
Chapter 2

Finite Element Methods (FEM)

2.1 Generalities

Remark 2.1. Finite element methods. Finite element methods were one of
the main topics of Numerical Mathematics 3. The knowledge of the lecture
notes of Numerical Mathematics 3 is assumed. Only a few issues, which are
important for this course on numerical methods for convection-dominated
problems, will be reminded here.

Let {T h} be a family of regular triangulations consisting of mesh cells
{K}. The triangulations are assumed to be quasi-uniform. The diameter of
a mesh cell K is denoted by hK and it is h = maxK{hK}. Parametric finite
element spaces will be considered with affine maps between a reference cell
K̂ and all physical cells K. ✷

Theorem 2.2. Local interpolation error estimate. Let IK : Cs(K) →
P (K) be an interpolation operator as defined in Numerical Mathematics 3,
where P (K) is a polynomial space defined on K. Let p ∈ [1,∞) and (m+1−
s)p > 1. Then there is a constant C, which is independent of v ∈ Wm+1,p(K),
such that

��Dk(v − IKv)
��
Lp(K)

≤ Chm+1−k
K

��Dm+1v
��
Lp(K)

, 0 ≤ k ≤ m+ 1. (2.1)

for all v ∈ Wm+1,p(K).

Proof. See lecture notes of Numerical Mathematics 3. �

Theorem 2.3. Inverse estimate. Let 0 ≤ k ≤ l be natural numbers and
let p, q ∈ [1,∞]. Then there is a constant Cinv, which depends only on
k, l, p, q, K̂, P̂ (K̂) such that

��Dlvh
��
Lq(K)

≤ Cinvh
(k−l)−d(p−1−q−1)
K

��Dkvh
��
Lp(K)

∀ vh ∈ P (K). (2.2)

Proof. See lecture notes of Numerical Mathematics 3. �

19



20 2 Finite Element Methods (FEM)

2.2 The Galerkin Method

Remark 2.4. On the size of the constant in the Lemma of Cea. The proper-
ties of the bilinear form from problem (1.27) were studied in the proof of
Theorem 1.11. It was shown that with appropriate regularity assumptions
and under condition (1.30), the bilinear form is bounded with a constant
M of order max{�b�L∞(Ω) , �σ�L∞(Ω)} and it is coercive a constant of order
m = ε. In this case, one can apply the Lemma of Cea and one obtains the
error estimate

��u− uh
��
V
≤

Cmax{�b�L∞(Ω) , �σ�L∞(Ω)}
ε

inf
vh∈V h

��u− vh
��
V
, C ∈ R.

In the convection-dominated case ε � L �b�L∞(Ω), where L is a characteristic
length scale of the problem, the first factor of this estimate becomes very
large.

Thus, from this error estimate one cannot expect that the Galerkin finite
element solution is accurate unless the second factor, which is the best ap-
proximation error, is very small. On uniformly refined grids, the best approx-
imation error becomes very small only if the dimension of the finite element
space V h becomes very large. ✷

Example 2.5 (Galerkin method). A standard test problem in two dimensions
has the form

−εΔu+ (1, 0)T ·∇u = 1 in Ω = (0, 1)2,
u = 0 on ∂Ω.

Besides the layer at the outflow boundary x = 1, there are also two layers
at the boundaries y = 0 and y = 1, see Figure 2.1. The layer at the outflow
boundary is often called exponential layer and the layers parallel to the flow
direction parabolic layers.

Layers are very small structures: the size of exponential layers is O (ε) and
the size of parabolic layers O (

√
ε). Usually, such structures cannot be re-

solved on given grids, i.e., they cannot be represented on these grids. Clearly,
a structure that cannot be represented cannot be simulated. However, the
Galerkin finite element method tries to simulate all important features.

A result, computed with the Galerkin finite element method, for ε = 10−8

and the P1 finite element method on a grid consisting of 32×32×2 triangles,
which corresponds to 1089 degrees of freedom (including Dirichlet nodes)
is presented in Figure 2.2. One obtains a solution that is globally polluted
with huge spurious oscillations. The numerical approximation is completely
useless. ✷
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Fig. 2.1 Example 2.5, solution.

Fig. 2.2 Example 2.5, numerical solution obtained with the Galerkin finite element

method, note the size of the values.

2.3 Stabilized Finite Element Methods

Remark 2.6. On the H1(Ω) norm for the numerical analysis of convection-
dominated problems. Consider the problem: Find u ∈ V = H1

0 (Ω) such that

a(u, v) = f(v) ∀ v ∈ V (2.3)

with

a(u, v) := ε (∇u,∇v) + (b ·∇u, v) + (σu, v), f(v) := (f, v).

Let the condition
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�
−1

2
∇ · b+ σ

�
(x) ≥ µ0 > 0 almost everywhere in Ω (2.4)

be satisfied, which is stronger than condition (1.30). Then, an analogous
calculation as in the proof of Theorem 1.11 shows that a(·, ·) is uniformly
coercive with respect to the following norm, which depends on ε,

�v�2ε := ε �∇v�2L2(Ω) + µ0 �v�2L2(Ω) ,

i.e., there is a constant m which does not depend on ε such that

a(v, v) ≥ m �v�2ε ∀ v ∈ V. (2.5)

Applying integration by parts, exercise, shows that there is a constant M ,
which is also independent of ε, such that

|a(v, w)| ≤ M �v�ε �w�H1(Ω) ∀ (v, w) ∈ V × V. (2.6)

However, there is no constant M̃ , which is independent of ε, with

|a(v, w)| ≤ M̃ �v�ε �w�ε ∀ (v, w) ∈ V × V.

Using the estimates (2.5) and (2.6) with constants that are independent
of ε, one obtains in a similar way as in the proof of the Lemma of Cea that

��u− uh
��
ε
≤ C inf

vh∈V h

��u− vh
��
H1(Ω)

,

with C independent of ε. If V h is a standard finite element space (piecewise
polynomial), then one can show that it is for the best approximation error in
layers

inf
vh∈V h

��u− vh
��
H1(Ω)

→ ∞ for ε → 0,

for fixed h. Consequently, there is no uniform convergence
��u− uh

��
ε
→ 0

for h → 0. The norm �·�ε is not suited for the investigation of numerical
methods for convection-dominated problems. It turns out that the use of
appropriate norms is important for the numerical analysis of discretizations
for convection-dominated problems. ✷

2.3.1 The Streamline-Upwind Petrov–Galerkin
(SUPG) Method

Remark 2.7. Goal. The goal consists in the construction of a method that is
more stable than the Galerkin finite element method and which can be used
with finite elements of arbitrary order. The convergence of this method, in
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an appropriate norm, should be of higher order. In addition, the constant in
the error estimate should not blow up if ε → 0. Such estimates are called
robust error estimates.

Consider problem (1.7) and assume that condition (2.4) is satisfied. ✷

Remark 2.8. The basic idea. The basic idea consists in a penalization of large
values of the so-called strong residual. Such methods are called residual-based
stabilizations.

Given a linear partial differential equation in strong form

Astrustr = f, f ∈ L2(Ω),

and its Galerkin finite element discretization: Find uh ∈ V h such that

ah
�
uh, vh

�
=
�
f, vh

�
∀ vh ∈ V h. (2.7)

For residual-based stabilizations, a modification of Astr is needed which is
well-defined for finite element functions. This modification should be also a
linear operator and it is denoted by Ah

str : V h → L2(Ω). The (strong)
residual is now defined by

rh
�
uh
�
= Ah

stru
h − f ∈ L2(Ω).

In general, it holds rh
�
uh
�
�= 0, but a good numerical approximation of the

solution of the continuous problem should have in some sense a small residual.
Now, instead of finding the solution of (2.7), the minimizer of the residual is
searched, i.e, the following optimization problem is considered

argmin
uh∈V h

��rh
�
uh
���2

L2(Ω)
= argmin

uh∈V h

�
rh
�
uh
�
, rh

�
uh
��

. (2.8)

The necessary condition for taking the minimum is the vanishing of the
Gâteaux derivative. This derivative is computed by using the linearity of
Ah

str and the bilinearity of the inner product in L2(Ω)

0 = lim
ε→0

�
rh
�
uh + εvh

�
, rh

�
uh + εvh

��
−
�
rh
�
uh
�
, rh

�
uh
��

ε

= lim
ε→0

�
rh
�
uh
�
+ εAh

strv
h, rh

�
uh
�
+ εAh

strv
h
�
−
�
rh
�
uh
�
, rh

�
uh
��

ε

= 2
�
rh
�
uh
�
, Ah

strv
h
�

∀ vh ∈ V h.

It follows that the necessary condition for the solution of (2.8) is

�
rh
�
uh
�
, Ah

strv
h
�
= 0 ∀ vh ∈ V h.

A generalization consists in considering the minimization problem
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argmin
uh∈V h

���δ1/2rh
�
uh
����

2

L2(Ω)
= argmin

uh∈V h

�
δrh

�
uh
�
, rh

�
uh
��

(2.9)

with the positive weighting function δ(x). Analogously to the derivation for
the special case, one obtains as necessary condition for the minimum

�
δrh

�
uh
�
, Ah

strv
h
�
= 0 ∀ vh ∈ V h. (2.10)

The solutions of (2.8) or (2.9) will not be identical to the solution of the
Galerkin discretization (2.7). It turns out that the reason for the Galerkin
discretization to fail is that the solution possesses structures (scales) that are
important but which are not resolved by the used finite element space (grid).
For convection-diffusion problems, such structures are layers, e.g., at bound-
aries. The numerical methods should also compute sharp layers. However the
sharpness of layers in numerical solutions is restricted by the resolution of the
finite element space, which is generally much coarser than the layer width.
Hence, even for a numerical solution with sharp layers, the residual in the
layer regions are very large. In particular, a numerical solution with sharp
layers (with respect to the resolution of the finite element space) will not be
the minimizer of (2.8) or (2.9), see Figure 2.3. The minimizers of (2.8) or
(2.9) tend to possess strongly smeared layers and these solutions are useless
in applications. For this reason, one considers in residual-based stabilizations
a combination of the Galerkin discretization (2.7), which possesses not suffi-
cient diffusion, and the minimization of the residual, which is over-diffusive,

ah
�
uh, vh

�
+
�
δrh

�
uh
�
, Ah

strv
h
�
=
�
f, vh

�
∀ vh ∈ V h. (2.11)

The goal of numerical analysis consists in determining the weighting function
δ optimally in an asymptotic sense. ✷

Definition 2.9. Streamline-Upwind Petrov–Galerkin FEM, SUPG
method, Streamline-Diffusion FEM, SDFEM. The Streamline-Upwind
Petrov–Galerkin (SUPG) FEM or Streamline-Diffusion FEM (SDFEM) has
the form: Find uh ∈ V h, such that

ah
�
uh, vh

�
= fh

�
vh
�

∀ vh ∈ V h (2.12)

with V h ⊂ V and

ah(v, w) := a(v, w) (2.13)

+
�

K∈T h

�

K

δK

�
− εΔv(x) + b(x) ·∇v(x) + σ(x)v(x)

��
b(x) ·∇w(x)

�
dx,

fh(w) := (f, w) +
�

K∈T h

�

K

δKf(x)
�
b(x) ·∇w(x)

�
dx.
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Fig. 2.3 Function with sharp layer (solid line) and optimal piecewise linear approximation

in a mesh cell K (dashed line). The equation that is fulfilled by the function in K is far from

being satisfied by the piecewise linear approximation. Hence, despite the approximation is
of the type considered to be optimal, the residual will be large.

Here, {δK} are user-chosen weights, which are called stabilization parameters
or SUPG parameters. ✷

Remark 2.10. Concerning the SUPG method.

• The method was developed in Hughes & Brooks (1979); Brooks & Hughes
(1982).

• The name ‘SUPG’ comes from the fact that the method can be considered
as a Petrov–Galerkin method, i.e., a finite element method with different
test and ansatz spaces, with the test space

span



w(x) +

�

K∈T h

δKb(x) ·∇w(x)



 .

• The SUPG method introduces artificial diffusion only in the so-called
streamline direction b(x) ·∇w(x). From this property, the name ‘Stream-
line Diffusion FEM’ originates.

• The operator Ah
str is given in the second part of the bilinear form (2.13).

The second derivative for finite element functions is defined only piece-
wise.

• In the stabilization term of the SUPG method, not the strong operator
Ah

str applied to the test function is used, as in (2.11), but only the first or-
der term contained in this expression. However, for convection-dominated
problems, the first order term is the dominating term of the strong oper-
ator applied to the test function. The numerical analysis presented below
will show that using only the first order term suffices.

• Altogether, the SUPG method is the most popular stabilized finite ele-
ment method in academics. However, since there are usually still notable
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spurious oscillations in a vicinity of layers, compare Example 2.23 below,
it is only of restricted usefulness in practice, e.g., see John et al. (2009).

• Generally, the SUPG parameter is a general function. However, in practice
it is often chosen as a piecewise constant function. The goal of the finite
element error analysis consists in proposing a good asymptotic choice of
this parameter.

✷

Definition 2.11. Consistent finite element method. Let u(x) be a suf-
ficiently smooth solution of: Find u ∈ V such that

a(u, v) = f(v) ∀ v ∈ V,

where a(·, ·) is an appropriate bilinear form and f(·) an appropriate func-
tional. A finite element method related to this problem: Find uh ∈ V h such
that

ah
�
uh, vh

�
= fh

�
vh
�

∀ vh ∈ V h

is called consistent, if

ah
�
u, vh

�
= fh

�
vh
�

∀ vh ∈ V h. (2.14)

✷

Remark 2.12. Consistency. Note that consistency of a finite element method
is not the same as consistency of a finite difference method, see the lecture
notes on Numerical Mathematics 3. For finite element methods, consistency
means that a sufficiently smooth solution satisfies also the discrete equation.

✷

Lemma 2.13. Galerkin orthogonality. A consistent finite element method
has the property of the Galerkin orthogonality

ah
�
u− uh, vh

�
= 0 ∀ vh ∈ V h. (2.15)

The error is ‘orthogonal’ to the finite element space.

Proof. The statement of the lemma follows immediately by subtracting (2.12)
and (2.14). �

Lemma 2.14. Consistency of the SUPG method. The SUPG method
(2.12), (2.13) is consistent.

Proof. A sufficiently smooth solution u of (1.27) satisfies the strong form of
the equation even pointwise. Hence, the residual is pointwise zero. Inserting
this solution in the SUPG formulation (2.12), (2.13) results in a vanishing of
the stabilization term. It remains
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a
�
u, vh

�
= f

�
vh
�

∀ vh ∈ V h,

which is satisfied by the weak solution since V h ⊂ V . That means, the smooth
solution satisfies also the discrete equation. �

Definition 2.15. SUGP norm. Let for almost all x ∈ Ω condition (2.4) be
satisfies. In V h, the SUPG norm is defined by

��vh
��
SUPG

:=


ε

��vh
��2
H1(Ω)

+ µ0

��vh
��2
L2(Ω)

+
�

K∈T h

���δ1/2K

�
b ·∇vh

����
2

L2(K)




1/2

.(2.16)

✷

Theorem 2.16 (Coercivity of the SUPG bilinear form). Assume that
b ∈ W 1,∞(Ω), σ ∈ L∞(Ω), (2.4), and let for each K ∈ T h

0 < δK ≤ 1

2
min

�
h2
K

εC2
inv

,
µ0

�σ�2L∞(K)

�
, (2.17)

where Cinv is the constant in the inverse estimate (2.2). Then, the SUPG
bilinear form is coercive with respect to the SUPG norm, concretely, it is

ah
�
vh, vh

�
≥ 1

2

��vh
��2
SUPG

∀ vh ∈ V h.

Proof. Integration by parts gives, see the proof of Theorem 1.11,

�
b ·∇vh + σvh, vh

�
=

��
−∇ · b

2
+ σ

�
vh, vh

�
∀ vh ∈ V h.

With the definition of µ0, one obtains

ah
�
vh, vh

�

= ε
��vh

��2
1
+

�

Ω

�
σ(x)− ∇ · b(x)

2

�

� �� �
≥µ0>0

�
vh
�2

(x) dx+
�

K∈T h

���δ1/2K

�
b ·∇vh

����
2

L2(K)

+
�

K∈T h

�

K

δK
�
−εΔvh(x) + σ(x)vh(x)

� �
b(x) ·∇vh(x)

�
dx (2.18)

≥
��vh

��2
SUPG

−

������
�

K∈T h

�

K

δK
�
−εΔvh(x) + σ(x)vh(x)

� �
b(x) ·∇vh(x)

�
dx

������
.

Now, the last term will be estimated from above. Then, one obtains altogether
an estimate from below if the estimate of the last term is subtracted from
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the first term. In the following estimate, one uses the conditions (2.17) on
the SUPG parameter. It is for each K ∈ T h

����
�

K

δK
�
−εΔvh(x) + σ(x)vh(x)

� �
b ·∇vh(x)

�
dx

����

≤
�

K

�
δ
1/2
K ε

��Δvh(x)
��
��

δ
1/2
K

��b ·∇vh(x)
��
�
dx

+

�

K

�
δ
1/2
K |σ(x)|

��vh(x)
��
��

δ
1/2
K

��b ·∇vh(x)
��
�
dx

CS
≤

�
δ
1/2
K ε

��Δvh
��
L2(K)

+ δ
1/2
K �σ�L∞(K)

��vh
��
L2(K)

����δ1/2K

�
b ·∇vh

����
L2(K)

(2.2)

≤
�
δ
1/2
K

εCinv

hK

��∇vh
��
L2(K)

+ δ
1/2
K �σ�L∞(K)

��vh
��
L2(K)

����δ1/2K

�
b ·∇vh

����
L2(K)

(2.17)

≤
�

hK√
2εCinv

εCinv

hK

��∇vh
��
L2(K)

+

√
µ0√

2 �σ�L∞(K)

�σ�L∞(K)

��vh
��
L2(K)

�

×
���δ1/2K

�
b ·∇vh

����
L2(K)

=

��
ε

2

��∇vh
��
L2(K)

+

�
µ0

2

��vh
��
L2(K)

����δ1/2K

�
b ·∇vh

����
L2(K)

Young

≤ ε

2

��∇vh
��2
L2(K)

+
1

4

���δ1/2K

�
b ·∇vh

����
2

L2(K)
+

µ0

2

��vh
��2
L2(K)

+
1

4

���δ1/2K

�
b ·∇vh

����
2

L2(K)

=
1

2

��vh
��2
SUPG(K)

.

Now, the proof is finished by summing over all mesh cells and inserting the
result in (2.18). �

Corollary 2.17 (Coercivity of the SUPG bilinear form for P1 finite
elements). Let the assumptions of Theorem 2.16 with respect to the coef-
ficients of the problem be satisfied. For piecewise linear finite elements, the
SUPG bilinear form (2.13) is coercive with respect to the SUPG norm if

0 < δK ≤ µ0

�σ�2L∞(K)

. (2.19)

Proof. The proof is the same as for Theorem 2.16, where one uses that for
piecewise linear finite elements Δvh(x)|K = 0 for all K ∈ T h. Thus, the
corresponding terms do not appear in the proof. �

Corollary 2.18 (Existenz and uniqueness of a solution of the SUPG
method). Let the assumptions of Theorem 2.16 and Corollary 2.17, respec-
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tively, be satisfied. Then, the SUPG finite element method (2.12), (2.13) has
a unique solution.

Proof. The statement is obtained by the application of the Theorem of Lax–
Milgram. The coercivity of the bilinear form was proved in Theorem 2.16 and
Corollary 2.17, respectively. For the boundedness, one uses similar estimates
as in the proof of Theorems 2.16 and 1.11, exercise. �

Remark 2.19. On the coercivity of the SUPG bilinear form.

• The proof of Theorem 2.16 is typical for the numerical analysis of stabi-
lized finite element methods. One tries to get rid of the troubling terms
by estimating them with the used norm. This approach works only if one
uses an appropriate norm. In particular, the stabilization has to appear
in the norm.

• Theorem 2.16 provides an upper bound for the SUPG parameter. This
bound is generally not critical in applications.

• From Theorem 2.16, one obtains the stability of the SUPG method with
respect to the SUPG norm. Stability means that an appropriate norm of
the solution can be estimated with the data of the problem. It is

��uh
��2
SUPG

≤ 2ah
�
uh, uh

�
= 2fh

�
uh
�

= 2
�
f, uh

�
+ 2

�

K∈T h

�

K

δKf(x)
�
b(x) ·∇uh(x)

�
dx

CS
≤ 2√

µ0
�f�L2(Ω)

√
µ0

��uh
��
L2(Ω)

+2
�

K∈T h

���δ1/2K f
���
L2(K)

���δ1/2K

�
b ·∇uh

����
L2(K)

Young

≤ C �f�2L2(Ω) +
1

2


µ0

��uh
��2
L2(Ω)

+
�

K∈T h

���δ1/2K

�
b ·∇uh

����
2

L2(K)




≤ C �f�2L2(Ω) +
1

2

��uh
��2
SUPG

.

In the last estimate, it was used that the terms are part of the SUPG norm
and thus they can be estimated by the whole norm. Now, the second term
on the right-hand side can be absorbed in the left-hand side and stability
is proved. The stability constant depends on µ0 and on the upper bounds
of δK .

• All vh ∈ V h satisfy

��vh
��
SUPG

≥ min
�
1, µ

1/2
0

���vh
��
ε
.
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Hence, the SUPG method is also stable with respect to the norm �·�ε.
With respect to this norm, also the Galerkin finite element method is sta-
ble, however this method is not stable with respect to the SUPG norm.
That means, the stability of the SUPG method is stronger than the sta-
bility of the Galerkin finite element method.

✷

Theorem 2.20 (Convergence of the SUPG method). Let the solution
of (1.27) satisfy u ∈ Hk+1(Ω), k ≥ 1, let b ∈ W 1,∞(Ω), σ ∈ L∞(Ω), let the
assumptions of Theorem 2.16 be satisfied, and consider the SUPG method for
Pk finite elements, k ≥ 1. Let the SUPG parameter be given as follows

δK =





C0
h2
K

ε
for hK < ε,

C0hK for ε ≤ hK ,
(2.20)

where the constant C0 > 0 is sufficiently small such that (2.17) is satisfied
for k ≥ 2 or (2.19) for k = 1, respectively. Then, the solution uh ∈ Pk of the
SUPG method (2.12), (2.13) satisfies the following error estimate

��u− uh
��
SUPG

≤ C
�
ε1/2hk + hk+1/2

�
|u|Hk+1(Ω) ,

where the constant C does not depend on ε and h.

Proof. Let uh
I ∈ V h be the Lagrangian interpolant of u(x). One obtains with

the triangle inequality

��u− uh
��
SUPG

≤
��u− uh

I

��
SUPG

+
��uh

I − uh
��
SUPG

. (2.21)

The first term on the right-hand side is the interpolation error. Note that for
both regimes, it is

δK ≤ C0hK ≤ Ch. (2.22)

Using this property after having applied the interpolation error estimate (2.1)
to each term of the SUPG norm individually gives

��u− uh
I

��
SUPG

≤
�
Cεh2k |u|2Hk+1(Ω) + Cµ0h

2(k+1) |u|2Hk+1(Ω)

+C
�

K∈T h

δK �b�2L∞(K) h
2k
K |u|2Hk+1(K)




1/2

≤ C
�
εh2k + h2(k+1) + h2k+1

�1/2
|u|Hk+1(Ω)

≤ C
�
ε1/2hk + hk+1/2

�
|u|Hk+1(Ω) .
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Consider now the second term on the right-hand side of (2.21). The coer-
civity, Theorem 2.16, and the Galerkin orthogonality yield

1

2

��uh
I − uh

��2
SUPG

≤ ah
�
uh
I − uh, uh

I − uh
�
= ah

�
uh
I − u, uh

I − uh
�
.

Now, the triangle inequality is applied to ah
�
uh
I − u, uh

I − uh
�
and every term

is bounded individually. In these estimates, the interpolation estimate (2.1)
plays an important role. Let wh = uh
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.

For the reactive term, one calculates in a similar way
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.

Next, the terms are considered that come from the SUPG stabilization. Since
for both regimes it is

εδK ≤ C0h
2
K ,

one gets
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For the other terms, one obtains with (2.22), which holds for both regimes,



2.3 Stabilized Finite Element Methods 33
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To obtain an optimal estimate for the convective term, one has to apply first
integration by parts
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Both terms on the right-hand side are bounded separately. Using the same
tools as for the other estimates yields
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In the estimate of the other term, one has to distinguish whether in the mesh
cell K it is ε ≤ hK or ε > hK . One gets
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Summarizing all estimates, the statement of the theorem is proved. �

Remark 2.21. Concerning the error estimate.

• In the convection-dominated regime, where ε � h, the order of error
reduction in the SUPG norm is k + 1/2 and in the diffusion-dominated
case, the order of convergence is k. In the latter case, the SUPG norm is
essentially the H1(Ω) semi norm such that order k is optimal.

• It is essential for obtaining an estimate with a constant C which is inde-
pendent on inverse powers of ε that the term


 �

K∈T h

���δ1/2K

�
b ·∇wh

����
2

L2(K)




1/2

is part of the norm, which is used for estimating the error. Such a robust
estimate does not hold for the norm �·�ε.

• For the interpretation of the results, one has to take into account that
different stabilization parameters by choosing different values of C0 lead
also to different norms on the left-hand side of the estimate.
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• On the other hand, the practical importance of a constant which is inde-
pendent of ε is somewhat questionable since in general |u|Hk+1(Ω) depends
on ε.

• In numerical simulations for convection-dominated problems, often one
can observe even a reduction of order hk+1 for the error in L2(Ω), in
particular on structured grids. However, in Zhou (1997) examples were
constructed that show that the estimate of Theorem 2.20 is sharp also
for the error in L2(Ω).

✷

Remark 2.22. Different choices of the SUPG parameter.

• A refined analysis, taking the polynomial degree k of the finite element
into account, proposes the stabilization parameter

δK =









C0
hK

�b�L∞(K)

for PeK ≥ 1,

C0
h2
K

ε
else,

with PeK =
�b�L∞(K) hK

2kε
.

(2.23)
• In practice, one takes for linear and d-linear finite elements instead of
(2.20) also the parameter

δK =
hK

2 �b�L∞(K)

�
coth(PeK)− 1

PeK

�
, PeK =

�b�L∞(K) hK

2ε
,

(2.24)
where PeK is the local Péclet number, since in one dimensions one recov-
ers under certain conditions the Iljin–Allen–Southwell scheme, see Defi-
nition 3.18. There is no user-chosen constant in this parameter. Asymp-
totically, both parameters (2.20) and (2.24) have the same behavior.

✷

Example 2.23 (SUPG method). The same problem as in Example 2.5 is con-
sidered. The solution computed with the SUPG method on the same coarse
grid as with the Galerkin method is presented in Figure 2.4. One can see
very well that it is much better than the solution obtained with the Galerkin
method. However, there are still spurious oscillations, in particular at the
parabolic layers at y = 0 and y = 1. These oscillations are a typical feature
of solutions obtained with the SUPG method. They might become smaller
with higher order elements or on finer grids. But they will generally vanish
only if the layer is resolved. ✷
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Fig. 2.4 Example 2.23 Result obtained with the SUPG method and the SUPG parameter

(2.24).

2.3.2 Other Stabilized Finite Element Methods

Remark 2.24 (Galerkin Least Squares (GLS) method). The GLS method is
also a residual-based stabilization. In contrast to the SUPG method, it uses
the full linear operator as test function and not only the first order term. Let

Lu = −εΔu+ b ·∇u+ σu,

then the GLS method reads as follows: Find uh ∈ V h, such that

ah
�
uh, vh

�
= fh

�
vh
�

∀ vh ∈ V h

with V h ⊂ V and

ah(v, w) := a(v, w) +
�

K∈T h

δK (Lv, Lw)K ,

fh(w) := (f, w) +
�

K∈T h

δK(f, Lw)K ,

with {δK} being the stabilization parameters. In contrast to the SUPG
method, the stabilization term of the GLS method is symmetric.

In practice, the GLS method behaves often very similar to the SUPG
method. Since the SUPG method requires less terms to be computed, it is
usually preferred. ✷

Remark 2.25 (Local Projection Stabilization (LPS) method). Another stabi-
lized method with symmetric stabilization term is the LPS method given by:
Find uh ∈ V h, such that
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ah
�
uh, vh

�
=
�
f, vh

�
∀ vh ∈ V h

with V h ⊂ V and

ah(v, w) := a(v, w) +
�

M∈Mh

δM
�
κh (b ·∇v) ,κh (b ·∇w)

�
M

. (2.25)

Here M are so-called macro cells, e.g., patches of mesh cells. Then, a finite
element space Dh(M) is defined on the macro cells and a local projection
operator πh : L2(Ω) → Dh = ∪Dh(M). The so-called fluctuation operator
is defined by κh = id−πh. Furthermore, δM are stabilization parameters that
have to be chosen appropriately.

The stabilization term (2.25) is, apart of the fluctuation operator, the
main term of the SUPG stabilization. The local projection operator maps
to a large scale finite element space. Then, the fluctuation operator is the
difference of all scales of the finite element functions and the large scales,
hence it can be interpreted to represent the small scales of the finite element
function. Thus, (2.25) adds only additional diffusion to small scales of the
numerical solution. By using the fluctuations and an appropriate choice of
the stabilization parameters, the consistency error of this method becomes
of sufficiently high order.

In contrast to the SUPG and GLS methods, there is no modification of the
right-hand side in LPS methods. However, the LPS method leads to a larger
matrix stencil. In numerical studies it was shown that also the numerical
approximations with the LPS method usually exhibit spurious oscillations in
a vicinity of layers. ✷

Remark 2.26 (Continuous Interior Penalty (CIP) method, edge stabilization).
It was found that stability with respect to dominating convection can be ob-
tained also by a different mechanism, namely by penalizing jumps of the gra-
dient of finite element functions. For the Galerkin FEM, there are huge spu-
rious oscillations and consequently huge jumps of the gradient. This method
is called CIP method or edge stabilization. It reads as follows: Find uh ∈ V h,
such that

ah
�
uh, vh

�
=
�
f, vh

�
∀ vh ∈ V h

with V h ⊂ V and

ah(v, w) := a(v, w) +
�

F∈Fh

δF (b · [|∇v|]F , b · [|∇w|]F )F ,

where Fh is the set of all interior facets (edges in 2d), [|∇v|]F is the jump
of ∇v across F , where for each F an arbitrary but fixed normal vector has
to be chosen to fix the direction of the jump, (·, ·)F is the inner product in
L2(F ), and δF is a stabilization parameter.

This method is a symmetric stabilization method and it does not change
the right-hand side. It also enlarges the matrix stencil compared with the
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Galerkin discretization or the SUPG method. Numerical solutions computed
with the CIP method possess usually spurious oscillations in a vicinity of
layers. ✷

Remark 2.27 (Spurious Oscillations at Layers Diminishing (SOLD) meth-
ods). All stabilized methods introduced so far compute numerical solutions
with notable spurious oscillations in a vicinity of layers. Such oscillations are
often unacceptable in practice. There have been many proposals in the litera-
ture to extend these methods with additional terms that should suppress the
spurious oscillations. The class of these methods is called SOLD methods.
Often, the additional terms are nonlinear, since a corresponding stabilization
parameter depends on the numerical solution. This approach seems to be
reasonable because the solution behaves completely different at layers and
away from layers.

However, it turned out in numerical studies that there is no SOLD method
that really removes the spurious oscillations, e.g., compare John & Knobloch
(2007). Meanwhile, there are other nonlinear methods, which do not rely on
traditional stabilized finite element methods, that achieve the goal of com-
puting oscillation-free and accurate numerical solutions in many situations.

✷


