
Chapter 8

Outlook

Remark 8.1 More general problems.

• There are only few contributions to the analysis of multigrid methods for prob-
lems which are not symmetric positive definite or a slight perturbation of such
problems. One example where it is nothing proved are linear convection-diffusion
equations which are convection-dominated. However, the practical experience is
that multigrid solvers, with appropriate preconditioners, work reasonably well
for such problems.

• The key for the efficiency of the multigrid method is generally the smoother.
There is a lot of experience for scalar problems, e.g., for convection-diffusion
problems often SSOR or ILU work reasonably well, see Example 8.2. For cou-
pled problems, sometimes the construction of smoothers is already complicated.
For instance, many discretizations for the Navier–Stokes equations lead to ma-
trices where a number of diagonal entries are zero. In this case, one cannot
apply classical iterative schemes since these schemes require the division by the
diagonal entries.

• Algebraic multigrid methods are usually applied to scalar problems. There are
only few proposals of algebraic multigrid methods for coupled problems.

• The extension of the multigrid idea to nonconforming finite element discretiza-
tions is possible.

2

Example 8.2 Convection-diffusion problem in two dimensions. A standard convec-
tion-diffusion test problem in two dimensions has the form

−ε∆u+ (1, 0)T · ∇u = 1 in Ω = (0, 1)2,
u = 0 on ∂Ω,

see the lecture notes of the course on numerical methods for convection-dominated
problems. Considering ε = 10−8 with the Q1 finite element method and the SUPG
stabilization, then one obtains the iterations and computing times as shown in
Table 8.1. In these simulations, the multigrid methods were applied with the F-
(ν, ν)-cycle, where ν is the number of pre and post smoothing steps. In the geomet-
ric multigrid method, a SSOR smoother was used and in the algebraic multigrid
method, a ILU smoother.
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One can see in Table 8.2 that none of the solvers behaves optimal, i.e,. for none
of the solvers, the computing time scales with the number of degrees of freedom.
The most efficient solvers in this example are the direct solver (note that this is
a two-dimensional problem) and the geometric multigrid as preconditioner with
sufficiently many smoothing steps. On the finest grid, only the geometric multigrid
approaches work since the direct solver terminates because of internal memory
limitations. In the multigrid methods, one can well observe the effect of increasing
the number of smoothing steps.

Altogether, the linear systems obtained for convection-dominated problem are
usually hard to solve and so far an optimal solver is not known. 2

Remark 8.3 Multigrid methods with different finite element spaces. One can apply
the multigrid idea also with different (finite element) spaces. For instance, consider
just one grid. As coarse grid space, one can use P1 finite elements and as fine grid
space P2 finite elements. With these two finite element spaces, one can perform a
two-level method.

This idea has been used in the construction of finite element spaces for higher
order finite elements. It is known from numerical studies that multigrid methods
with the same finite element space on all levels might become inefficient for higher
order elements because it is hard to construct good smoothers. On the other hand,
multigrid methods are usually more efficient for lower order elements. The idea
consists in using on the fine grid the higher order finite element space as the finest
level of the multigrid hierarchy and using as next coarser level of this hierarchy a first
order finite element space on the same geometric grid. On the coarser geometric
grids, one uses also low order finite elements. In this way, one has a multigrid
method for the higher order discretization which uses low order discretizations on
the coarser grids. Some good experience with this approach is reported in the
literature. 2

Remark 8.4 Simulations in practice. The great difficulty of the application of
multigrid methods for problems from practice comes from the situation that in
practice the domains are often complicated. A good initial triangulation of a com-
plicated domain leads already to a fine mesh. Often, the computational resources
can just afford this mesh such that there is no mesh hierarchy available. Also, gen-
erally (in industrial codes) there is only one type of discrete space, e.g., P1 finite
elements, available. Altogether, in this situation one has to use a different solver.

2
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