1

...
...

. . .
...

ad1 ad2 . . . ad,d+1

1 1 . . . 1















,

where ai = (a1i, a2i, . . . , adi)
T , i = 1, . . . , d+ 1.

For d = 2, the simplices are the triangles and for d = 3 they are the
tetrahedrons. 2
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Definition A.19. Barycentric coordinates. Since K is the convex hull of the
points {ai}

d+1
i=1 , a possible parametrization of K reads as follows

K =

{

x ∈ R
d : x =

d+1
∑

i=1

λiai, 0 ≤ λi ≤ 1,
d+1
∑

i=1

λi = 1

}

.

The coefficients λ1, . . . , λd+1 in this parametrization are called barycentric
coordinates of x ∈ K.

Remark A.20. On barycentric coordinates. From the definition it follows that
the barycentric coordinates are the solution of the linear system of equations

d+1
∑

i=1

ajiλi = xj , 1 ≤ j ≤ d,
d+1
∑

i=1

λi = 1.

Since the system matrix is non-singular, see Remark A.18, the barycentric
coordinates are determined uniquely.

The barycentric coordinates of the vertex ai of the simplex is λi, i =
1, . . . , d+1. Since λi(aj) = δij , the barycentric coordinate λi can be identified
with the linear function which has the value 1 in the vertex ai and which
vanishes in all other vertices aj with j 6= i.

The barycenter of the simplex is given by

SK =
1

d+ 1

d+1
∑

i=1

ai =
d+1
∑

i=1

1

d+ 1
ai.

Hence, its barycentric coordinates are λi = 1/(d+ 1), i = 1, . . . , d+ 1. 2

Remark A.21. Simplicial reference mesh cells. A commonly used reference
mesh cell for triangles and tetrahedrons is the unit simplex

K̂ =

{

x̂ ∈ R
d :

d
∑

i=1

x̂i ≤ 1, x̂i ≥ 0, i = 1, . . . , d

}

,

see Fig. A.3. The class {FK} of admissible mappings are the bijective affine
mappings

FK x̂ = Bx̂+ b, B ∈ R
d×d, det(B) 6= 0, b ∈ R

d.

The images of these mappings generate the set of the non-degenerated sim-
plices K ⊂ R

d. 2

Definition A.22. Affine family of simplicial finite elements. Given a simpli-
cial reference mesh cell K̂, affine mappings {FK}, and an unisolvent set of
functionals on K̂. Using (A.1) and (A.2), one obtains a local finite element
space on each non-degenerated simplex. The set of these local spaces is called
affine family of simplicial finite elements.
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Fig. A.3. The unit simplices in two and three dimensions.

Definition A.23. Polynomial space Pk. Let x = (x1, . . . , xd)
T and α =

(α1, . . . , αd)
T . Then, the polynomial space Pk is given by

Pk = span

{

d
∏

i=1

xαi

i = xα : αi ≥ 0 for i = 1, . . . , d,
d

∑

i=0

αi ≤ k

}

.

Remark A.24. Affine families of finite elements on simplices. In all examples
given below, the linear functionals on the reference mesh cell are the values of
the polynomials with the same barycentric coordinates as on the general mesh
cell K. Finite elements whose linear functionals are values of the polynomials
on certain points in K are called Lagrangian finite elements. 2

Example A.25. P0 : piecewise constant finite element. The piecewise constant
finite element space consists of discontinuous functions. The linear functional
is the value of the polynomial in the barycenter of the mesh cell, see Fig. A.4.
It holds dimP0(K) = 1. 2

Fig. A.4. The finite element P0(K).

Example A.26. P1 : conforming piecewise linear finite element. This finite el-
ement space is a subspace of C(Ω). The linear functionals are the values of
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the function in the vertices of the mesh cells, see Fig. A.5. It follows that
dimP1(K) = d+ 1.

Fig. A.5. The finite element P1(K).

The local basis for the functionals {Φi(v) = v(ai), i = 1, . . . , d + 1}, is
{λi}

d+1
i=1 since Φi(λj) = δij, see Remark A.20. Since a local basis exists, the

functionals are unisolvent with respect to the polynomial space P1(K).
Now, it will be shown that the corresponding finite element space is con-

tinuous. Let K1,K2 be two mesh cells with the common face E and let
v ∈ P1(= S). The restriction of vK1

on E is a linear function on E as well
as the restriction of vK2

on E. It has to be shown that both linear functions
are identical. A linear function on E is uniquely determined with d linearly
independent functionals which are defined on E. These functionals can be
chosen to be the values of the function in the d vertices of E. The functionals
in S are continuous, by the definition of S. Thus, it must hold that both re-
strictions on E have the same values in the vertices of E. Hence, it must hold
vK1

|E = vK2
|E and the functions from P1 are continuous. 2

Example A.27. P2 : conforming piecewise quadratic finite element. This finite
element space is also a subspace of C(Ω). It consists of piecewise quadratic
functions. The functionals are the values of the functions in the vertices of the
mesh cell (d + 1) and the values of the functions in the centers of the edges,
see Fig. A.6. Since each vertex is connected to each other vertex, there are
∑d

i=1
i = d(d+1)/2 edges. Hence, it follows that dimP2(K) = (d+1)(d+2)/2.

The local basis which belongs to the functionals {Φi(v) = v(ai), i =
1, . . . , d+ 1}, is given by

{φi(λ) = λi(2λi − 1)}.

Denote the center of the edges between the vertices ai and aj by aij . The
corresponding local basis is given by

{φij = 4λiλj , i, j = 1, . . . , d+ 1, i < j}.
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Fig. A.6. The finite element P2(K).

The unisolvence follows from the fact that there exists a local basis. The
continuity of the corresponding finite element space is shown in the same way
as for the P1 finite element. The restriction of a quadratic function in a mesh
cell to a face E is a quadratic function on that face. Hence, the function on
E is determined uniquely with d(d+ 1)/2 functionals on E.

The functions φij are called in two dimensions edge bubble functions. 2

Example A.28. P3 : conforming piecewise cubic finite element. This finite el-
ement space consists of continuous piecewise cubic functions. It is a sub-
space of C(Ω). The functionals in a mesh cell K are defined to be the values
in the vertices ((d + 1) values), two values on each edge (after each third)

(2
∑d

i=1
i = d(d + 1) values), and the values in the barycenter of the 2-faces

of K. Each 2-face of K is defined by three vertices. If one considers for each
vertex all possible pairs with other vertices, then each 2-face is counted three
times. Hence, there are (d+ 1)(d− 1)d/6 2-faces. The dimension of P3(K) is
given by

dimP3(K) = (d+ 1) + d(d+ 1) +
(d− 1)d(d+ 1)

6
=

(d+ 1)(d+ 2)(d+ 3)

6
.

Fig. A.7. The finite element P3(K).



88 A Finite Element Methods

For the functionals

{Φi(v) = v(ai), i = 1, . . . , d+ 1, (vertex),
Φiij(v) = v(aiij), i, j = 1, . . . , d+ 1, i 6= j, (point on edge),
Φijk(v) = v(aijk), i = 1, . . . , d+ 1, i < j < k (point on 2-face)},

the local basis is given by

{φi(λ) =
1

2
λi(3λi − 1)(3λi − 2),

φiij(λ) =
9

2
λiλj(3λi − 1),

φijk(λ) = 27λiλjλk}.

In two dimensions, the function φijk(λ) is called cell bubble function. 2

Example A.29. P bubble
1 . 2

Example A.30. P nc
1 : nonconforming linear finite element, Crouzeix–Raviart

finite element [CR73]. This finite element consists of piecewise linear but dis-
continuous functions. The functionals are given by the values of the functions
in the barycenters of the faces. Equivalently, the functionals can be defined to
be the integral mean values on the faces. It follows that dimP nc

1 (K) = (d+1)
and that the functions from P nc

1 are continuous in the barycenter of the faces.

Fig. A.8. The finite element P nc

1 .

For the description of this finite element, one defines the functionals by

Φi(v) = v(ai−1,i+1)} for d = 2, Φi(v) = v(ai−2,i−1,i+1) for d = 3,

where the points are the barycenters of the faces with the vertices that corre-
spond to the indices. This system is unisolvent with the local basis

φi(λ) = 1− dλi, i = 1, . . . , d+ 1.

2

Example A.31. P disc
1 . 2

Example A.32. P bubble
2 . 2
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A.1.2 Finite Elements on Parallelepipeds

Remark A.33. Reference mesh cells, reference map. On can find in the litera-
ture two reference cells: the unit cube [0, 1]d and the large unit cube [−1, 1]d.
It does not matter which reference cell is chosen. Here, the large unit cube will
be used: K̂ = [−1, 1]d. The class of admissible reference maps {FK} consists
of bijective affine mappings of the form

FK x̂ = Bx̂+ b, B ∈ R
d×d, b ∈ R

d.

If B is a diagonal matrix, then K̂ is mapped to d-rectangles.
The class of mesh cells which are obtained in this way is not sufficient

to triangulate general domains. If one wants to use more general mesh cells
than parallelepipeds, then the class of admissible reference maps has to be
enlarged, see Section A.1.3. 2

Definition A.34. Polynomial space Qk. Let x = (x1, . . . , xd)
T and α =

(α1, . . . , αd)
T . Then, the polynomial space Qk is given by

Qk = span

{

d
∏

i=1

xαi

i = xα : 0 ≤ αi ≤ k for i = 1, . . . , d

}

.

Remark A.35. Finite elements on d-rectangles. For simplicity of presentation,
the examples below consider d-rectangles, even the reference mesh cell. In
this case, the finite elements are just tensor products of one-dimensional finite
elements. In particular, the basis functions can be written as products of one-
dimensional basis functions. 2

Example A.36. Q0 : piecewise constant finite element. Similarly to the P0

space, the space Q0 consists of piecewise constant, discontinuous functions.
The functional is the value of the function in the barycenter of the mesh cell K
and it holds dimQ0(K) = 1. 2

Example A.37. Q1 : conforming piecewise d-linear finite element. This finite
element space is a subspace of C(Ω). The functionals are the values of the
function in the vertices of the mesh cell, see Fig. A.9. Hence, it is dimQ1(K) =
2d.

The one-dimensional basis functions, which will be used for the tensor
product, are given by

φ̂1(x̂) =
1

2
(1− x̂), φ̂2(x̂) =

1

2
(1 + x̂).

With these functions, e.g., the basis functions in two dimensions are computed
by

φ̂1(x̂)φ̂1(ŷ), φ̂1(x̂)φ̂2(ŷ), φ̂2(x̂)φ̂1(ŷ), φ̂2(x̂)φ̂2(ŷ).
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Fig. A.9. The finite element Q1.

The continuity of the functions of the finite element space Q1 is proved in
the same way as for simplicial finite elements. It is used that the restriction of
a function from Qk(K) to a face E is function from the space Qk(E), k ≥ 1.

2

Example A.38. Q2 : conforming piecewise d-quadratic finite element. It holds
that Q2 ⊂ C(Ω). The functionals in one dimension are the values of the
function at both ends of the interval and in the center of the interval, see
Fig. A.10. In d dimensions, they are the corresponding values of the tensor
product of the intervals. It follows that dimQ2(K) = 3d.

Fig. A.10. The finite element Q2.

The one-dimensional basis function on the reference interval are defined
by

φ̂1(x̂) = −
1

2
x̂(1− x̂), φ̂2(x̂) = (1− x̂)(1 + x̂), φ̂3(x̂) =

1

2
(1 + x̂)x̂.

The basis function
∏d

i=1
φ̂2(x̂i) is called cell bubble function. 2
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Example A.39. Q3 : conforming piecewise d-quadratic finite element. This fi-
nite element space is a subspace of C(Ω). The functionals on the reference
interval are given by the values at the end of the interval and the values
at the points x̂ = −1/3, x̂ = 1/3. In multiple dimensions, it is the corre-
sponding tensor product, see Fig. A.11. The dimension of the local space is
dimQ3(K) = 4d.

Fig. A.11. The finite element Q3.

The one-dimensional basis functions in the reference interval are given by

φ̂1(x̂) = −
1

16
(3x̂+ 1)(3x̂− 1)(x̂− 1),

φ̂2(x̂) =
9

16
(x̂+ 1)(3x̂− 1)(x̂− 1),

φ̂3(x̂) = −
9

16
(x̂+ 1)(3x̂+ 1)(x̂− 1),

φ̂4(x̂) =
1

16
(3x̂+ 1)(3x̂− 1)(x̂+ 1).

2

Example A.40. Qrot
1 : rotated nonconforming element of lowest order, Ranna-

cher–Turek element [RT92]: This finite element space is the extension of the
P nc
1 finite element to quadrilateral and hexahedral mesh cells. It consists of

discontinuous functions which are continuous at the barycenter of the faces.
The dimension of the local finite element space is dimQrot

1 (K) = 2d. The
space on the reference mesh cell is defined by

Qrot
1

(

K̂
)

=
{

p̂ : p̂ ∈ span{1, x̂, ŷ, x̂2 − ŷ2}
}

for d = 2,

Qrot
1

(

K̂
)

=
{

p̂ : p̂ ∈ span{1, x̂, ŷ, ẑ, x̂2 − ŷ2, ŷ2 − ẑ2}
}

for d = 3.

Note that the transformed space

Qrot
1 (K) = {p = p̂ ◦ F−1

K , p̂ ∈ Qrot
1 (K̂)}
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Fig. A.12. The finite element Qrot

1 .

contains polynomials of the form ax2 − by2, where a, b depend on FK .
The functionals are the values in the barycenters of the faces, see Fig.

A.12. For d = 2, the local basis on the reference cell is given by

φ1(x̂, ŷ) = −
3

8
(x̂2 − ŷ2)−

1

2
ŷ +

1

4
,

φ2(x̂, ŷ) =
3

8
(x̂2 − ŷ2) +

1

2
x̂+

1

4
,

φ3(x̂, ŷ) = −
3

8
(x̂2 − ŷ2) +

1

2
ŷ +

1

4
,

φ4(x̂, ŷ) =
3

8
(x̂2 − ŷ2)−

1

2
x̂+

1

4
.

2

Example A.41. P disc
1 . 2

A.1.3 Parametric finite elements on general d-quadrilaterals

Remark A.42. Parametric mappings. The image of an affine mapping of the
reference mesh cell K̂ = [−1, 1]d, d ∈ {2, 3}, is a parallelepiped. If one wants
to consider finite elements on general q-quadrilaterals, then the class of ad-
missible reference maps has to be enlarged.

The simplest parametric finite element on quadrilaterals in two dimensions
uses bilinear mappings. Let K̂ = [−1, 1]2 and let

FK(x̂) =

(

F 1
K(x̂)

F 2
K(x̂)

)

=

(

a11 + a12x̂+ a13ŷ + a14x̂ŷ
a21 + a22x̂+ a23ŷ + a24x̂ŷ

)

, F i
K ∈ Q1, i = 1, 2,

a bilinear mapping from K̂ on the class of admissible quadrilaterals. A quadri-
lateral K is called admissible if

• the length of all edges of K is larger than zero,
• the interior angles of K are smaller than π, i.e. K is convex.
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This class contains, e.g., trapezoids and rhombi. 2

Remark A.43. Parametric finite element functions. The functions of the local
space P (K) on the mesh cellK are defined by p = p̂◦F−1

K . These are in general
rational functions. However, using d-linear mappings, then the restriction of
FK on an edge of K̂ is an affine map. E.g., in the case of the Q1 finite element,
the functions on K are linear functions on each edge of K for this reason.
It follows that the functions of the corresponding finite element space are
continuous, see Example A.26. 2

A.1.4 Transform of Integrals

Remark A.44. Motivation. The transformation of integrals from the reference
mesh cell to mesh cells of the grid and vice versa is used as well for analysis
as for the implementation of finite element methods. This section provides an
overview of the most important formulae for transformations.

Let K̂ ⊂ R
d be the reference mesh cell, K be an arbitrary mesh cell, and

FK : K̂ → K with x = FK(ξ) be the reference map. It is assumed that the
reference map is a continuous differentiable one-to-one map. The inverse map
is denoted by F−1

K : K → K̂. For the integral transforms, the derivatives
(Jacobians) of FK and F−1

K are needed

DFK(ξ)ij =
∂xi

∂ξj
, DF−1

K (x)ij =
∂ξi
∂xj

, i, j = 1, . . . , d.

2

Remark A.45. Integral with a function without derivatives. This integral trans-
forms with the standard rule of integral transforms

∫

K

v(x) dx =

∫

K̂

v̂(ξ) |detDFK(ξ)| dξ, (A.3)

where v̂(ξ) = v(FK(ξ)). 2

Remark A.46. Transform of derivatives. Using the chain rule, one obtains

∂v

∂xi

(x) =
d

∑

j=1

∂v̂

∂ξj
(ξ)

∂ξj
∂xi

= ∇ξv̂(ξ) ·
(

(

DF−1

K (x)
)T

)

i

= ∇ξv̂(ξ) ·
(

(

DF−1

K (FK(ξ))
)T

)

i
, (A.4)

∂v̂

∂ξ
(ξ) =

d
∑

j=1

∂v

∂xj

(x)
∂xj

∂ξi
= ∇v(x) ·

(

(DFK(ξ))
T
)

i

= ∇v(x) ·
(

(

DFK(F−1

K (x))
)T

)

i
. (A.5)

The index i denotes the i-th row of a matrix. Derivatives on the reference
mesh cell are marked with a symbol on the operator. 2


