
Chapter 2

Finite Element Spaces for Linear
Saddle Point Problems

Remark 2.1. Motivation. This chapter deals with the first difficulty inherent
to the incompressible Navier–Stokes equations, see Remark 1.10, namely the
coupling of velocity and pressure. The characteristic feature of this coupling
is the absence of a pressure contribution in the continuity equation. In fact,
the continuity equation can be considered as a constraint for the velocity and
the pressure in the momentum equation as a Lagrangian multiplier. This kind
of coupling is called saddle point problem.

Appropriate finite element spaces for velocity and pressure have to satisfy
the so-called discrete inf-sup condition. This condition is derived on the basis
of the theory for an abstract linear saddle point problem. Techniques for
proving the discrete inf-sup condition will be presented briefly and applied
for concrete pairs of finite element spaces for velocity and pressure.

All special cases of models for incompressible flow problems given in Re-
mark 1.12 possess the same coupling of velocity and pressure, in particular
the linear model of the Stokes equations. Linear problems are also of inter-
est in the numerical simulation of the Navier–Stokes equations. After having
discretized these equations implicitly in time, a nonlinear saddle point prob-
lem has to be solved in each discrete time. The solution of this problem is
performed iteratively, requiring in each iteration step the solution of a lin-
ear saddle point problem for velocity and pressure. These linear saddle point
problems will be discretized with finite element spaces. The existence and
uniqueness of a solution of these discrete linear problems is crucial for per-
forming the iteration. Altogether, the theory of linear saddle problems plays
an essential role for the theory of all models for incompressible flows from
Chapter 1.

A comprehensive presentation of the theory of linear saddle point problems
can be found in the monograph Boffi et al. (2013). ✷
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12 2 Finite Element Spaces for Linear Saddle Point Problems

2.1 Existence and Uniqueness of a Solution of an
Abstract Linear Saddle Point Problem

Remark 2.2. Contents. This section presents an abstract framework for study-
ing the existence and uniqueness of solutions of those types of linear saddle
point problems which are of interest for incompressible flow problems. The
presentation follows (Girault & Raviart, 1986, Chapter I, § 4). ✷

Remark 2.3. Abstract linear saddle point problem. Let V and Q be two real
Hilbert spaces with inner products (·, ·)V and (·, ·)Q and with induced norms
�·�V and �·�Q, respectively. Their corresponding dual spaces are given by V �

and Q�, with the dual pairing denoted by �·, ·�V �,V and �·, ·�Q�,Q. The norms
of the dual spaces are defined in the usual way by

�φ�V � := sup
v∈V,v �=0

�φ, v�V �,V

�v�V
, �ψ�Q� := sup

q∈Q,q �=0

�ψ, q�Q�,Q

�q�Q
. (2.1)

Two continuous bilinear forms are considered

a(·, ·) : V × V → R, b(·, ·) : V ×Q → R, (2.2)

with the usual definition of their norms

�a� = sup
v,w∈V,v,w �=0

a(v, w)

�v�V �w�V
, �b� = sup

v∈V,q∈Q,v,q �=0

b(v, q)

�v�V �q�Q
. (2.3)

The following problem is studied: Find (u, p) ∈ V ×Q such that for given
(f, r) ∈ V � ×Q�

a(u, v) + b(v, p) = �f, v�V �,V ∀ v ∈ V,

b(u, q) = �r, q�Q�,Q ∀ q ∈ Q.
(2.4)

System (2.4) is called linear saddle point problem. Concrete choices of the
spaces and bilinear forms for incompressible flow problems are discussed in
Section 2.2. ✷

Remark 2.4. Operator form of the linear saddle point problem. Problem (2.4)
can be transformed into an equivalent form using operators instead of bilinear
forms. Linear operators can be defined which are associated with the bilinear
forms given in (2.2):

A ∈ L (V, V �) defined by �Au, v�V �,V = a(u, v) ∀ u, v ∈ V,

B ∈ L (V,Q�) defined by �Bu, q�Q�,Q = b(u, q) ∀ u ∈ V, ∀ q ∈ Q.

Using the definition of the norms of the dual spaces (2.1), the norms of the
operators are given by
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�Av�V � = sup
w∈V,w �=0

�Av,w�V �,V

�w�V
=⇒

�A�L(V,V �) = sup
v∈V,v �=0

�Av�V �

�v�V
= sup

v,w∈V,v,w �=0

a(v, w)

�v�V �w�V
= �a� ,

and analogously
�B�L(V,Q�) = �b� .

Let B� ∈ L(Q, V �) be the adjoint (dual) operator of B defined by

�B�q, v�V �,V = �Bv, q�Q�,Q = b(v, q) ∀ v ∈ V, ∀ q ∈ Q.

With these operators, Problem (2.4) can be written in the equivalent form:
Find (u, p) ∈ V ×Q such that

Au +B�p = f in V �,

Bu = r in Q�.
(2.5)

✷

Definition 2.5. Well-posedness of Problem (2.5). Let

Φ ∈ L (V ×Q, V � ×Q�) : Φ(v, q) = (Av +B�q, Bv)

be a linear operator, where (·, ·) denotes a vector with two components. Prob-
lem (2.5) is said to be well-posed if Φ(·, ·) is an isomorphism from V ×Q onto
V � ×Q�. ✷

Remark 2.6. On Definition 2.5. Definition 2.5 means that Problem (2.5) pos-
sesses for all possible right-hand sides a unique solution. The purpose of the
following studies consists in deriving necessary and sufficient conditions for
(2.5) to be well-posed. ✷

Remark 2.7. The finite-dimensional case. Consider for the moment that V
and Q are finite-dimensional spaces of dimension nV and nQ, respectively.
Then, the operators in (2.5) can be represented with matrices, with B� = BT ,
and the functions with vectors. The well-posedness of (2.5) means that the
linear system of equations

�
A BT

B 0

��
u
p

�
=

�
f
r

�
,

�
A BT

B 0

�
∈ R(nV +nQ)×(nV +nQ), (2.6)

has a unique solution for all right-hand sides or, equivalently, that the sys-
tem matrix is non-singular. Here, conditions will be derived such that this
property is given. These considerations should provide an idea of the kind of
conditions to be expected in the general case.

Separate consideration of velocity and pressure. A possible way to solve
(2.6) starts by solving the first equation of (2.6) for u
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u = A−1
�
f −BT p

�
. (2.7)

Inserting this expression in the second equation gives

�
BA−1BT

�
p = BA−1f − r. (2.8)

If (2.8) possesses a unique solution p, this solution can be inserted in (2.7)
and a unique solution u is obtained, too. This way to compute a unique
solution works if

• A : V → V � is an isomorphism, i.e., A is non-singular,
• BA−1BT : Q → Q� is an isomorphism, i.e., BA−1BT is non-singular.

Let p be a solution of (2.8). Then, also p+ p̃ with p̃ ∈ ker
�
BT

�
is a solution of

(2.8). Thus, for BA−1BT to be non-singular, it is necessary that ker
�
BT

�
=

{0} or equivalently that BT : Q → V � = V is injective. With a similar
argument, one finds that B must be injective on the range of A−1BT , i.e.,
ker(B) ∩ range

�
A−1BT

�
= {0}.

Joint consideration of velocity and pressure. One can also consider the
system matrix (2.6) as a whole. A first necessary condition for the matrix to
be non-singular is nQ ≤ nV , since the last rows of the system matrix span a
space of dimension at most nV (only the first nV entries of these rows might
be non-zero). Assume that A is non-singular, then the system matrix is non-
singular if and only if B has full rank, i.e., rank(B) = nQ. It will be shown
now that rank(B) = nQ if and only if

inf
q∈RnQ ,q �=0

sup
v∈RnV ,v �=0

vTBT q

�v�2
��q

��
2

≥ β > 0. (2.9)

Let (2.9) be satisfied and let rank(B) < nQ. Then, there is a q ∈ RnQ ,

q �= 0, such that q ∈ ker
�
BT

�
, i.e., BT q = 0. For this vector, it is vTBT q = 0

for all v ∈ RnV such that the supremum of (2.9) is zero and (2.9) cannot be
satisfied. This result is a contradiction and hence rank(B) = nQ.

On the other hand, let rank(B) = nQ. Then, for each q ∈ RnQ , q �= 0, one

has that BT q �= 0 with BT q ∈ RnV . Choosing v = BT q gives

inf
q∈RnQ ,q �=0

sup
v∈RnV ,v �=0

vTBT q

�v�2
��q

��
2

≥ inf
q∈RnQ ,q �=0

��BT q
��2
2��BT q

��
2

��q
��
2

= inf
q∈RnQ ,q �=0

��BT q
��
2��q

��
2

. (2.10)

It is ��BT q
��2
2��q

��2
2

=
qTBBT q

qT q
.

This expression is a Rayleigh quotient and it is known that
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inf
q∈RnQ ,q �=0

qTBBT q

qT q
= λmin

�
BBT

�
,

where λmin

�
BBT

�
is the smallest eigenvalue of BBT , see Lemma A.19. Since

B was assumed to have full rank, one has λmin

�
BBT

�
> 0 and hence with

(2.10)

inf
q∈RnQ ,q �=0

sup
v∈RnV ,v �=0

vTBT q

�v�2
��q

��
2

≥ λ
1/2
min

�
BBT

�
> 0.

Altogether, under the assumption that

• A is non-singular, i.e., A : V → V � is an isomorphism,
• (2.9) is satisfied,

the system matrix (2.6) is non-singular.
The result presented here just states that the given problem has a unique

solution because (2.9) is satisfied. In the finite element theory it turns out
that there is another important aspect to study, namely the dependency of
β on the dimension of the finite element spaces. To obtain optimal orders
of convergence, β has to be independent of the dimension, e.g., compare
Remark 3.26. This aspect can also be taken into account in the matrix-
vector formulation of linear saddle point problems.Then, one has to solve a
generalized eigenvalue problem.

It turns out that one gets similar conditions in the general case. Whether
or not these conditions are satisfied depends finally on the spaces V and Q.

✷

Remark 2.8. A manifold and a subspace in V . A manifold of V will be defined
that contains all elements which fulfill the second equation of (2.5)

V (r) = {v ∈ V : Bv = r}, V0 := V (0) = ker(B).

The manifold V0 is even a subspace of V . From Hilbert space theory, it follows
that there is an orthogonal decomposition, with respect to the inner product
of V ,

V = V ⊥
0 ⊕ V0,

where V ⊥
0 is the orthogonal complement of V0. ✷

Lemma 2.9. Properties of V0 and V ⊥
0 . The spaces V0 and V ⊥

0 are closed
subspaces of V .

Proof. First, the closeness of V0 will be proved. Let {vn}∞n=1 be an arbitrary Cauchy

sequence with vn ∈ V0 for all n. Since V is complete, there exists a v ∈ V with
limn→∞ vn = v. One has to show that v ∈ V0. By the continuity of the linear opera-

tor B, it follows that

Bv = B
�

lim
n→∞

vn

�
= lim

n→∞
(Bvn) = lim

n→∞
0 = 0.

Hence v ∈ V0 and V0 is closed.
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The closeness of V ⊥
0 follows from the fact that the orthogonal complement of every

subspace is closed, see Lemma A.17. �

Remark 2.10. Functionals vanishing on V0. A subset of V � is defined for the
following analysis:

Ṽ � = {φ ∈ V � : �φ, v�V �,V = 0 ∀ v ∈ V0} ⊂ V �. (2.11)

This subset, which is even a closed subspace of V �, contains all linear func-
tionals on V that vanish for all v ∈ V0 = ker(B). ✷

Remark 2.11. Reduction of the system to a single equation in a subspace. In
the next step, the following problem is associated with Problems (2.4) and
(2.5): Find u ∈ V (r) such that

a(u, v) = �f, v�V �,V ∀ v ∈ V0. (2.12)

Clearly, if (u, p) ∈ V × Q is a solution of (2.4) or (2.5), then u ∈ V (r). In
addition, one obtains

�B�p, v�V �,V = �Bv, p�Q�,Q = b(v, p) = 0 ∀ v ∈ V0. (2.13)

Since the first equation of (2.4) holds for all v ∈ V , it holds in particular for
all v ∈ V0. With (2.13) it follows that u is a solution of (2.12).

The aim of the analysis consists now in finding conditions to ensure that
the converse of this statement holds: if u ∈ V (r) is a solution of (2.12), one
can find a unique p ∈ Q such that (u, p) is the unique solution of (2.4) or
(2.5), respectively. ✷

Lemma 2.12. The inf-sup condition. The three following properties are
equivalent:

i) There exists a constant βis > 0 such that

inf
q∈Q,q �=0

sup
v∈V,v �=0

b(v, q)

�v�V �q�Q
≥ βis. (2.14)

ii) The operator B� is an isomorphism from Q onto Ṽ � and

�B�q�V � ≥ βis �q�Q ∀ q ∈ Q. (2.15)

iii) The operator B is an isomorphism from V ⊥
0 onto Q� and

�Bv�Q� ≥ βis �v�V ∀ v ∈ V ⊥
0 . (2.16)

Proof. For the proof, it is referred to Girault & Raviart (1986) or (John, 2016, Lemma 2.12).

�

Remark 2.13. Well-posedness of Problem (2.5). It is possible to derive a suf-
ficient and necessary condition for the well-posedness of problem (2.5), e.g.,
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see (John, 2016, Theorem 2.18). However, from the practical point of view,
the following sufficient condition is more important. The relaxation in com-
parison with the necessary condition is with respect to the assumptions on
the bilinear form a(·, ·). ✷

Lemma 2.14. Sufficient condition for the well-posedness of (2.5). As-
sume that the bilinear form a(·, ·) is V0-elliptic, i.e., there is a constant α > 0
such that

a(v, v) ≥ α �v�2V ∀ v ∈ V0.

Then, Problem (2.5) is well-posed if and only if the bilinear form b(·, ·) sat-
isfies the inf-sup condition (2.14).

Proof. See (John, 2016, Lemma 2.19). �

Remark 2.15. Formulation as an optimization problem, saddle point problem.
Problems (2.5) and (2.12) can formulated as optimization problems under
certain conditions. Let J0 : V → R and J1 : V ×Q → R be two quadratic
functionals defined by

J0(v) =
1

2
a(v, v)− �f, v�V �,V , J1(v, q) = J0(v) + b(v, q)− �r, q�Q�,Q .

The functional J0 is called energy functional associated with Problem (2.12)
and J1 is the Lagrangian functional associated with Problem (2.5).

Consider the following problem: Find a saddle point (u, p) ∈ V ×Q of the
Lagrangian functional J1 over V × Q, i.e., find a pair (u, p) ∈ V × Q such
that

J1(u, q) ≤ J1(u, p) ≤ J1(v, p) ∀ v ∈ V, ∀ q ∈ Q. (2.17)

This form is the classical formulation of a saddle point problem. The charac-
terization (2.17) inspired the notation saddle point problem also for Problem
(2.5). ✷

Theorem 2.16. Existence and uniqueness of a solution of (2.17). As-
sume the conditions of Lemma 2.14. Assume in addition that the bilinear form
a(·, ·) is symmetric. Then, Problem (2.17) has a unique solution (u, p) ∈ V×Q
that is precisely the solution of Problem (2.5).

Proof. It is referred to (Girault & Raviart, 1986, p. 62) for the proof. �

2.2 Appropriate Function Spaces for Continuous
Incompressible Flow Problems

Remark 2.17. Contents. The theory of Section 2.1 will now be applied to char-
acterize appropriate function spaces for weak formulations of incompressible
flow problems. Lemma 2.14 gives two conditions for the well-posedness of
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the linear saddle point problem. One condition concerns only the space V . It
will be discussed for the individual incompressible flow models later, e.g., see
Theorem 3.6 for the Stokes equations. The emphasis of this section is on the
second condition, which establishes a connection between the spaces V and
Q. These spaces have to satisfy the inf-sup condition (2.14). Note that the
inf-sup condition guarantees the uniqueness of the pressure. ✷

Remark 2.18. The bilinear form b(·, ·) for incompressible flow problems. In
the inf-sup condition (2.14), the velocity and pressure space are coupled by a
bilinear form. A weak formulation of incompressible flow problems is obtained
in the usual way by multiplying the momentum equation with a test function
v ∈ V and the continuity equation with a test function q ∈ Q. Then, both
equations are integrated on Ω. One obtains for the continuity equation

�

Ω

(∇ · u) q dx = (∇ · u, q) = 0.

For the viscous term and the pressure term in the continuity equation, in-
tegration by parts is applied. Assuming that the functions are sufficiently
smooth and that the integral on the boundary vanishes in performing the
integration by parts, one gets the term

�

Ω

∇p · v dx = −
�

Ω

(∇ · v) p dx = −(∇ · v, p). (2.18)

Thus, the framework of Section 2.1 can be used if one defines

b(v, q) = −
�

Ω

(∇ · v) q dx = −(∇ · v, q) v ∈ V, q ∈ Q. (2.19)

✷

Remark 2.19. Function spaces for velocity and pressure for homogeneous
Dirichlet boundary conditions. Let Ω be a bounded and connected domain
in Rd, d ∈ {2, 3}, with Lipschitz boundary. To simplify the presentation,
only problems with Dirichlet boundary conditions on the whole boundary
will be considered. Since these are essential boundary conditions, they enter
the definition of the velocity space. Define

V = H1
0 (Ω) =

�
v : v ∈ H1(Ω) with v = 0 on Γ

�
,

where the value of v on the boundary is to be understood in the sense of
traces, and

Q = L2
0 (Ω) =

�
q : q ∈ L2(Ω) with

�

Ω

q(x) dx = 0

�
.

Both spaces are Hilbert spaces. The inner product in V and the induced norm
are given by
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(v,w) =

�

Ω

(∇v : ∇w) (x) dx, �v�V = �∇v�L2(Ω) . (2.20)

Poincaré’s inequality (A.12) shows that (2.20) defines in fact an inner product
and a norm in V . The inner product and the induced norm in Q are given
by

(q, r) =

�

Ω

(qr)(x) dx, �q�Q = �q�L2(Ω) .

The dual space of V is V � = H−1(Ω) and the dual of the pressure space is
Q� = Q.

For v ∈ V , it follows that ∇v ∈ L2(Ω) and with estimate (2.26) proved
below, one obtains that ∇ · v ∈ L2(Ω). Thus, the definition of the spaces
implies that all terms in (2.18) are well defined and that this equality holds.

✷

Remark 2.20. Notation for spaces of vector-valued and tensor-valued func-
tions. For simplicity of notation, spaces of vector-valued or tensor-valued are
denoted with the same symbol as the corresponding space for scalar func-
tions. This notation has to be understood in the sense that each component
of the vector-valued or tensor-valued function belongs to this space. ✷

Remark 2.21. The divergence operator. The divergence operator is defined by

div : V → range(div), v �→ ∇ · v.
From (2.26) below, one gets for v ∈ V that ∇ · v ∈ L2(Ω). Integration by
parts gives �

Ω

(∇ · v) (x) dx = 0 ∀ v ∈ V,

such that the integral mean value is zero and hence range(div) ⊆ Q = Q�

can be concluded. In Lemma 2.34, it will be shown that even equality holds:
range(div) = Q�. It follows from Lemma 2.12 iii) that this condition neces-
sarily holds if the inf-sup condition is satisfied.

Altogether, the operator B ∈ L(V,Q�) from Section 2.1 can be charac-
terized in incompressible flow problems as the negative divergence operator.

✷

Remark 2.22. The gradient operator. The gradient operator will be defined
on Q

grad : Q → range(grad), q �→ ∇q.

Since the gradient of a function from L2(Ω) is in H−1(Ω), one obtains
range(grad) ⊂ V �. The range of grad will be characterized more precisely
in Lemma 2.32, accordingly to the condition from Lemma 2.12 ii).

Integration by parts gives

�−div(v), q�Q�,Q = −
�

Ω

(∇ · v)q dx =

�

Ω

∇q · v dx
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= �grad(q),v�V �,V ∀ v ∈ V, q ∈ Q. (2.21)

From this identity, it follows that −div and grad are dual operators and grad
represents the operator B� ∈ L(Q, V �) from Section 2.1. ✷

Definition 2.23. Distributional and weak divergence. For a vector field
v ∈ L1(Ω), the mapping

C∞
0 (Ω) → R, ψ �→

�

Ω

∇ψ · v dx

is called the distributional divergence of v.
If for a vector field v ∈ Lp(Ω) with p ≥ 1 there exists a function θ ∈

L1
loc(Ω) such that

−
�

Ω

∇ψ · v dx =

�

Ω

ψθ dx ∀ ψ ∈ C∞
0 (Ω),

then the function θ is called the weak divergence of v. ✷

Remark 2.24. A space of functions with weak divergence. For incompressible
flow problems, the space of vector fields in L2(Ω) where the divergence be-
longs also to L2(Ω)

H (div,Ω) =
�
v ∈ L2(Ω) : ∇ · v ∈ L2(Ω)

�
(2.22)

is important. The space H (div,Ω) is a Hilbert space with the inner product
and the induced norm, respectively,

(v,w)H(div,Ω) = (v,w) + (∇ · v,∇ ·w) ,

�v�H(div,Ω) =
�
�v�2L2(Ω) + �∇ · v�2L2(Ω)

�1/2

.

✷

Definition 2.25. Divergence-free vector field. In view of Definition 2.23,
a vector field v ∈ Lp(Ω), p ≥ 1, is called to be weakly divergence-free if

�

Ω

∇ψ · v dx = 0 ∀ ψ ∈ C∞
0 (Ω).

✷

Remark 2.26. Spaces of weakly divergence-free functions. It became clear in
Section 2.1, Remark 2.8, that the kernel of the operator B is of importance.
This kernel is the space of weakly divergence-free functions in V

V0 = Vdiv = {v ∈ V : (∇ · v, q) = 0 ∀ q ∈ Q} . (2.23)
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Thus, the divergence of the functions from Vdiv vanishes in the sense of L2(Ω),
i.e., it is (∇ · v)(x) = 0 almost everywhere in Ω.

Another space of divergence-free functions is defined by

Hdiv(Ω) = {v ∈ H (div,Ω) : ∇ · v = 0 and v · n = 0 on Γ

in the sense of traces} . (2.24)

The regularity requirement for functions from Hdiv(Ω) is weaker than for
functions from Vdiv.

For bounded domains with Lipschitz boundary, it can be shown that
Hdiv(Ω) is the closure of C∞

0,div(Ω), see (A.7), in the norm �·�L2(Ω), e.g.,

see (Constantin & Foias, 1988, Proposition 1.8) or (Sohr, 2001, Chapter II,
Lemma 2.5.3). ✷

Lemma 2.27. Estimating the L2(Ω) norm of the divergence by the
L2(Ω) norm of the gradient for functions from H1(Ω). Let Ω ⊂ Rd,
d ∈ {2, 3}, and let v ∈ H1(Ω), then it holds

�∇ · v�L2(Ω) ≤
√
d �∇v�L2(Ω) ∀ v ∈ H1(Ω). (2.25)

This estimate is sharp.

Proof. Exercise. �

Remark 2.28. Improvement of (2.25) for functions from H1
0 (Ω). It can be

shown, e.g., (John, 2016, Lemma 3.179), that for functions from V = H1
0 (Ω),

it holds
�∇ · v�L2(Ω) ≤ �∇v�L2(Ω) ∀ v ∈ H1

0 (Ω). (2.26)

✷

Remark 2.29. Estimating the norm of the deformation tensor by the norm of
the gradient. Using the triangle inequality and that the norm of a tensor is
defined component-by-component, one obtains readily

�D (u)�L2(Ω) =

�����
∇u+ (∇u)

T

2

�����
L2(Ω)

≤ 1

2
�∇u�L2(Ω) +

1

2

���(∇u)
T
���
L2(Ω)

= �∇u�L2(Ω) .

Thus, the norm of the symmetric part of the gradient can be estimated by
the norm of the gradient. There is also an estimate in the other direction,
which is called Korn’s inequality, exercise. ✷

Lemma 2.30. Boundedness, continuity, and norm of the bilinear
form b(·, ·). The bilinear form b(·, ·) from (2.19) is bounded

|b(v, q)| ≤ �v�V �q�Q



22 2 Finite Element Spaces for Linear Saddle Point Problems

and consequently it is continuous. In addition, it holds �b� = 1.

Proof. The boundedness follows with the Cauchy–Schwarz inequality (A.10) and (2.26)

|b(v, q)| =
����−

�

Ω

(∇ · v) q dx

���� ≤ �∇ · v�L2(Ω) �q�L2(Ω) ≤ �∇v�L2(Ω) �q�L2(Ω) . (2.27)

Continuity follows from boundedness.

The statement concerning the norm of b(·, ·) follows from the definition (2.3) of this

norm and (2.27). �

Lemma 2.31. Vdiv is a closed subspace of V . The subspace of weakly
divergence-free functions Vdiv is closed in V .

Proof. For interested students only, not presented in the class.

The proof is essentially the same as in the general case, see Lemma 2.9. It is given here

for completeness of presentation.
Since b(·, ·) is a bilinear form, it follows that

(α∇ · v1 + β∇ · v2, q) = α (∇ · v1, q) + β (∇ · v2, q) = 0

∀ α,β ∈ R, v1,v2 ∈ Vdiv, q ∈ Q.

Hence, any linear combination of weakly divergence-free functions is weakly divergence-free

and therefore Vdiv is a subspace of V .

Let v ∈ V be arbitrary such that a sequence vn → v, vn ∈ Vdiv, n = 1, 2, . . ., exists
which converges to v in V , i.e., �v − vn�V → 0 as n → ∞. To prove that Vdiv is closed,

one has to show that v ∈ Vdiv. Let q ∈ Q be arbitrary but fixed, then it follows from the

continuity of b(·, ·) that

b(v, q) = b
�

lim
n→∞

vn, q
�
= lim

n→∞
b (vn, q) = lim

n→∞
0 = 0.

Since q ∈ Q was arbitrary, one gets b(v, q) = 0 for all q ∈ Q, i.e., v ∈ Vdiv. �

Lemma 2.32. Isomorphism of the gradient operator. If f ∈ V � satis-
fies

�f ,v�V �,V = 0 ∀ v ∈ Vdiv,

then there exists a unique q ∈ Q such that

f = grad(q).

That means, the range of the gradient operator consists of the functionals in
V � that vanish on Vdiv

Ṽ � =
�
f ∈ V � : �f ,v�V �,V = 0, ∀ v ∈ Vdiv

�
,

compare (2.11), and this operator is an isomorphism from Q onto Ṽ �.

Proof. For interested students only, not presented in the class.

It is known that the range of grad is a subspace of V �, see Remark 2.22. It can be
even shown, see (Girault & Raviart, 1986, p. 20) on the basis of results from Carroll

et al. (1966) or Duvaut & Lions (1972), that range (grad) is a closed subspace of V �. The
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operators −div and grad are dual operators. From the Closed Range Theorem of Banach,

Theorem A.71 iv), it follows that range (grad) is the subspace of functionals from V � which
vanish on the kernel of div, i.e., range (grad) = Ṽ �.

To prove uniqueness, consider q1, q2 ∈ Q with

f = grad(q1) = grad(q2).

Then, one has
0 = grad(q1)− grad(q2) = grad(q1 − q2).

Hence q1 − q2 ∈ ker(grad), i.e., q1 − q2 ∈ Q is almost everywhere a constant function. The

only function that is constant almost everywhere in Q is q = 0. It follows that q1 = q2 in
the sense of L2(Ω). �

Remark 2.33. Orthogonal decomposition of V . The space V can be decom-
posed into orthogonal subspaces

V = Vdiv ⊕ V ⊥
div,

where the orthogonality is based on the inner product (2.20) of V . ✷

Lemma 2.34. Isomorphism of the divergence operator. The operator
div is an isomorphis from V ⊥

div onto Q.

Proof. For interested students only, not presented in the class.

The operator −div is the dual of grad. From Lemma 2.32 it follows that −div, and

with that the operator div, is an isomorphism from the dual space of Ṽ � onto Q�. It will
be shown that the dual space of Ṽ � is V ⊥

div, which is equivalent to show that Ṽ � =
�
V ⊥
div

��
.

To this end, an isomorphism
�
V ⊥
div

�� → Ṽ � will be constructed.

Let g̃ ∈
�
V ⊥
div

��
, then a functional g ∈ V � can be defined by setting

�g,v�V �,V =
�
g̃,v⊥�

V �,V ∀ v ∈ V,

where v⊥ is the orthogonal projection of v onto V ⊥
div. In particular, it holds for all v ∈ Vdiv

that
�g,v�V �,V = �g̃,0�V �,V = 0.

Hence, g ∈ Ṽ �. In this way, a linear mapping

�
V ⊥
div

�� → Ṽ �, g̃ �→ g

is defined.

First, it will be shown that this mapping is injective. Let g̃1, g̃2 ∈
�
V ⊥
div

��
with

�g,v�V �,V =
�
g̃1,v

⊥�
V �,V =

�
g̃2,v

⊥�
V �,V ∀ v ∈ V,

then it is �
g̃1 − g̃2,v

⊥�
V �,V = 0 ∀ v ∈ V.

This equality holds in particular for all v ∈ V ⊥
div, from which it follows that the functionals

g̃1, g̃2 are identical.
Next, the surjectivity of the mapping will be proved. Let g ∈ Ṽ �, i.e., �g,v�V �,V = 0

for all v ∈ Vdiv. Consider an arbitrary v ∈ V . This function can be decomposed into
v = vdiv + v⊥

div with vdiv ∈ Vdiv, v
⊥
div ∈ V ⊥

div. Since v is arbitrary, also v⊥
div is arbitrary.

It follows that
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�g,v�V �,V = �g,vdiv�V �,V +
�
g,v⊥

div

�
V �,V =

�
g,v⊥

div

�
V �,V ∀ v⊥

div ∈ V ⊥
div.

This relation defines a functional on V ⊥
div which is mapped onto g. Consequently, the

mapping is surjective. �

Corollary 2.35. Each pressure is the divergence of a velocity field.
For each q ∈ Q there is a unique v ∈ V ⊥

div ⊂ V such that

∇ · v = q and �q�Q ≤ �v�V , �v�V ≤ C �q�Q , (2.28)

with C independent of v and q. In the proof of Theorem 2.37 below, it will be
shown that C = β−1

is .

Proof. The existence of a unique v ∈ V ⊥
div with ∇ · v = q follows from the isomorphism

of the divergence operator, see Lemma 2.34. Then, one gets with (2.26)

�q�Q = �∇ · v�L2(Ω) ≤ �∇v�L2(Ω) = �v�V .

The inverse map of the divergence operator is an isomorphism, too. In particular, it is

bounded, see Theorem A.70. Hence there is a C > 0 such that �v�V =
��div−1q

��
V

≤
C �q�Q for all q ∈ Q and all v ∈ V ⊥

div. �

Remark 2.36. Forms of the inf-sup condition (2.14) found in the literature.
Since with each function which can be inserted in the inf-sup condition also
its negative can be inserted, one has

inf
q∈Q,q �=0

sup
v∈V,v �=0

b(v, q)

�v�V �q�Q

= inf
q∈Q,q �=0

sup
v∈V,v �=0

− (∇ · v, q)
�∇v�L2(Ω) �q�L2(Ω)

= inf
q∈Q,q �=0

sup
v∈V,v �=0

(∇ · v, q)
�∇v�L2(Ω) �q�L2(Ω)

≥ βis > 0.

The last line is a form that can be found often in the literature.
Another form is that for each q ∈ Q, it holds that

sup
v∈V,v �=0

(∇ · v, q)
�∇v�L2(Ω)

≥ βis �q�L2(Ω) . (2.29)

✷

Theorem 2.37. Inf-sup condition for V and Q. The spaces V and Q
satisfy the inf-sup condition (2.14), i.e., there is a βis > 0 such that

inf
q∈Q,q �=0

sup
v∈V,v �=0

(∇ · v, q)
�v�V �q�Q

≥ βis. (2.30)

Proof. Let q ∈ Q be arbitrary. By Corollary 2.35 there exists a unique v ∈ V ⊥
div such that
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∇ · v = q, �v�V ≤ C �q�Q .

It follows that
(∇ · v, q)
�v�V

=
(q, q)

�v�V
=

�q�2Q
�v�V

≥ 1

C
�q�Q .

Hence

sup
v∈V,v �=0

(∇ · v, q)
�v�V

≥ 1

C
�q�Q ,

and because q ∈ Q is arbitrary, one obtains

inf
q∈Q,q �=0

sup
v∈V,v �=0

(∇ · v, q)
�v�V �q�Q

≥ 1

C
=: βis.

�

Corollary 2.38. Estimating the norm of the gradient by the norm
of the divergence for functions from V ⊥

div. For all v ∈ V ⊥
div, it holds

�v�V ≤ 1

βis
�∇ · v�L2(Ω) , (2.31)

cf. Lemma 2.12 and (2.16).

Proof. From (2.28) and the specification of C, it follows that

�v�V ≤ C �∇ · v�L2(Ω) =
1

βis
�∇ · v�L2(Ω) .

�

Lemma 2.39. Upper bound for the inf-sup constant. It is βis ≤ 1.

Proof. Using Corollary 2.35, one can take q = ∇ · v in the inf-sup condition (2.30).
Applying then estimate (2.26) yields

βis ≤ sup
v∈V,v �=0

(∇ · v,∇ · v)
�∇v�L2(Ω) �∇ · v�L2(Ω)

= sup
v∈V,v �=0

�∇ · v�2L2(Ω)

�∇v�L2(Ω) �∇ · v�L2(Ω)

≤ sup
v∈V,v �=0

�∇v�L2(Ω) �∇ · v�L2(Ω)

�∇v�L2(Ω) �∇ · v�L2(Ω)

= 1.

�

2.3 General Considerations on Appropriate Function
Spaces for Finite Element Discretizations

Remark 2.40. On finite element methods. A brief introduction to finite el-
ement methods is provided in Appendix B. The main idea of using finite
element methods consists in replacing the infinite-dimensional spaces V and
Q by a finite-dimensional velocity space V h and a finite-dimensional pressure
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space Qh and to apply the Galerkin method, see Remark B.10. If V h ⊂ V
and Qh ⊂ Q, the finite element method is called conforming, otherwise it is
called non-conforming.

For incompressible flow problems, the pair of velocity-pressure finite ele-
ment spaces is denoted by V h/Qh. It is usual that it will not be emphasized
in the notation that V h consists of vector-valued functions and that Qh is
possibly intersected with L2

0(Ω), depending on the boundary condition. ✷

Remark 2.41. Application of the abstract theory, the discrete inf-sup condi-
tion. Clearly, the finite-dimensional spaces are Hilbert spaces and the theory
developed in Section 2.1 can be applied for the investigation of the existence
and the uniqueness of a solution of the finite element problems arising in the
discretization of incompressible flow models. In particular, the spaces V h and
Qh have to satisfy an inf-sup condition of the form

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

bh
�
vh, qh

�

�vh�V h �qh�Qh

≥ βh
is > 0 (2.32)

or equivalently that there is a βh
is > 0 such that

sup
vh∈V h\{0}

bh
�
vh, qh

�

�vh�V h

≥ βh
is

��qh
��
Qh ∀ qh ∈ Qh. (2.33)

This condition is called discrete inf-sup condition or discrete Babuška–Brezzi
or discrete Ladyzhenskaya–Babuška–Brezzi (LBB) condition. In (2.32) and
(2.33), the bilinear form bh : V h ×Qh → R is defined by

bh
�
vh, qh

�
= −

�

K∈T h

�
∇ · vh, qh

�
K
, (2.34)

where T h is a triangulation of Ω and K ∈ T h are the mesh cells. For con-
forming finite element spaces, the bilinear form bh(·, ·) can be written in the
same form as the bilinear form b(·, ·) with an integral on Ω, see (2.19). In
this case, bh(·, ·) is just the restriction of b(·, ·) from V ×Q to V h ×Qh. The
norms in the denominator are defined by

��vh
��
V h =


 �

K∈T h

�
∇vh,∇vh

�
K




1/2

,
��qh

��
Qh =

��qh
��
L2(Ω)

. (2.35)

For a conforming velocity finite element space, it is
��vh

��
V h =

��∇vh
��
L2(Ω)

.

In the same way as in the proof of Lemma 2.39, one finds for conforming
finite element spaces that βh

is ≤ 1. ✷

Remark 2.42. Non-inheritance of the inf-sup condition from V and Q. Con-
sider a conforming finite element method, then
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sup
vh∈V h\{0}

b
�
vh, q

�

�∇vh�L2(Ω) �q�L2(Ω)

≤ sup
v∈V \{0}

b (v, q)

�∇v�L2(Ω) �q�L2(Ω)

since the supremum in V h is searched in a smaller set. In general, the strong
inequality will hold. Hence

inf
q∈Q\{0}

sup
vh∈V h\{0}

b
�
vh, q

�

�∇vh�L2(Ω) �q�L2(Ω)

≤ inf
q∈Q\{0}

sup
v∈V \{0}

b (v, q)

�∇v�L2(Ω) �q�L2(Ω)

(2.36)

and the continuous inf-sup parameter βis, which is a lower bound of the right-
hand side of (2.36), cannot be expected to be a lower bound of the left-hand
side, too. In fact, the left-hand side is zero since V h and Q do not satisfy
an inf-sup condition, see Remark 2.7. In this remark, it was discussed that
the dimension of the pressure space should not exceed the dimension of the
velocity space in order to get a well-posed problem.

Turning to a finite element method, the infinite-dimensional space Q has
to be replaced by a finite-dimensional space Qh. This replacement might lead
to an increase of the left-hand side of (2.36) since now the infimum is taken
in a smaller set. Eventually, Qh becomes sufficiently small such that

inf
qh∈Qh\{0}

sup
vh∈V h\{0}

b
�
vh, qh

�

�∇vh�L2(Ω) �qh�L2(Ω)

becomes positive. Then, V h and Qh satisfy a discrete inf-sup condition.
These considerations give a rough idea about appropriate choices for the

finite element spaces with respect to the discrete inf-sup condition. The veloc-
ity space V h should be sufficiently large such that the supremum of vh ∈ V h

becomes large and the pressure space Qh should be sufficiently small such
that the infimum of qh ∈ Qh becomes large, too. A condition in this direction
can be found already in Remark 2.7, where nQ ≤ nV was required. However,
there is a conflicting requirement for the pressure finite element space. For
obtaining accurate results, this space has to be large enough such that it is
possible to approximate the continuous pressure sufficiently well. Also an ac-
curate conservation of mass requires a large discrete pressure space compared
with the discrete velocity space, see Remark 2.45 for details. ✷

Lemma 2.43. βh
is ≤ βis for conforming finite element spaces. Consider

a family of finite element spaces
�
V h ×Qh

�
with V h ⊂ V , Qh ⊂ Q, and let

this family satisfy the discrete inf-sup condition (2.32) independently of h.
Assume that for each q ∈ Q ∩H1(Ω) there is a qh ∈ Qh such that

��q − qh
��
L2(Ω)

≤ Ch �q�H1(Ω) , (2.37)
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with C independent of q and h. Then, it holds βh
is ≤ βis, where both values

are the largest possible values in (2.32) and (2.30), respectively.

Proof. For interested students only, not presented in the class.

The proof follows Chizhonkov & Olshanskii (2000). Since q ∈ Q ∩H1(Ω) ⊂ Q, it is

inf
q∈(Q∩H1(Ω))\{0}

sup
v∈V \{0}

(∇ · v, q)
�v�V �q�Q

≥ inf
q∈Q\{0}

sup
v∈V \{0}

(∇ · v, q)
�v�V �q�Q

.

On the other hand, because of the density of Q ∩ H1(Ω) in Q, which follows from Theo-

rem A.38, even the equal sign holds, such that

βis = inf
q∈(Q∩H1(Ω))\{0}

sup
v∈V \{0}

(∇ · v, q)
�v�V �q�Q

. (2.38)

Consider an arbitrary q ∈ Q ∩H1(Ω) and ε ∈ (0, 1). For sufficiently small h, one has

Ch �q�H1(Ω) ≤ ε �q�L2(Ω) ,

such that (2.37) gives ��q − qh
��
L2(Ω)

≤ ε �q�L2(Ω) . (2.39)

By the triangle inequality, one obtains from this relation

�q�L2(Ω) ≤
��q − qh

��
L2(Ω)

+
��qh

��
L2(Ω)

≤ ε �q�L2(Ω) +
��qh

��
L2(Ω)

,

which is equivalent to
(1− ε) �q�L2(Ω) ≤

��qh
��
L2(Ω)

. (2.40)

For each qh ∈ Qh, one gets with the discrete inf-sup condition (2.32), the property that the
supremum of a sum is lower or equal than the sum of the suprema, the Cauchy–Schwarz

inequality (A.10), estimates (2.26), (2.39), (2.40) with q ∈ Q ∩ H1(Ω), and the inclusion

V h ⊂ V

βh
is ≤ sup

vh∈V h\{0}

b
�
vh, qh

�
��∇vh

��
L2(Ω)

��qh
��
L2(Ω)

≤ sup
vh∈V h\{0}

b
�
vh, q

�
��∇vh

��
L2(Ω)

��qh
��
L2(Ω)

+ sup
vh∈V h\{0}

b
�
vh, qh − q

�
��∇vh

��
L2(Ω)

��qh
��
L2(Ω)

≤ sup
vh∈V h\{0}

b
�
vh, q

�
��∇vh

��
L2(Ω)

��qh
��
L2(Ω)

+ sup
vh∈V h\{0}

��∇vh
��
L2(Ω)

��q − qh
��
L2(Ω)��∇vh

��
L2(Ω)

��qh
��
L2(Ω)

≤ 1

1− ε
sup

vh∈V h\{0}

b
�
vh, q

�
��∇vh

��
L2(Ω)

�q�L2(Ω)

+
ε

1− ε

≤ 1

1− ε
sup

v∈V \{0}

b (v, q)

�∇v�L2(Ω) �q�L2(Ω)

+
ε

1− ε
.

Taking the infimum with respect to q on both sides of this inequality gives with (2.38)

βh
is ≤ 1

1− ε
(βis + ε) ⇐⇒ βh

is − βis ≤ ε
�
1 + βh

is

�
.

Since the right-hand side of the last inequality is arbitrarily close to zero for sufficiently
small ε, the relation βh

is > βis cannot hold, which proves the statement of the lemma. �
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Remark 2.44. The space of discretely divergence-free functions. Exactly as in
Section 2.1, a linear operator Bh can be associated with the bilinear form
bh(·, ·)

Bh : V h →
�
Qh

��
,

�
Bhvh, qh

�
(Qh)�,Qh = bh

�
vh, qh

�
. (2.41)

Thus, Bh is a discrete (negative) divergence operator divh. Note that by

the representation theorem of Riesz, Theorem B.3, the space
�
Qh

��
can be

identified with Qh. Usually, it is ∇ · vh �∈ Qh. Thus, definition (2.41) strictly
speaking uses the L2(Ω) projection of ∇ · vh into Qh, which reads for a
conforming finite element method

�
Bhvh, qh

�
= −

�
Ph
L2

�
∇ · vh

�
, qh

�
= −

�
∇ · vh, qh

�
∀ qh ∈ Qh.

From Section 2.1, it is known that the kernel of Bh plays an important role
in the theory. This kernel is called the space of discretely divergence-free
functions

V h
div =

�
vh ∈ V h : bh

�
vh, qh

�
= 0 ∀ qh ∈ Qh

�
. (2.42)

The dual operator of the discrete divergence is a discrete gradient operator

�
Bh

�T
: Qh →

�
V h

�� ��
Bh

�T
qh,vh

�
(V h)�,V h

= bh
�
vh, qh

�
, (2.43)

which will be denoted by gradh.
Since the discrete divergence Bh is a linear operator between finite-

dimensional spaces, it can be represented by a matrix, once bases in V h

and Qh have been chosen. This matrix has the dimension dimQh × dimV h.
The notation in (2.43) for the discrete gradient is used because it can be rep-
resented with the transposed matrix. By the Riesz representation theorem,
Theorem B.3,

�
V h

��
can be identified with V h. In particular it holds that

dim
�
V h

�
= dim

��
V h

���
. ✷

Remark 2.45. On discretely divergence-free functions, violation of mass con-
servation. Let Qh � Q, then the functions from V h

div need to satisfy less
conditions than the functions from Vdiv. Consequently, there is no injection,
i.e., in general V h

div �⊂ Vdiv. In particular, one finds that discretely divergence-
free functions are in general neither weakly nor pointwise divergence-free.
Thus, the conservation of mass, which was modeled by the divergence-free
constraint, Section 1.1, is not satisfied exactly, but only in some approximate
or mean sense.

When applying finite element methods for the simulation of incompressible
flows, one has to be aware that the conservation of mass might be violated.
The extent of the violation depends on the concrete choice of the finite ele-
ment spaces. Note that there are some pairs of finite element spaces which are
mass conservative, like the Scott–Vogelius finite element, see Remark 2.75.
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Consider the case V h ⊂ V . Note that a finite element function vh ∈ V h
div

is weakly divergence-free if ∇ · V h ⊆ Qh. In this case, it is ∇ · vh ∈ Qh such
that from the definition (2.42) of V h

div, it follows that

0 = −b
�
vh,∇ · vh

�
=

��∇ · vh
��2
L2(Ω)

.

Thus, the divergence vanishes in the sense of L2(Ω). For the condition
∇ · V h ⊆ Qh to be hold, Qh has to be sufficiently large or V h should be
sufficiently small. These requirements are just contrary to the requirements
for the fulfillment of the discrete inf-sup condition, see the discussion at the
end of Remark 2.42. Thus, one might suspect that the enforcement of the
discrete inf-sup condition (2.32) probably has to be paid with a relaxation of
the continuity constraint, as it is in fact the case for most inf-sup stable pairs
of finite element spaces. ✷

Remark 2.46. The discrete inf-sup parameter βh
is. A standard approach of

discretizing partial differential equations consists in starting with a coarse
triangulation of Ω, solving the considered problem on this triangulation, re-
fining the grid, and repeating this process until, e.g., a finest grid is reached
on which the solution is sufficiently accurate, or on which memory restric-
tions prevent a further refinement. On all grid levels, finite element spaces
which satisfy the discrete inf-sup condition (2.32) should be used, where the
corresponding inf-sup parameters βh

is might be different.
Finite element error analysis will reveal that the inf-sup parameters enter

the error estimates, e.g., see Theorem 3.18 for the Stokes equations. The
error bounds depend on inverse of powers of βh

is. Thus, a behavior of the
form βh

is → 0 for successive refinements leads to a deterioration of the order
of convergence in the error estimates, e.g., compare Remark 3.26. For this
reason, it is important that the used finite element spaces satisfy (2.32) with
a parameter βh

is > 0 that is independent of the refinement level of the grid
or, equivalently, independent of the mesh size parameter h. ✷

Lemma 2.47. Each discrete pressure is the divergence of a discrete

velocity field. Let V h ⊂ V with V h = V h
div ⊕

�
V h
div

�⊥
and let the discrete

inf-sup condition (2.32) be satisfied. Then there is for each qh ∈ Qh a unique

vh ∈
�
V h
div

�⊥
such that

∇ · vh = qh,
��vh

��
V
≤ 1

βh
is

��qh
��
Q
. (2.44)

Proof. By Lemma 2.12, it is known that the satisfaction of the discrete inf-sup condition,

point i) in Lemma 2.12, is equivalent with the existence of an isomorphism between
�
V h
div

�⊥
and Qh and with the inequality from (2.44), point iii) of Lemma 2.12. �

Remark 2.48. Importance of the best approximation error. In the Galerkin
method, the error of the finite element solution uh ∈ V h to the solution of the
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continuous problem u ∈ V , in the norm of V , can be estimated with the best
approximation error, see the Lemma of Cea, Lemma B.12. For incompress-
ible flow problems, it is often convenient to perform the finite element error
analysis in the space V h

div, since in V h
div the problem is only an equation for

the velocity and not a coupled system. Sometimes, it turns out that the best
approximation error in V h

div can be estimated directly, e.g., by constructing
a sequence of elements in V h

div which have the optimal order of convergence.
One example where this can be done is the non-conforming Crouzeix–Raviart
element P nc

1 /P0, see (John, 2016, Lemma 4.53). However, estimates of the
best approximation error are generally known only for standard finite element
spaces, which can be used for V h, e.g., see the interpolation error estimates
in Appendix C. With the help of the discrete inf-sup condition, it is possible
to estimate the best approximation error in V h

div with the best approximation
error in V h. ✷

Lemma 2.49. Best approximation estimate for V h
div. Let V

h ⊂ V , v ∈
Vdiv, and let the discrete inf-sup condition (2.32) hold. Then

inf
vh∈V h

div

��∇
�
v − vh

���
L2(Ω)

≤
�
1 +

1

βh
is

�
inf

wh∈V h

��∇
�
v −wh

���
L2(Ω)

. (2.45)

Proof. Let wh ∈ V h be arbitrary. Since the discrete inf-sup condition holds, V h
div is

not empty. It follows from Hilbert space theory that there is a unique decomposition of

wh = vh − zh into a component vh ∈ V h
div and a component −zh ∈

�
V h
div

�⊥
. Hence, one

gets, with b
�
vh, qh

�
= 0,

b
�
zh, qh

�
= b

�
vh −wh, qh

�
= b

�
v −wh, qh

�
∀ qh ∈ Qh. (2.46)

Note that b
�
v, qh

�
= 0 since v is weakly divergence-free. From Lemma 2.47, it follows

that there is a qh = ∇ · zh ∈ Qh. Inserting this function in (2.46) gives, together with the

Cauchy–Schwarz inequality (A.10) and (2.26),

��∇ · zh
��2

L2(Ω)
≤

��∇ ·
�
v −wh

���
L2(Ω)

��∇ · zh
��
L2(Ω)

≤
��∇

�
v −wh

���
L2(Ω)

��∇ · zh
��
L2(Ω)

.

With (2.44), one obtains

��∇zh
��
L2(Ω)

≤ 1

βh
is

��qh
��
L2(Ω)

=
1

βh
is

��∇ · zh
��
L2(Ω)

≤ 1

βh
is

��∇
�
v −wh

���
L2(Ω)

.

Applying the triangle inequality and inserting this estimate yields

��∇
�
v − vh

���
L2(Ω)

≤
��∇

�
v −wh

���
L2(Ω)

+
��∇zh

��
L2(Ω)

≤
�
1 +

1

βh
is

���∇
�
v −wh

���
L2(Ω)

.

Since wh was chosen to be arbitrary, one can find for each wh ∈ V h a function vh ∈ V h
div

such that this estimate holds, which finishes the proof of the lemma. �
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Remark 2.50. On estimate (2.45). Estimate (2.45) is a worst case estimate.
Taking vh = 0 ∈ V h

div shows that the left-hand side is always bounded, even
if βh

is = 0. In contrast, the right-hand side becomes unbounded for βh
is = 0 or

if βh
is converges sufficiently fast to 0 as h → 0. ✷

Remark 2.51. Jumps across faces and averages on faces of functions. Con-
sider a triangulation T h and let K1,K2 ∈ T h be two mesh cells with a
common (d− 1) face E = K1 ∩K2. Without loss of generality, the unit nor-
mal nE at E should be the outward normal with respect to K1. Then, the
jump of a function v across the face E in the point x ∈ E is defined by

[|v|]E = lim
y→x,y∈K1

v(y)− lim
y→x,y∈K2

v(y), x ∈ E, (2.47)

if both limits are well defined. Changing the direction of nE changes the sign
of the jump.

The average is defined by

{{v}}E =
limy→x,y∈K1 v(y) + limy→x,y∈K2 v(y)

2
, x ∈ E.

Straightforward calculations, using these definitions, show

[|v + w|]E = [|v|]E + [|w|]E ,

{{v + w}}E = {{v}}E + {{w}}E ,

[|vw|]E = [|v|]E {{w}}E + {{v}}E [|w|]E . (2.48)

If w is continuous almost everywhere on E, then it follows from (2.48)

[|vw|]E = [|v|]E w.

✷

Remark 2.52. Sets of (d−1) faces. The set of all (d−1) faces will be denoted

by Eh
and the set of all faces which are not part of the boundary of Ω will

be denoted by Eh. ✷

Lemma 2.53. Sufficient and necessary condition for a finite element
function to be in H (div,Ω), i.e., to possess a divergence in L2(Ω).
Let T h be a regular triangulation of Ω. A finite element function vh ∈ L2(Ω),
i.e., a piecewise polynomial function belongs to H (div,Ω), see (2.22), if and
only if vh · nE is continuous for all faces E of the triangulation.

Proof. It has to be shown that ∇ · vh ∈ L2(Ω) if and only if the normal component of
vh is continuous for all faces. By definition, ∇ · vh ∈ L2(Ω) if and only if there exists a

function w ∈ L2(Ω) such that

−
�

Ω

vh(x) ·∇ϕ(x) dx =

�

Ω

w(x)ϕ(x) dx ∀ ϕ ∈ C∞
0 (Ω). (2.49)
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Integration by parts yields

−
�

Ω

vh(x) ·∇ϕ(x) dx

= −
�

K∈T h

�

K

vh(x) ·∇ϕ(x) dx

=
�

K∈T h

��

K

∇ · vh(x)ϕ(x) dx−
�

∂K

ϕ(s)vh(s) · n∂K ds

�

=
�

K∈T h

�

K

∇ · vh(x)ϕ(x) dx−
�

K∈T h

�

E∈∂K

�

E

ϕ(s)vh(s) · nE ds

=

�

Ω

∇ · vh(x)ϕ(x) dx−
�

E∈Eh

�

E

ϕ(s)
���vh · nE

���
E
(s) ds

−
�

E∈Eh\Eh

�

E

ϕ(s)vh(s) · nE ds ∀ ϕ ∈ C∞
0 (Ω). (2.50)

The normal nE on the interior faces can be chosen arbitrarily. Using the opposite normal
−nE , also the sign of the jump has to be changed, i.e., one obtains

−
���vh · (−nE)

���
E
(s) =

���vh · nE

���
E
(s),

where (2.48) was applied. The last term in (2.50) vanishes since the test function vanishes

at the boundary of Ω. Thus, (2.49) is satisfied if and only if all integrals on the interior
faces vanish for all test functions. Therefore, the jumps

���vh · nE

���
E

have to vanish on all

interior faces, which is equivalent with the requirement that the normal component of vh

is continuous across all faces of the mesh cells. �

2.4 The Discrete Inf-Sup Condition and Finite Element
Spaces

Remark 2.54. Contents of this section. Some simple pairs of finite element
spaces do not satisfy the discrete inf-sup condition (2.32). Here, one example
will be discussed in detail. Then, a technique for proving the inf-sup condition
will be presented. Finally, a number of popular pairs of finite element spaces
will be introduced that satisfy the discrete inf-sup condition. ✷

2.4.1 Examples of Pairs of Finite Element Spaces
Violating the Discrete Inf-Sup Condition

Remark 2.55. A condition for the violation of the discrete inf-sup condition.
The violation of the discrete inf-sup condition (2.32) is proved, e.g., if one
finds a non-trivial qh ∈ Qh such that
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bh
�
vh, qh

�
= 0 ∀ vh ∈ V h. (2.51)

In this case, it holds

sup
vh∈V h,vh �=0

bh
�
vh, qh

�

�vh�V h

= 0,

from what follows, by dividing by
��qh

��
Q

> 0 and taking on both sides the

infimum of the finite element pressure functions, that the discrete inf-sup
condition (2.32) cannot be satisfied. Such non-trivial qh ∈ Qh are called
spurious pressure modes. ✷

Example 2.56. The P1/P1 pair of finite element spaces. Probably every finite
element code which uses simplicial grids can apply the P1 finite element. If it
would be possible to choose P1/P1 for velocity and pressure finite elements,
the extension of such codes to the simulation of incompressible flows would
be straightforward. However, this example shows that P1/P1 does not satisfy
the discrete inf-sup condition (2.32).

Let Ω = (0, 1)2 and consider a triangulation of Ω with equally sized tri-
angles with measure |K| > 0. Both, the finite element velocity and the finite
element pressure are continuous and piecewise linear functions. The nodes of
the finite element functions are their values in the vertices of the triangles,
see Example B.38.

Consider first the integral mean value condition for the pressure, Qh ⊂
L2
0(Ω). Let K be a mesh cell and qh1,K , qh2,K , qh3,K be the values of the pressure

in the vertices of K. Then, the integral of qh on K can be evaluated exactly
by a quadrature rule which uses only the values at the vertices of K

�

K

qh(x) dx =
|K|
3

�
qh1,K + qh2,K + qh3,K

�
.

Hence, the integral mean value condition for the finite element pressure reads
as follows

0 =

�

Ω

qh(x) dx =
�

K∈T h

�

K

qh(x) dx =
|K|
3

�

K∈T h

�
qh1,K + qh2,K + qh3,K

�
.

(2.52)
Now, a function qh ∈ Qh will be constructed that satisfies (2.51). On each

mesh cell K, it is

vh
��
K
(x) =

�
α11x1 + α12x2 + γ1
α21x1 + α22x2 + γ2

�
,

from what follows that

∇ · vh
��
K
(x) = α11 + α22 = cK .
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Fig. 2.1 Checkerboard instabilities for the P1/P1 finite element.

Then, (2.51) becomes

0 = −
�

K∈T h

�

K

��
∇ · vh

�
qh

�
(x) dx = −

�

K∈T h

cK

�

K

qh(x) dx

= − |K|
3

�

K∈T h

cK
�
qh1,K + qh2,K + qh3,K

�
. (2.53)

From (2.52) and (2.53), it follows that a counterexample for the fulfillment
of the discrete inf-sup condition (2.32) is found, if a non-trivial function qh

with
qh1,K + qh2,K + qh3,K = 0

for all K ∈ T h can be constructed. In this case, the integral mean value con-
dition and (2.51) are satisfied both. Two examples of such functions are given
in Figure 2.1. The form of the spurious modes led to the name checkerboard-
type instabilities. ✷

Remark 2.57. Other pairs of finite element spaces that do not satisfy the dis-
crete inf-sup condition. Other pairs of finite element spaces that do not satisfy
the discrete inf-sup condition are

• P1/P0 (exercise), Pk/Pk, k ≥ 2, on simplicial grids,
• Q1/Q0, Qk/Qk, k ≥ 1, on quadrilateral/hexahedral grids,
• Pk/P

disc
k−1, k ≥ 2, on some commonly used types of simplicial grids.

Details of these examples can be found in (John, 2016, Chapter 3.4). ✷

2.4.2 A Technique for Checking the Discrete Inf-Sup
Condition

Remark 2.58. Checking the discrete inf-sup condition. In the literature, one
can find several approaches that have been used for proving that certain
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pairs of finite element spaces satisfy the discrete inf-sup condition (2.32) or
equivalently (2.33). A comprehensive overview of techniques for proving the
discrete inf-sup condition and corresponding results can be found, e.g., in
Boffi et al. (2008) and (Boffi et al., 2013, Sections 8.4 and 8.5). Here, only
one approach will be presented. ✷

Remark 2.59. A connection between the continuous and the discrete inf-sup
condition. For conforming finite element spaces, it is possible to check the
discrete inf-sup condition (2.32) with the help of the continuous inf-sup con-
dition (2.30). The connection of both conditions is shown in the following
lemma. The result is due to Fortin (1977). Also the generalization to some
non-conforming cases is possible, see (John, 2016, Section 3.6.5).

For conforming finite element spaces, it is bh(·, ·) = b(·, ·). ✷

Lemma 2.60. Fortin criterion for checking the discrete inf-sup con-
dition. Let V , Q, and b(·, ·) fulfill the assumptions of Remark 2.3 and let
the inf-sup condition (2.30) be satisfied. Consider conforming spaces V h ⊂ V
and Qh ⊂ Q. Then, V h and Qh satisfy the discrete inf-sup condition (2.32)
if and only if there exists a constant γh > 0, which is independent of h, such
that for all v ∈ V there is an element Ph

Forv ∈ V h with

b
�
v, qh

�
= b

�
Ph
Forv, q

h
�

∀ qh ∈ Qh and
��Ph

Forv
��
V
≤ γh �v�V . (2.54)

Proof. • Assume that (2.54) holds.
Let qh ∈ Qh be arbitrary. From span

�
Ph
Forv

�
⊆ V h, it follows, using also (2.54) and

(2.30), that

sup
vh∈V h\{0}

b
�
vh, qh

�
��vh

��
V

≥ sup
v∈V \{0}

b
�
Ph
Forv, q

h
�

��Ph
Forv

��
V

= sup
v∈V \{0}

b
�
v, qh

�
��Ph

Forv
��
V

≥ sup
v∈V \{0}

b
�
v, qh

�

γh �v�V
≥ βis

γh

��qh
��
Q
.

This inequality is just the discrete inf-sup condition (2.32) with βh
is = βis/γ

h.

•For interested students only, not presented in the class. Assume that (2.32) is satisfied.
Consider the restriction of b(·, ·) from V ×Q to V ×Qh. This restriction defines a continuous

linear operator

B̃ ∈ L
�
V,

�
Qh

���
,

�
B̃v, qh

�
(Qh)�,Qh = b

�
v, qh

�
.

By definition, it is B̃v ∈
�
Qh

��
for all v ∈ V . Since the discrete inf-sup condition (2.32)

holds, it follows from Lemma 2.12 iii) that the operator Bh defined in (2.41), the discrete
divergence operator, is an isomorphism from (V h

div)
⊥ onto

�
Qh

��
. In particular, Bh is

surjective. Since B̃v ∈
�
Qh

��
, there must be an element ṽh from (V h

div)
⊥ such that

�
Bhṽh, qh

�
(Qh)�,Qh =

�
B̃v, qh

�
(Qh)�,Qh ∀ qh ∈ Qh.

Consequently, for all vh ∈ V h whose projection into (V h
div)

⊥ is equal to ṽh, it holds

�
Bhvh, qh

�
(Qh)�,Qh =

�
B̃v, qh

�
(Qh)�,Qh ∀ qh ∈ Qh. (2.55)
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One of these elements can be chosen to be Ph
Forv. Then, (2.55) is equivalent to

b
�
Ph
Forv, q

h
�
= b

�
v, qh

�
∀ qh ∈ Qh.

With these relations, it follows from Lemma 2.12 iii), the definition of the norm in Qh, the
definition of the norm of b(·, ·) from (2.3), and the estimate of this norm from Lemma 2.30

that

��Ph
Forv

��
V

≤ 1

βh
is

��Bh
�
Ph
Forv

���
Q

=
1

βh
is

sup
qh∈Qh\{0}

�
Bh

�
Ph
Forv

�
, qh

�
(Qh)�,Qh��qh

��
Q

=
1

βh
is

sup
qh∈Qh\{0}

b
�
Ph
Forv, q

h
�

��qh
��
Q

=
1

βh
is

sup
qh∈Qh\{0}

b(v, qh)��qh
��
Q

≤ 1

βh
is

sup
qh∈Qh\{0}

�b� �v�V
��qh

��
Q��qh

��
Q

=
�b�
βh
is

�v�V = γh �v�V .

Since v was chosen to be arbitrary, (2.54) is proved. �

Remark 2.61. On condition (2.51). This condition, which implies that the
discrete inf-sup condition is violated, cannot be fulfilled if (2.54) holds. As-
sume that there is a qh ∈ Qh such that b(vh, qh) = 0 for all vh ∈ V h. From
(2.54), it follows that then b(v, qh) = 0 for all v ∈ V , since Ph

Forv ∈ V h.
Because qh ∈ Q and V and Q satisfy the inf-sup condition (2.30), it follows
that qh = 0. Hence, there is no non-trivial qh ∈ Qh for which (2.51) holds. ✷

Remark 2.62. A possible construction of a Fortin operator. Sometimes, it is
possible to construct a linear Fortin operator Ph

For with the help of two linear
operators Ph

1 , P
h
2 ∈ L(V, V h). Assume that

��Ph
1 v

��
V
≤ C1 �v�V ∀ v ∈ V, (2.56)

��Ph
2

�
I − Ph

1

�
v
��
V
≤ C2 �v�V ∀ v ∈ V, (2.57)

b
�
v − Ph

2 v, q
h
�
= 0 ∀ v ∈ V, ∀ qh ∈ Qh, (2.58)

where C1, C2 are independent of h. Then, a Fortin operator is defined by

Ph
For ∈ L(V, V h) v �→ Ph

1 v + Ph
2

�
v − Ph

1 v
�
. (2.59)

✷

Lemma 2.63. A property of the operator (2.59). The operator defined
in (2.59) satisfies (2.54).

Proof. Applying (2.59), (2.58) for Ph
1 v, and once again (2.58) for v, one obtains for all

qh ∈ Qh

b
�
Ph
Forv, q

h
�
= b

�
Ph
1 v + Ph

2

�
v − Ph

1 v
�
, qh

�

= b
�
Ph
1 v − Ph

2 Ph
1 v, qh

�
+ b

�
Ph
2 v, qh

�

= b
�
Ph
2 v, qh

�
= b

�
v, qh

�
.
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The boundedness of Ph
For is obtained by applying the triangle inequality and using (2.56)

and (2.57)

��Ph
Forv

��
V

≤
��Ph

1 v
��
V

+
��Ph

2

�
v − Ph

1 v
���

V
≤ C1 �v�V + C2 �v�V = γh �v�V ,

with γh = C1 + C2. �

Remark 2.64. A more detailed construction of the Fortin operator. Often, the
Clément operator Ph

Cle (C.18), with the modification that preserves homoge-
neous Dirichlet bounary conditions, see Remark C.22, plays the role of Ph

1 .
Then, condition (2.57) for Ph

2 can be replaced with

��Ph
2 v

��
H1(K)

≤ C
�
h−1
K �v�L2(K) + |v|H1(K)

�
, ∀ K ∈ T h, ∀ v ∈ V,

(2.60)
where the constant C does not depend on hK . ✷

Lemma 2.65. A property of the Fortin operator constructed with
(C.18), (2.58), and (2.60). Consider a family of quasi-uniform triangulations�
T h

�
. Let Ph

1 = Ph
Cle be the modified Clément interpolation operator (C.18),

which preserves homogeneous Dirichlet boundary conditions, and let Ph
2 sat-

isfy (2.58) and (2.60). Then, Ph
For defined by (2.59) is a Fortin operator.

Proof. For interested students only, not presented in the class. The first property of (2.54)
is proved analogously as in the proof of Lemma 2.63, since the proof used only (2.58) and

(2.59). It remains to show the second property with γh independent of h.

From the quasi-uniformity of the family of triangulations, it follows that for each K
there is a maximal number of mesh cells in ωK , see Figure C.1, which is independent of the

triangulation and that the diameter of ωK can be estimated by ChK with a constant C

independent of T h. Using (2.59), the triangle inequality, (2.60), and (C.19) for k = 0, l = 1
and k = l = 1, one obtains

��Ph
Forv

��2

V
=

��Ph
Forv

��2
H1(Ω)

≤ 2
��Ph

Clev
��2
H1(Ω)

+ 2
��Ph

2

�
v − Ph

Clev
���2

H1(Ω)

≤ C
���Ph

Clev − v
��2
H1(Ω)

+ |v|2H1(Ω)

�
+ 2

�

K∈T h

��Ph
2

�
v − Ph

Clev
���2

H1(K)

≤ C


 �

K∈T h

��Ph
Clev − v

��2
H1(K)

+ |v|2H1(Ω)




+C


 �

K∈T h

(h−2
K

��v − Ph
Clev

��2

L2(K)
+

��v − Ph
Clev

��2
H1(K)




≤ C


|v|2H1(Ω) +

�

K∈T h

�
|v|2H1(ωK) + |v|2H1(ωK) + |v|2H1(ωK)

�



≤ C �∇v�2L2(Ω) = C �v�2V .

�
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2.4.3 Inf-sup Stable Pairs of Finite Element Spaces

2.4.3.1 The MINI Element

Remark 2.66. The MINI element. The MINI element is defined on simplicial
grids and it is given by

V h = P1 ⊕ V h
bub, Qh = P1, (2.61)

where V h
bub is a space consisting of local bubble functions

V h
bub =

�
vhbub : supp

�
vhbub

�
= K, vhbub

��
K

= α
d+1�

i=1

λi,K ∈ T h,α ∈ R

�
,

where λi are the barycentric coordinates of the simplex K, see Defini-
tion B.31. It follows that

vhbub
��
K

∈ Pd+1(K) ∩H1
0 (K).

This pair of finite element spaces was introduced by Arnold et al. (1984).
It is the lowest order conforming inf-sup stable pair of finite element spaces.

The basic idea for the construction of the MINI element consists in start-
ing with standard finite element spaces for velocity and pressure and then
enriching the velocity space such that the discrete inf-sup condition (2.32) is
satisfied. The fulfillment of the discrete inf-sup condition will be proved with
the construction of a Fortin operator, see Lemma 2.60. ✷

Lemma 2.67. Properties of bubble functions. Let K ∈ T h be a simplex
and let

vhbub(x) =
d+1�

i=1

λi(x), x ∈ K,

be a bubble function on K. Then, the following estimates hold

��vhbub
��
L2(K)

≤ Chd
K , (2.62)

��∇vhbub
��
L2(K)

≤ Ch
(d−2)/2
K , (2.63)

�

K

vhbub(x) dx ≥ C |K| , (2.64)

where the constants are independent of K.

Proof. • Estimates (2.62) and (2.63). exercise problems
• Estimate (2.64). The bubble functions are polynomials of degree d+ 1 in K. Hence,

there are quadrature rules with positive weights and nodes in the interior of K such that

they can be integrated exactly
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�

K

vhbub(x) dx = |K|
N0�

i=1

ωiv
h
bub(xi),

see Cools & Rabinowitz (1993), i.e., ωi > 0, vhbub(xi) > 0, i = 1, . . . , N0. It follows that

����
�

K

vhbub(x) dx

���� = |K|
�����

N0�

i=1

ωiv
h
bub(xi)

����� = |K|
N0�

i=1

ωiv
h
bub(xi)

≥ |K| min
i=1,...,N0

vhbub(xi)

N0�

i=1

ωi = C |K| .

�

Remark 2.68. Generalization of the Fortin criterion (2.54). The first part of
the Fortin criterion (2.54) can be written in the form

−
�

Ω

∇ ·
�
v − Ph

Forv
�
qh dx = 0 ∀ v ∈ V, ∀ qh ∈ Qh.

It follows, for conforming finite element spaces and a continuous finite element
pressure space, using integration by parts, that

�

Ω

�
v − Ph

Forv
�
·∇qh dx = 0 ∀ v ∈ V, ∀ qh ∈ Qh. (2.65)

The first step of the construction of the Fortin operator consists in replacing
the global criterion (2.65) by a set of local criteria

�

K

�
v − Ph

Forv
�
·∇qh dx = 0 ∀ v ∈ V, ∀ qh ∈ Qh, ∀ K ∈ T h. (2.66)

Clearly, (2.66) induces (2.65), but not vice versa. ✷

Remark 2.69. Enrichment of the velocity space. Let Qh(K) = Pk(K), then it
follows that ∇qh ∈ Pk−1(K). It is clear that (2.66) can be satisfied, for fixed
Qh, the easier the larger the space V h(K) is, since for a larger space V h(K)
there are more possibilities to define Ph

Forv. The idea of Arnold et al. (1984)
was to start for V h(K) also with polynomials of order k and then to extend
this space locally, i.e., with functions whose support is restricted to K, until
the velocity space is sufficiently large to satisfy (2.66). ✷

Remark 2.70. Local condition (2.66) for the MINI element. For the MINI
element (2.61), condition (2.66) simplifies to

�

K

�
v − Ph

Forv
�
dx = 0 ∀ v ∈ V, ∀ K ∈ T h, (2.67)

since the gradient of the local discrete pressure is a constant. ✷

Remark 2.71. Construction of the Fortin operator. The construction of the
Fortin operator is based on the Clément interpolation operator Ph

Cle defined
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in (C.18), with the modification to preserve homogeneous Dirichlet boundary
conditions, see Remark 2.64. This operator satisfies the interpolation estimate
(C.19). Consider a quasi-uniform family of triangulations. Then, the number
of mesh cells in the set ωK from (C.19) is bounded uniformly from above and
one gets the global estimates

�

K∈T h

h−2
K

��v − Ph
Clev

��2
L2(K)

≤ C �v�2H1(Ω) ∀ v ∈ H1(Ω), (2.68)

�

K∈T h

��∇
�
v − Ph

Clev
���2

L2(K)
≤ C �v�2H1(Ω) ∀ v ∈ H1(Ω). (2.69)

From the triangle inequality and (2.69), one gets in particular the stability
estimate

�

K∈T h

��∇Ph
Clev

��2
L2(K)

(2.70)

≤ 2


 �

K∈T h

��∇
�
v − Ph

Clev
���2

L2(K)
+

�

K∈T h

�∇v�2L2(K)


 ≤ C �v�2H1(Ω) .

Now, the Fortin operator is defined by

Ph
Forv(x) = Ph

Clev(x) +αKvhbub(x), (2.71)

with

αK =

�
K

�
v − Ph

Clev
�
(x) dx�

K
vhbub(x) dx

. (2.72)

This construction is of form (2.59) with Ph
2 just being the integral operator

on K equipped with some scaling. ✷

Theorem 2.72. The discrete inf-sup condition for the MINI ele-
ment. Consider a quasi-uniform family of triangulations. Then, the oper-
ator (2.71) is a Fortin operator. Hence, the MINI element (2.61) satisfies
the discrete inf-sup condition (2.32) or equivalently (2.33).

Proof. One has to verify the conditions stated in (2.54). Instead of the first of these

conditions, the more general condition (2.67) will be considered.

• Condition (2.67). Inserting (2.71) and (2.72) in (2.67) yields for an arbitrary mesh
cell K

�

K

�
v − Ph

Forv
�
(x) dx

=

�

K

�
v − Ph

Clev −αKvhbub
�
(x) dx

=

�

K

�
v − Ph

Clev
�
(x) dx−αK

�

K

vhbub(x) dx

=

�

K

�
v − Ph

Clev
�
(x) dx−

�
K

�
v − Ph

Clev
�
(x) dx�

K
vhbub(x) dx

�

K

vhbub(x) dx = 0.
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• Second condition of (2.54). The triangle inequality and the homogeneity of a norm,

Definition A.6, gives

��∇Ph
Forv

��
L2(K)

≤
��∇Ph

Clev
��
L2(K)

+ �αK�2
��∇vhbub

��
L2(K)

, (2.73)

where �αK�2 is the Euclidean norm of the vector-valued constant αK . One obtains for
the second term, using (2.72), (2.63), the Cauchy–Schwarz inequality (A.10), (2.64), and

|K| = Chd
K

�αK�2
��∇vhbub

��
L2(K)

≤ C

���
K

�
v − Ph

Clev
�
(x) dx

��
2���

K
vhbub(x) dx

�� h
(d−2)/2
K

≤ C

��v − Ph
Clev

��
L2(K)

|K|1/2

|K| h
(d−2)/2
K

≤ C
��v − Ph

Clev
��
L2(K)

h
d/2−1−d/2
K

= Ch−1
K

��v − Ph
Clev

��
L2(K)

.

Inserting this estimate in (2.73), taking the square, using Young’s inequality (A.5), and
summing over all mesh cells gives

��Ph
Forv

��2

V
≤ C


 �

K∈T h

��∇Ph
Clev

��2

L2(K)
+ h−2

K

��v − Ph
Clev

��2

L2(K)


 .

Now the proof is finished by inserting (2.70), (2.68), and applying Poincaré’s inequality

(A.12). �

Remark 2.73. To MINI-type elements.

• Using the MINI element is quite popular.
• The construction of the MINI element can be extended to higher order
finite elements, see Arnold et al. (1984). But to the best of our knowledge,
the use of these higher order elements is not popular.

• It is mentioned in (Boffi et al., 2008, Section 4.6) that almost any pair
of finite element spaces can be stabilized by enriching the velocity space
with bubble functions.

✷

2.4.3.2 Other Inf-Sup Stable Pairs of Finite Element Spaces

Remark 2.74. The family of Taylor–Hood finite element spaces. The family of
Taylor–Hood finite element spaces on triangular and tetrahedral grids is given
by Pk/Pk−1, k ≥ 2, and on quadrilateral and hexahedral grids by Qk/Qk−1,
k ≥ 2. That means, the pressure is approximated by a continuous function.
Hence, it is bh (·, ·) = b (·, ·) and �·�V h = �·�V .

In Hood & Taylor (1974), actually the use of the Q
(8)
2 /Q1 pair of finite ele-

ment spaces was proposed for solving the Navier–Stokes equations on quadri-
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Fig. 2.2 The finite element Q
(8)
2 .

lateral meshes, where the Q
(8)
2 finite element is the Q2 finite element without

internal degree of freedom, see Figure 2.2.
The pairs of Taylor–Hood finite element spaces are among the most pop-

ular pairs for discretizing equations modeling incompressible flows, in partic-
ular the pairs for k = 2. A reason for this popularity is certainly that the
implementation of the P2/P1 and Q2/Q1 finite element pairs is comparatively
easy compared with other inf-sup stable pairs of finite elements. Proving the
discrete inf-sup condition is quite complicated, see Boffi (1994, 1997) ✷

Remark 2.75. The Scott–Vogelius pair of finite element spaces. This pair of
finite element spaces is given by Pk/P

disc
k−1, k ≥ 2. Since

∇ · V h = ∇ · Pk = P disc
k−1 = Qh,

finite element velocities from this pair are weakly divergence-free, which is
a desirable property. However, as already mentioned in Remark 2.57, the
Scott–Vogelius finite element generally does not satisfy the discrete inf-sup
condition (2.32). But it can be proved that the pair Pk/P

disc
k−1 satisfies the

discrete inf-sup condition in special situations, i.e., on special meshes. ✷

Remark 2.76. Pk/P
disc
k−1 in two dimensions. The fulfillment of the discrete

inf-sup condition (2.32) was proved already in Scott & Vogelius (1985) in the
two-dimensional case for k ≥ 4 if there is no so-called singular vertex in the
mesh. An internal vertex is said to be singular if edges which meet at the
vertex fall onto two straight lines.

The basic idea to overcome this problem consists in using meshes without
singular vertices. To this end, so-called barycentric-refined grids are con-
structed. Starting from any admissible triangular mesh, new edges are intro-
duced by connecting all vertices of a mesh cell with the barycenter of this
mesh cell. This step creates smaller triangles, see Figure 2.3 for an example.
On barycentric-refined meshes, the Pk/P

disc
k−1, k ∈ {2, 3}, pair of finite element

spaces was shown to satisfy the discrete inf-sup condition in Qin (1994), see
also (John, 2016, Example 4.144) for a proof in the case k = 2. Note that the
case k ≥ 4 is covered by the analysis from Scott & Vogelius (1985).
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Fig. 2.3 Barycentric-refined simplicial grid on the unit square.

The use of the P2/P
disc
1 pair of finite element spaces on barycentric-refined

meshes can be found occasionally in the literature, in particular to demon-
strate the advantages of using pairs of finite element spaces which provide
weakly divergence-free velocity solutions, e.g., see John et al. (2015) and the
references therein. ✷

Remark 2.77. Pk/P
disc
k−1 in three dimensions. In three dimensions, the use of

barycentric-refined meshes avoids singular vertices and singular edges. In
Zhang (2005), it was shown that the pair Pk/P

disc
k−1, k ≥ 3, satisfies the discrete

inf-sup condition on such meshes. ✷

Remark 2.78. The spaces Qk/P
disc
k−1. The most common pairs of spaces with

conforming velocity and discontinuous pressure on quadrilateral and hexa-
hedral meshes are the spaces Qk/P

disc
k−1, k ≥ 2. It was already mentioned in

Remark 2.57 that Q1/P0 = Q1/Q0 is in general not inf-sup stable. For k ≥ 2,
one has to distinguish two cases, the so-called mapped and the unmapped
Qk/P

disc
k−1 spaces.

In the unmapped case, the local space Qk(K) is defined by a mapping
from a reference cell K̂ but the space P disc

k−1(K) is defined directly on the
mesh cell K. The mapped version defines both spaces with the reference
transformation. Since the reference transformation from a quadrilateral or
hexahedral reference cell is in general a bilinear or trilinear mapping, it gives
rise to mesh cells with curved boundaries. In addition, in general it does
not preserve the type of mapped functions, i.e., the images of polynomials
are in general not polynomials. Thus, the mapped and unmapped version of
Qk/P

disc
k−1 are generally different on arbitrary meshes.

All simulations with Qk/P
disc
k−1, k ≥ 2, presented in this manuscript were

performed with the mapped version. ✷

Remark 2.79. Non-conforming finite element spaces. In the most general
sense, non-conforming finite element methods are all methods where the finite
element space is not a subspace of the function space used in the variational
problem. This property might be caused, e.g., if for a problem, the domain Ω
with curvilinear parts of the boundary is approximated by a domain Ωh with
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polygonal or polyhedral boundary. But usually, one speaks of non-conforming
finite element methods only if the non-inclusion of the spaces comes from the
construction of the finite element space and it is independent of the special
problem.

For incompressible flow models, the consideration of non-conforming dis-
cretizations will allow to define pairs of lowest order finite element spaces that
satisfy the discrete inf-sup condition (2.32). The non-conformity is present
only for the velocity but not for the pressure, i.e., V h �⊂ V and Qh ⊂ Q.

Here, only lowest order non-conforming discretizations will be discussed
because these are the most important non-conforming methods for incom-
pressible flow problems. On simplicial meshes, this discretization is the so-
called Crouzeix–Raviart finite element P nc

1 /P0. That means, the velocity is
approximated by a piecewise linear function that is continuous at the barycen-
ters of the faces of the mesh cells, see Example B.43 for a detailed description,
and the pressure is approximated by a piecewise constant function, see Ex-
ample B.37.

The extension of this approach to quadrilateral and hexahedral meshes
is the Rannacher–Turek element Qrot

1 /Q0. For this element, the velocity ap-
proximation is achieved by rotated d-linear functions that have continuous
degrees of freedom on the faces of the mesh cells, see Example B.53. The
pressure is discretized by a piecewise constant function, see Example B.49.

Besides the possibility of using lowest order spaces, non-conforming finite
element of lowest order possess some additional advantages. They can be
used for the construction of efficient multigrid solvers or preconditioners for
higher order discretizations of incompressible flow problems, see (John, 2016,
Section 9.2.2). Implementing the code for solving the Navier–Stokes equations
on parallel computers, non-conforming discretizations generally require less
communication overhead than conforming finite element methods. However,
non-conforming finite elements are often more complicated from the point of
view of numerical analysis.

The discrete inf-sup condition is proved with the construction of an oper-
ator V → V h such that for each function v ∈ V analogs to the conditions
(2.54) of a Fortin operator are satisfied. ✷

2.5 The Helmholtz Decomposition

Theorem 2.80. Helmholtz decomposition of a vector field in L2(Ω).
Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain. Then, each v ∈ L2(Ω)
has a unique decomposition

v = w +∇r, (2.74)
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with w ∈ Hdiv(Ω) and ∇r ∈ G(Ω), where the space Hdiv(Ω) is defined in
(2.24) and

G(Ω) =
�
z ∈ L2(Ω) : ∃r ∈ L2(Ω) : z = ∇r

�
.

The spaces Hdiv(Ω) and G(Ω) are orthogonal in L2(Ω), i.e.,

G(Ω) = Hdiv(Ω)⊥.

Consequently, it is (w,∇r) = 0 and it holds

�v�2L2(Ω) = �w�2L2(Ω) + �∇r�2L2(Ω) . (2.75)

Proof. For the proof it is referred to (Sohr, 2001, pp. 82). �

Definition 2.81. Helmholtz projection. Using the Helmholtz decompo-
sition (2.74), the Helmholtz projection is defined by

Phelm : L2(Ω) → Hdiv(Ω), v �→ w.

✷

Lemma 2.82. Properties of the Helmholtz projection. The Helmholtz
projection is a uniquely determined, bounded linear operator with �Phelm� ≤
1, i.e.,

�Phelmv�L2(Ω) ≤ �v�L2(Ω) ∀ v ∈ L2(Ω). (2.76)

It has the following properties

Phelm(∇r) = 0, (I − Phelm)v = ∇r,

P 2
helmv = Phelmv, (I − Phelm)

2
v = (I − Phelm)v,

for all v ∈ L2(Ω). Furthermore, the operator Phelm is selfadjoint, i.e.,

(Phelmv, g) = (v, Phelmg) ∀ v, g ∈ L2(Ω).

Proof. By Hilbert space theory, the projection operator Phelm is uniquely determined.
The boundedness (2.76) follows directly from (2.75)

�v�2L2(Ω) ≥ �w�2L2(Ω) = �Phelmv�2L2(Ω) .

Then, the next four properties follow from (2.74) and the uniqueness of the Helmholtz

decomposition. Finally, the last property follows from the orthogonality of Hdiv(Ω) and

G(Ω). Let v = w + ∇r and g = wg + ∇rg with w,wg ∈ Hdiv(Ω), r, rg ∈ G(Ω), be the
Helmholtz decompositions of v and g, respectively. Then, it follows that

(Phelmv, g) = (w,wg +∇rg) = (w,wg) + (w,∇rg) = (w,wg)

= (w +∇r,wg) = (v, Phelmg) .

�


