
Chapter 4

Finite Volume Methods

4.1 The Basic Idea

Finite volume methods (FVMs) are a discretization approach for partial dif-
ferential equations that can be formulated in balance form. For the steady-
state convection-diffusion-reaction equation (1.7) with homogeneous Dirichlet
boundary conditions, the balance form is given by

∇ · (−ε∇u+ ub) + σu = f in Ω,
u = 0 on ∂Ω.

(4.1)

The derivation of FVMs starts by decomposing Ω into so-called control
volumes {ωi}ni=1 (open sets) such that

Ω =
n�

i=1

ωi, ωi ∩ ωj = ∅ for i �= j.

Then, (4.1) is integrated on Ω, integration by parts is applied to the first term
on the left-hand side of (4.1) on each control volume. In this way, the balance
equation (4.1) is transformed to an equation that involves the boundaries of
the control volumes {∂ωi}ni=1

n�

i=1

��

∂ωi

(−ε∇u+ ub) · nωi
ds+

�

ωi

σu dx

�
=

n�

i=1

�

ωi

f dx, (4.2)

where nωi
is the outward pointing unit normal on ∂ωi. The terms in the

boundary integrals, the so-called fluxes, couple the balance laws of neighbor-
ing control volumes.

Note that (4.2) is satisfied if for each i = 1, . . . , n,

�

∂ωi

(−ε∇u+ ub) · nωi ds+

�

ωi

σu dx =

�

ωi

f dx. (4.3)
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In the case σ = 0 in Ω, (4.3) represents a local conservation property: the
flux across ∂ωi equals the sources in ωi. The main motivation of the construc-
tion of FVMs consists in transferring the local conservation property from
the continuous problem to the discrete setting, thus constructing a physically
consistent discretization in this respect. The corresponding discrete local con-
servation property is often of major importance in applications and it is the
reason why these methods can be found in many software packages. To con-
struct a FVM, one needs to

• define the decomposition of Ω,
• define a discrete version of the fluxes,
• prescribe a quadrature rule for evaluating all integrals in (4.2).

4.2 Voronoi Box Finite Volume Methods

This section present one particular finite volume method. For defining this
method, it is convenient to consider a triangulation from a special class. Then,
the control volumes are constructed with the help of this triangulation.

Definition 4.1 (Delaunay triangulation). A triangulation Th of Ω is
called a Delaunay triangulation if, for every mesh cell K ∈ Th, the inte-
rior of its circumball does not contain any other vertex of the triangulation.
This property is called (global) empty circumball (circumdisk) property. ✷

In this course, only simplicial triangulations will be considered. Then, the
Delaunay property is in two dimensions equivalent with the requirement that
for each edge, which is not contained on the boundary, the sum of the two
opposite angles is smaller than or equal to π.

Delaunay triangulations possess some optimality properties in Rd, d ≥ 2,
see (Cheng et al., 2013, Section 4.3). For example, it is known, e.g., see Sibson
(1978), (Edelsbrunner, 2001, p. 11), (Cheng et al., 2013, Theorem 2.8) that
among all triangulations of the convex hull of a given set of points in R2, any
Delaunay triangulation maximizes the minimal angle.

Closely connected to Delaunay triangulations are Voronoi boxes.

Definition 4.2 (Voronoi box, Voronoi region). Given a finite set S of
n mutually different points in Rd, d ∈ {2, 3}. The Voronoi box or Voronoi
region of a point p ∈ S is the set of all x ∈ Rd that are closer to p than to
any other point in S

Vp =
�
x ∈ Rd : �x− p�2 < �x− q�2 ∀ q ∈ S \ {p}

�
.

✷

Remark 4.3 (Geometric properties of the Voronoi boxes). Consider first the
case that S contains two points. Then, the Voronoi box for each point is a
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half space. In addition, the line connecting both points is perpendicular to the
hyperplane (line in 2d, plane in 3d) between the half spaces. For the general
case that S contains n mutually different points, one can deduce from the
first property that the Voronoi box of every point p ∈ S, which is given as
the intersection of finitely many half spaces, is a convex polyhedron, which is
possibly unbounded, with at most n− 1 faces. If the polyhedron is bounded,
then it is the convex hull of its vertices. The connecting line of the points
that generate Voronoi boxes whose closure has a common face with a positive
(d− 1)-dimensional measure is perpendicular to the common face.

By definition, the intersection of two Voronoi boxes is empty. But each
point x ∈ Rd belongs at least to the closure of one Voronoi box. Thus, the
closure of the Voronoi boxes covers the entire space Rd. If a point x belongs
to the closure of more than one Voronoi box, then it has the same distance
to more than one point of S. ✷

Given a domain Ω with polyhedral boundary, finite element methods can
be defined on Delaunay triangulations and finite volume methods on a de-
composition of Ω with Voronoi boxes. From the practical point of view, one
starts with a Delaunay triangulation of Ω and constructs the Voronoi boxes.
Consider a triangulation Th of Ω into simplicial mesh cells and an arbitrary
mesh cell K ∈ Th. If Th is Delaunay, then the vertices of K are the so-called
generators of Voronoi boxes. The midpoint mK of the closed circumball (cir-
cumdisk in 2d) SK of K has the same distance from all vertices of K (the
notation circumball will be used in the following for all dimensions). Hence,
mK belongs to the closure of the Voronoi boxes of all vertices of K. There is
no other vertex of the triangulation within SK , since otherwise mK would be
closer to this vertex than to the vertices of K and, consequently, mK would
not belong to the closure of the Voronoi boxes of the vertices of K.

In two dimensions, the midpoint of the circumball of a triangle is the
crosspoint of the perpendicular bisectors. Connecting these crosspoints with
the center of the edges, gives for each vertex of the grid a polygonal subdomain
that contains the vertex. Equivalently, one can connect the crosspoints across
edges. These polygonal subdomains are the Voronoi boxes, see Figure 4.1.
With this construction, the edge and the corresponding part of the boundary
of the Voronoi box are orthogonal. In three dimensions, the center of the
circumball is the intersection of three bisector planes, or, which is equivalent
of all bisector planes. A bisector plane contains the midpoint of an edge of the
tetrahedron and it is orthogonal to this edge. Then, the Voronoi box around
a vertex is a polyhedron whose vertices are the midpoints of the circumballs
of the tetrahedra which contain this vertex and each face of the polyhedron
is orthogonal to one of the edges where the vertex is an end point.
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Fig. 4.1 Local grid with crosspoints of the perpendicular bisectors of the triangles (left),

corresponding Voronoi box of the vertex in the center (right).

4.2.1 Derivation, Concrete Examples, Assumptions

Let Ω be a bounded domain with polyhedral boundary. Let a Delaunay trian-
gulation Th, see Definition 4.1, of Ω be given with n vertices {xi}ni=1, where
the vertices are numbered such that the first m < n vertices are in Ω or
at the Neumann boundary and the last n − m vertices are situated at the
Dirichlet boundary. Then, Ω can be decomposed into Voronoi boxes {ωi}ni=1,
which are the control volumes of the considered method. Hence, each control
volume is associated to a vertex of the Delaunay triangulation, such that a
so-called vertex-centered finite volume method is constructed.

The method is based on the formulation of the convection-diffusion-
reaction equation on the control volumes, which reads, compare (4.2),

�

∂ωi

(−ε∇u+ ub) · nωi
ds+

�

ωi

σu dx =

�

ωi

f dx, i = 1, . . . , n. (4.4)

In Voronoi box finite volume methods, the degrees of freedom are the values
of the function in the vertices of the Delaunay triangulation denoted by ui =
uh(xi), i = 1, . . . , n.

Now, all terms in (4.4) have to be approximated. For the volume integrals,
a simple quadrature rule is used:

�

ωi

σu dx ≈ σ(xi) |ωi|ui, (4.5)

�

ωi

f dx ≈ f(xi) |ωi| . (4.6)

By construction, ωi is a bounded polyhedron, see Remark 4.3. Denote the
planar face between xi and its neighbor xj by ∂ωij , see Figure 4.2 for a two-
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Fig. 4.2 Notations in the derivation of the Voronoi box finite volume scheme.

dimensional sketch. The outward pointing unit normal with respect to ωi is
denoted by nij . By construction of the Voronoi boxes, the connecting line
hij = xj −xi is perpendicular to ∂ωij , compare Remark 4.3, such that nij =
hij/ �hij�2. The orthogonality of the planar faces of the control volumes and
the connecting lines of the vertices of the mesh is a key property of Voronoi
box finite volume methods.

Let xij be the intersection of ∂ωij and hij and let Λi be the index set of the
neighbors of xi in Th. Note that xij is generally not the barycenter of ∂ωij .
Then, the integral on the boundary of the control volume is approximated
also by a simple quadrature rule in the following way

�

∂ωi

(−ε∇u+ ub) · nωi ds

=
�

j∈Λi

��

∂ωij

(−ε∇u+ ub) · nij ds

�

≈
�

j∈Λi

�
−ε∇u(xij) · nij |∂ωij |+ u(xij)

�

∂ωij

b · nij ds

�

=
�

j∈Λi

(−ε∇u(xij) · nij + u(xij)βij) |∂ωij | , (4.7)

with

βij =
1

|∂ωij |

�

∂ωij

b · nij ds, (4.8)
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Fig. 4.3 Degenerated situation with |∂ωij | = 0: two triangles forming a square.

if |∂ωij | > 0. If ∂ωij is degenerated, see Figure 4.3 for such a situation, then
it is set βij = 0.

The term in parentheses is a flux given on the connecting line of xi and
xj , which has to be approximated. For this purpose, one can use a stable
approximation for one-dimensional problems, namely a fitted upwind finite
difference formula, see Definition 3.17. In the finite volume context, it is usual
to write the schemes with the help of the signed local mesh Péclet number

Pe±ij =
βij �hij�2

2ε
∈ R, (4.9)

since βij might be an arbitrary real number. Then, the term in parentheses in
the last line of (4.7) is approximated by using in addition a finite difference
for the normal derivative and the arithmetic mean for the unknown value of
u in xij

− ε∇u(xij) · nij + u(xij)βij ≈ −εκ
�
Pe±ij

� uj − ui

�hij�2
+ βij

ui + uj

2
, (4.10)

where κ : R → R+ is the upwind function.

Example 4.4 (Simple upwind finite volume method). The fitting function for
the simple upwind method is given by

κ
�
Pe±ij

�
= 1 +

��Pe±ij
�� , (4.11)
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see (3.13). Consider the case βij > 0, i.e., the flux is from xi to xj , then one
gets with (4.10) the numerical flux

−εκ
�
Pe±ij

� uj − ui

�hij�2
+ βij

ui + uj

2

= −ε
uj − ui

�hij�2
+ βij

�
−ε

�hij�2
2ε

uj − ui

�hij�2
+

ui + uj

2

�
= −ε

uj − ui

�hij�2
+ βijui.

Analogously, one obtains for βij < 0

−εκ
�
Pe±ij

� uj − ui

�hij�2
+ βij

ui + uj

2
= −ε

uj − ui

�hij�2
+ βijuj .

In both cases, only the upwind node contributes to the discretization of the
convective term. ✷

Example 4.5 (Exponentially fitted finite volume method, Scharfetter–Gummel
FVM). The derivation of the exponentially fitted finite volume method is
based on the Iljin–Allen–Southwell scheme from Definition 3.18. Here, the
fitting function is

κ
�
Pe±ij

�
= Pe±ij coth

�
Pe±ij

�
. (4.12)

Note that

coth(x) = 1 +
2

exp(2x)− 1
, x coth(x) = (−x) coth(−x) ∀ x ∈ R. (4.13)

Inserting the fitting function in (4.10) and using (4.9) and (4.13) yields

−εκ
�
Pe±ij

� uj − ui

�hij�2
+ βij

ui + uj

2

= ε

�
−Pe±ij coth

�
Pe±ij

� uj − ui

�hij�2
+ Pe±ij

uj + ui

�hij�2

�

=
ε

�hij�2

� �
Pe±ij + Pe±ij coth

�
Pe±ij

��
ui −

�
−Pe±ij + Pe±ij coth

�
Pe±ij

��
uj

�

=
ε

�hij�2

� �
Pe±ij − Pe±ij coth

�
−Pe±ij

��
ui −

�
−Pe±ij + Pe±ij coth

�
Pe±ij

��
uj

�

=
ε

�hij�2

�
−2Pe±ij

exp(−2Pe±ij)− 1
ui −

2Pe±ij
exp(2Pe±ij)− 1

uj

�
.

In the literature, this formula is often expressed in terms of the Bernoulli
function1

B(x) =





x

exp(x)− 1
, x ∈ R \ {0},

1, x = 0,

1 The Bernoulli numbers appear in the series expansion of this function.
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as

−εκ
�
Pe±ij

� uj − ui

�hij�2
+ βij

ui + uj

2
=

ε

�hij�2
�
B
�
−2Pe±ij

�
ui −B

�
2Pe±ij

�
uj

�
.

Note that B(x) > 0 for x ∈ R and the fitted upwind function can be ex-
pressed, using (4.13), as

κ
�
Pe±ij

�
= Pe±ij +B

�
2Pe±ij

�
.

✷

Inserting the approximations (4.5), (4.6), and (4.10) in (4.4) gives the
Voronoi box finite volume method

�

j∈Λi

�
−
εκ

�
Pe±ij

�

�hij�2
(uj − ui) +

βij

2
(ui + uj)

�
|∂ωij |+ σ(xi) |ωi|ui

= f(xi) |ωi| , i = 1, . . . ,m, (4.14)

ui = 0, i = m+ 1, . . . n.

After having derived the basic scheme (4.14), several assumptions are nec-
essary for performing the numerical analysis. First, an assumptions on βij is
formulated.

Remark 4.6 (Assumption with respect to βij).

A1 Skew symmetry. It holds that

βij + βji = 0 ∀ i, j. (4.15)

In view of definition (4.8) of βij , this assumption is natural since nij =
−nji.

✷

With Assumption A1, it follows from (4.9) that

Pe±ij = −Pe±ji. (4.16)

Next, assumptions on the fitted upwind function are given.

Remark 4.7 (Assumptions on the fitted upwind function). Let κ : R → R+

be the fitted upwind function.

A2 Symmetry. It holds that

κ(0) = 1, κ
�
Pe±ij

�
= κ

�
Pe±ji

�
. (4.17)

A3 Bound. It is assumed that

κ
�
Pe±ij

�
>

��Pe±ij
�� . (4.18)
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✷

Remark 4.8 (Satisfaction of Assumptions A2 and A3 for the simple upwind
and Scharfetter–Gummel FVM).

• Assumption A2. Clearly, (4.17) is satisfied for the simple upwind function
(4.11).
The first property of (4.17) follows for the fitted upwind function (4.12)
of the Scharfetter–Gummel scheme from

lim
x→0+

x coth(x) = 1. (4.19)

Using (4.13), one finds that this function also satisfies the second property
of (4.17).

• Assumption A3. Again, the satisfaction of (4.18) for the simple upwind
function (4.11) is clear.
The satisfaction of (4.18) for the Scharfetter–Gummel scheme follows
from

x coth(x) > x ∀ x > 0

for Pe±ij > 0, from (4.19) for Pe±ij = 0, and from (4.13) for Pe±ij < 0.

Hence, both the fitted upwind functions of the simple upwind FVM and the
Scharfetter–Gummel FVM satisfy Assumptions A2 and A3. ✷

Finally, assumptions on the grid are necessary.

Remark 4.9 (Assumptions on the triangulation).

A4 Delaunay property. The domain Ω is decomposed by a Delaunay tri-
angulation. A decomposition of this kind is the basis of the derivation
of method (4.14).

A5 Connectivity of the inner nodes. Let ωh denote the set of the in-
ner nodes, then it is assumed that for all xa,xb ∈ ωh there exist
x1, . . . ,xm ∈ ωh with |∂ωa1| > 0, |∂ω12| > 0, . . . , |∂ωmb| > 0.
This assumption implies that there are non-vanishing off-diagonal en-
tries between subsequent nodes in this sequence. It follows the irre-
ducibility of the matrix Ai ∈ Rm×m, which is the restriction of the full
matrix to the inner nodes.

✷

4.2.2 Discrete Local Conservation Property, DMP,
Existence and Uniqueness of a Solution

Lemma 4.10 (Local discrete conservation property). Let σ = 0 in Ω
and let Assumptions A1, A2, and A4 be satisfied. Denote the discrete flux
from xi to xj across ∂ωij by
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fij =

�
−
εκ

�
Pe±ij

�

�hij�2
(uj − ui) +

βij

2
(ui + uj)

�
|∂ωij | .

Then, for any connected volume ω = ∪I
i=1ωi ⊂ Ω, where ωi are control

volumes, the discrete flux across ∂ω equals the sum of the sinks and sources
in ω.

Proof. The boundary of ω is the union of certain facets of control volumes
∂ω = ∪K

k=1∂ωk∗ and the discrete flux trough this boundary is given by�K
k=1 fk∗. By Assumptions A1 and A2, it follows that for all facets of control

volumes that do not belong to the boundary of ω, it holds that fij = −fji.
Hence, one obtains with (4.14)

K�

k=1

fk∗ =

I�

i=1

�

j∈Λi

fij =

I�

i=1

f(xi) |ωi| ,

which is the statement of the lemma. �

Theorem 4.11 (Global DMP for method (4.14)). Let Assumptions A1,
A2, A3, A4, and A5 be satisfied. Let ∇ · b ≥ 0 and σ ≥ 0 in Ω. Then, the
matrix of method (4.14) is an M-matrix and the finite volume discretization
satisfies the global DMP.

Proof. The diagonal entries of the matrix that are obtained with scheme
(4.14) are

aii =
�

j∈Λi

�
εκ

�
Pe±ij

�

�hij�2
+

βij

2

�
|∂ωij |+ σ(xi) |ωi| , i = 1, . . . ,m.

By assumption, the second term on the right-hand side is non-negative. A
sufficient condition for the positivity of the first term is that for all j ∈ Λi

εκ
�
Pe±ij

�

�hij�2
+

βij

2
> 0 ⇐⇒ κ

�
Pe±ij

�
> −βij �hij�2

2ε
= −Pe±ij ,

where the definition (4.9) of the signed Péclet number was used. With As-
sumption A3, the inequality on the right-hand side is satisfied.

The off-diagonal entries, which belong to the sparsity pattern of the matrix,
because xi and xj are neighboring nodes, have the form

aij =

�
−
εκ

�
Pe±ij

�

�hij�2
+

βij

2

�
|∂ωij | .

They are negative, if |∂ωij | > 0 and
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βij

2
<

εκ
�
Pe±ij

�

�hij�2
⇐⇒ Pe±ij =

βij �hij�2
2ε

< κ
�
Pe±ij

�
,

which follows again from Assumption A3.
For the row sums of the inner nodes, with respect to the whole system

matrix, one obtains with definition (4.8) of βij and integration by parts

ri = aii +
�

j∈Λi

aij =
�

j∈Λi

βij |∂ωij |+ σ(xi) |ωi|

=

�

∂ωi

b · nωi
ds+ σ(xi) |ωi| =

�

ωi

∇ · b dx+ σ(xi) |ωi| , i = 1, . . . ,m.

By the assumption of the theorem, the row sums are non-negative. Restricting
the columns to the inner nodes, such that the matrix Ai ∈ Rm × Rm of the
inner nodes is considered, there will be even at least one positive row sum,
since the off-diagonal entries that connect the boundary nodes and the inner
nodes are negative by a previous part of the proof. Because of the assumed
connectivity of the inner nodes via non-degenerated parts of boundaries of the
control volumes, the matrix of the inner nodes is irreducible and therefore,
see Remark 5.22 below, it is an M-matrix. From Corollary 5.18, it follows
that the full matrix is an M-matrix, too, and Theorem 5.14 gives finally the
satisfaction of the DMP. �

Corollary 4.12 (Existence and uniqueness of a solution for method
(4.14)). Let the assumptions of Theorem 4.11 be satisfied, then method (4.14)
possesses a unique solution.

Proof. Method (4.14) leads to an M-matrix, which is non-singular, and thus
the linear system of equations has a unique solution. �


