
Chapter 7

Algebraic Multigrid Methods

Remark 7.1 Motivation. The (geometric) multigrid methods described so far need
a hierarchy of (geometric) grids, from the coarsest one (l = 0) to the finest one.
On all levels but the coarsest one, the smoother will be applied and on the coarsest
level, the system is usually solved exactly. However, the following question arises:

• What should be done if the available coarsest grid possesses already that many
degrees of freedom that the use of a direct solver takes too much time ?

This situation will happen frequently if the problem is given in a complicated domain
in Rd, d ∈ {2, 3}, see Figure 7.1 for an (academic) example. Complicated domains
are very likely to be given in applications. Then, the application of a grid generator
will often lead to (coarsest) grids that are so fine that a refinement would lead to so
many degrees of freedom that an efficient simulation of the problem is not possible.
Altogether, there is just one grid.

To handle the situation of a coarsest grid with many degrees of freedom, there
are at least two possibilities.

• One level iterative scheme. In the case that there is a geometric grid hierarchy
but the coarse grid is already fine, one can use a simple iterative method, e.g.,
the smoother, to solve the system on the coarsest grid approximately. Then, the
smooth error modes on this grid are not damped. However, experience shows
that this approach works in practice sometimes quite well.
If there is just one grid available, a Krylov subspace method can be used for
solving the arising linear systems of equations.

• Iterative scheme with multilevel ideas. Construct a more complicated iterative
method which uses a kind of multigrid idea for the solution of the system on the
coarsest geometric grid. The realization of this multigrid idea should be based
only on information which can be obtained from the matrix on the coarsest grid.
This type of solver is called Algebraic Multigrid Method (AMG).

2

7.1 Components of an AMG and Definitions

Remark 7.2 Components. An AMG possesses the same components as a geomet-
ric multigrid method:

• a hierarchy of levels,
• a smoother,
• a prolongation,
• a restriction,
• coarse grid operators.
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Figure 7.1: Top: domain with many holes (like the stars in the flag of the United
Stars); middle: triangular grid from a grid generator; bottom: zoom into the region
with the holes.

A level or a grid is a set of unknowns or degrees of freedom. In contrast to
geometric multigrid methods, the hierarchy of levels is obtained by starting from a
finest level and reducing the number of unknowns to get the coarser levels.

AMGs restrict themselves on using only simple smoothers, e.g., the damped
Jacobi method. This approach is in contrast to geometric multigrid methods, whose
efficiency can be enhanced by using appropriate smoothers.

In this course, only the case of symmetric positive definite matrices will be con-
sidered. Then, the restriction is always defined as the transpose of the prolongation,
i.e.,

Icf =
(

Ifc
)T

,
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where “f” refers to the fine grid and “c” to the next coarser grid.
The coarse grid operator is defined by the Galerkin projection

Ac = IcfA
fIfc .

2

Remark 7.3 Main tasks in the construction of AMGs. There remain two main
tasks in the construction of an AMG:

• An appropriate hierarchy of levels has to be constructed fully automatically,
using only information from the matrix on the current grid to construct the
next coarser grid.

• One has to define an appropriate prolongation operator.

These two components will determine the efficiency of the AMG.
In contrast to geometric multigrid methods, an AMG constructs from a given

grid a coarser grid. Since the final number of coarser grids is not known a priori, it
makes sense to denote the starting grid by level 0, the next coarser grid by level 1
and so on.

The coarsening process of an AMG should work automatically, based only on
information from the matrix on the current level. To describe this process, some
notation is needed. AMGs are set up in an algebraic environment. However, it
is often convenient to use a grid terminology by introducing fictitious grids with
grid points being the nodes of a graph which is associated with the given matrix
A = (aij). 2

Definition 7.4 Graph of a matrix, set of neighbor vertices, coupled ver-

tices. Let A be a sparse n×n matrix with a symmetric sparsity pattern, i.e., aij is
allowed to be non-zero if and only if aji is allowed to be non-zero. Let Ω = GA(V,E)
be the graph of the matrix consisting of a set

V = {v1, . . . , vn}

of n ordered vertices (nodes, unknowns, degrees of freedom) and a set of edges E
such that the edge eij , which connects vi and vj for i 6= j, belongs to E if and only
if aij is allowed to be non-zero.

For a vertex vi, the set of its neighbor vertices Ni is defined by

Ni = {vj ∈ V : eij ∈ E} .

The number of elements in Ni is denoted by |Ni|.
If eij ∈ E, then the vertices vi and vj are called coupled or connected. 2

Example 7.5 Graph of a matrix. Consider the matrix

A =









4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4









. (7.1)

Let the vertex vi correspond to the i-th unknown, i.e., to the degree of freedom
that corresponds to the i-th row of the matrix. Then the graph of A has the form
as given in Figure 7.2. It is

E = {e12, e21, e13, e31, e24, e42, e34, e43} .

2
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Figure 7.2: Graph Ω = GA(V,E) of the matrix (7.1).

7.2 Algebraic Smoothness

Remark 7.6 Notations. In geometric multigrid methods, an error is called smooth
if it can be approximated well on some pre-defined coarser level. In AMGs there
are no pre-defined grids. Let S be the smoother on Ω, then an error is said to be
algebraically smooth if the convergence of the fixed point iteration with the matrix
S is slow, i.e., Se ≈ e.

To define the property of algebraic smoothness precisely, some inner products
and norms of vectors have to be introduced. Let D be the diagonal matrix corre-
sponding to A ∈ Rn×n and let (·, ·) be the Euclidean inner product of two vectors

(u,v) =

n
∑

i=1

uivi.

Then, the following inner products and norms are defined

(u,v)
0

= (Du,v) , ‖u‖
0

= (u,u)
1/2
0

,

(u,v)
1

= (Au,v) , ‖u‖
1

= (u,u)
1/2
1

,

(u,v)
2

=
(

D−1Au, Av
)

, ‖u‖
2

= (u,u)
1/2
2

.

The norm ‖u‖
1
is sometimes called energy norm.

In this course, only classes of matrices will be considered where ρ
(

D−1A
)

is
uniformly bounded, i.e., the spectral radius is bounded independently of the grid.
This property holds for many classes of matrices which occur in applications. 2

Lemma 7.7 Properties of the norms. Let A ∈ Rn×n be a symmetric positive

definite matrix. Then the following inequalities hold for all v ∈ Rn:

‖v‖2
1

≤ ‖v‖
0
‖v‖

2
, (7.2)

‖v‖2
2

≤ ρ
(

D−1A
)

‖v‖2
1
, (7.3)

‖v‖2
1

≤ ρ
(

D−1A
)

‖v‖2
0
. (7.4)

Proof: (7.2). This estimate follows from the Cauchy–Schwarz inequality and the
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symmetry of D

‖v‖2
1

= (Av,v) = v
TAv = v

TAD−1/2D1/2
v =

(

D−1/2Av, D1/2
v

)

≤
∥

∥

∥
D−1/2Av

∥

∥

∥

∥

∥

∥
D1/2

v

∥

∥

∥

=
(

D−1/2Av, D−1/2Av

)

1/2 (

D1/2
v, D1/2

v

)

1/2

=
(

Av, D−1/2D−1/2Av

)

1/2 (

v, D1/2D1/2
v

)

1/2

=
(

Av, D−1Av

)1/2
(v, Dv)1/2

= ‖v‖
2
‖v‖

0
,

where ‖·‖ is here the Euclidean vector norm.
(7.3). The matrix D−1A is in general not a symmetric matrix. However, it has the

same eigenvalues as the symmetric matrix A1/2D−1A1/2, since from

D−1Ax = λx

one obtains with x = A−1/2
y

D−1AA−1/2
y = λA−1/2

y ⇐⇒ A1/2D−1A1/2
y = λy.

In particular, the spectral radii of both matrices are the same. Using the definition of
the positive definiteness, one sees that A1/2D−1A1/2 is positive definite since the diagonal
of a positive definite matrix is a positive definite matrix. Hence, one gets, using a well
known property of the spectral radius for symmetric positive definite matrices (Rayleigh
quotient)

ρ
(

D−1A
)

= ρ
(

A1/2D−1A1/2
)

= λmax

(

A1/2D−1A1/2
)

= sup
x∈Rn

(

A1/2D−1A1/2
x,x

)

(x,x)
.

Setting now x = A1/2
v gives an estimate of the spectral radius from below

ρ
(

D−1A
)

≥

(

A1/2D−1A1/2A1/2
v, A1/2

v

)

(A1/2v, A1/2v)
=

(

D−1Av, Av

)

(Av,v)
=

‖v‖2
2

‖v‖2
1

,

where the symmetry of A was also used.
(7.4). The matrix D−1A has also the same eigenvalues as the matrix D−1/2AD−1/2,

since from
D−1Ax = λx

it follows with x = D−1/2
y that

D−1AD−1/2
y = λD−1/2

y ⇐⇒ D−1/2AD−1/2
y = λy.

Hence, ρ
(

D−1A
)

= ρ
(

D−1/2AD−1/2
)

. The matrix D−1/2AD−1/2 is symmetric and pos-

itive definite, which follows by the definition of the positive definiteness and the assumed
positive definiteness of A. Using the Rayleigh quotient yields

ρ
(

D−1A
)

= ρ
(

D−1/2AD−1/2
)

= λmax

(

D−1/2AD−1/2
)

= sup
x∈Rn

(

D−1/2AD−1/2
x,x

)

(x,x)
.

Setting x = D1/2
v, it follows that

ρ
(

D−1A
)

≥

(

D−1/2AD−1/2D1/2
v, D1/2

v

)

(D1/2v, D1/2v)
=

(Av,v)

(Dv,v)
=

‖v‖2
1

‖v‖2
0

.
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Lemma 7.8 On the eigenvectors of D−1A. Let A ∈ Rn×n be a symmetric

positive definite matrix and φ be an eigenvector of D−1A with the eigenvalue λ,
i.e.,

D−1Aφ = λφ.

Then it is

‖φ‖2
2
= λ ‖φ‖2

1
, ‖φ‖2

1
= λ ‖φ‖2

0
.

Proof: The first statement is obtained by multiplying the eigenvalue problem from
the left with φTA giving

(

Aφ, D−1Aφ
)

= λ (Aφ,φ) .

The second equality follows from multiplying the eigenvalue problem from left with φTD

(

φ, DD−1Aφ
)

= λ (φ, Dφ) .

Definition 7.9 Smoothing property of an operator. A smoothing operator
S is said to satisfy the smoothing property with respect to a symmetric positive
definite matrix A if

‖Sv‖2
1
≤ ‖v‖2

1
− σ ‖v‖2

2
(7.5)

with σ > 0 independent of v.
Let A be a class of matrices. If the smoothing property (7.5) is satisfied for all

A ∈ A for a smoothing operator S with the same σ, then S is said to satisfy the
smoothing property uniformly with respect to A. 2

Remark 7.10 On the smoothing property. The definition of the smoothing prop-
erty implies that S reduces the error efficiently as long as ‖v‖

2
is relatively large

compared with ‖v‖
1
. However, the smoothing operator will become very inefficient

if ‖v‖
2
� ‖v‖

1
. 2

Definition 7.11 Algebraically smooth error. An error v is called algebraically
smooth if ‖v‖

2
� ‖v‖

1
. 2

Remark 7.12 Algebraically smooth error. An algebraically smooth error is a vec-
tor for which an iteration with S converges slowly. The term “smooth” for this
property is used for historical reasons.

It will be shown now that the damped Jacobi iteration satisfies the smoothing
property (7.5) uniformly for symmetric positive definite matrices. 2

Lemma 7.13 Equivalent formulation of the smoothing property. Let A ∈
Rn×n be a symmetric positive definite matrix and let the smoothing operator be of

the form

S = I −Q−1A

with some non-singular matrix Q. Then the smoothing property (7.5) is equivalent

to

σ
(

QTD−1Qv,v
)

≤
((

Q+QT −A
)

v,v
)

∀ v ∈ Rn. (7.6)

Proof: It is

‖Sv‖2
1

= (ASv, Sv) =
(

A
(

I −Q−1A
)

v,
(

I −Q−1A
)

v

)

= (Av,v)−
(

AQ−1Av,v
)

−
(

Av, Q−1Av

)

+
(

AQ−1Av, Q−1Av

)

= ‖v‖2
1
−

(

QTQ−1Av, Q−1Av

)

−
(

QQ−1Av, Q−1Av

)

+
(

AQ−1Av, Q−1Av

)

= ‖v‖2
1
−

((

QT +Q−A
)

Q−1Av, Q−1Av

)

.
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Hence, the algebraic smoothing property (7.5) is equivalent to the condition that for all
v ∈ Rn:

σ ‖v‖2
2

≤
((

QT +Q−A
)

Q−1Av, Q−1Av

)

⇐⇒

σ
(

D−1Av, Av

)

≤
((

QT +Q−A
)

Q−1Av, Q−1Av

)

⇐⇒

σ
(

D−1Qy, Qy

)

≤
((

QT +Q−A
)

y,y
)

,

with y = Q−1Av. Since the matrices A and Q are non-singular, y is an arbitrary vector

from Rn. Hence, the statement of the lemma is proved.

Theorem 7.14 Algebraic smoothing property of the damped Jacobi meth-

od. Let A ∈ Rn×n be a symmetric and positive definite matrix and let η >
ρ
(

D−1A
)

. Then, the damped Jacobi iteration with the damping parameter ω ∈
(0, 2/η) satisfies the algebraic smoothing property (7.5) uniformly with σ = ω(2 −
ωη).

Proof: The damped Jacobi iteration satisfies the assumptions of Lemma 7.13 with
Q = ω−1D. Hence, the algebraic smoothing property (7.5) is eqivalent to (7.6), which
gives

σ

(

D

ω2
v,v

)

≤

(

2D

ω
v,v

)

− (Av,v) ⇐⇒ (Av,v) ≤

((

2

ω
−

σ

ω2

)

Dv,v

)

⇐⇒ ‖v‖2
1
≤

(

2

ω
−

σ

ω2

)

‖v‖2
0
. (7.7)

From inequality (7.4) and the assumption on η it follows for all v ∈ Rn that

‖v‖2
1
≤ ρ

(

D−1A
)

‖v‖2
0
< η ‖v‖2

0
.

Thus, if

η ≤

(

2

ω
−

σ

ω2

)

, (7.8)

then (7.7) is satisfied (sufficient condition) and the damped Jacobi iteration fulfills the
algebraic smoothing property. One obtains from (7.8)

σ ≤ 2ω − ηω2 = ω (2− ωη) .

Obviously it is σ > 0 if ω ∈ (0, 2/η).

Remark 7.15 On the algebraic smoothing property.

• The optimal value of ω, which gives the largest σ is ω∗ = 1/η, such that σ = 1/η.
This statement can be proved by standard calculus, exercise.

• The algebraic smoothing property can be proved also for the Gauss–Seidel iter-
ation.

2

Remark 7.16 The algebraic smooth error for M-matrices. The meaning of “v
being an algebraic smooth error” will be studied in some more detail for symmetric
positive definite M-matrices. This class of matrices was introduced in the course on
numerical methods for convection-dominated problems.

An algebraic smooth error satisfies ‖v‖
2
� ‖v‖

1
. By (7.2), this property implies

‖v‖
1
� ‖v‖

0
. (7.9)

For a symmetric matrix A ∈ Rn×n, it is, exercise,

‖v‖
1
=

1

2

n
∑

i,j=1

(−aij) (vi − vj)
2
+

n
∑

i=1

siv
2

i , with si =
n
∑

j=1

aij
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being the i-th row sum of A. It follows from (7.9) that

1

2

n
∑

i,j=1

(−aij) (vi − vj)
2
+

n
∑

i=1

siv
2

i �
n
∑

i=1

aiiv
2

i . (7.10)

Let A be an M-matrix. Then aij ≤ 0, i.e., |aij | = −aij for i 6= j. In many
applications, it is si = 0. Then, from (7.10) it follows on the average for each i
(consider just a fixed i)

n
∑

j=1

|aij |

aii

(vi − vj)
2

v2i
� 1.

In the sum, there are only nonnegative terms. Thus, if |aij | /aii is large, then

(vi − vj)
2
/v2i has to be small such that the sum becomes small. One says, schemes

which satisfy the smoothing property (7.5) smooth the error along the so-called
strong connections, i.e., where |aij | /aii is large, since for these connections a good
smoothing can be expected on the given grid. This property implies that the cor-
responding nodes i and j do not need to be both on the coarse grid. 2

7.3 Coarsening

Remark 7.17 Goal. Based on the matrix information only, one has to choose in
the graph of the matrix nodes which become coarse nodes and nodes which stay on
the fine grid. There are several strategies for coarsening. In this course, a standard
way will be described. It will be restricted to the case that A ∈ Rn×n is a symmetric
positive definite M-matrix. 2

Definition 7.18 Strong coupling. A variable (node) i is said to be strongly
coupled to another variable j if

−aij ≥ εstr max
aik<0

|aik|

with fixed εstr ∈ (0, 1). The set of all strong couplings of i is denoted by

Si = {j ∈ Ni : i is strongly coupled to j} .

The set ST
i of strong transposed couplings of i consists of all variables j which are

strongly coupled to i
ST
i = {j ∈ Ni : i ∈ Sj} .

2

Remark 7.19 On strong couplings.

• Even for symmetric matrices, the relation of being strongly coupled is in general
not symmetric. Consider, e.g.,

A =





5 −1 −0.1
−1 3 −0.1
−0.1 −0.1 3



 , εstr = 0.25.

Then, one gets S1 = {2}, S2 = {1}, S3 = {1, 2}, such that S1 = {2, 3}, S2 =
{1, 3}, S3 = ∅.

• The actual choice of εstr is in practical computations not very critical. Values
of around 0.25 are often used.

2
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Remark 7.20 Aspects of the coarsening process. In the coarsening process, one
has to pay attention to several aspects.

• The number of coarse nodes (C-nodes) should not be too large, such that the
dimension of the coarse system is considerably smaller than the dimension of
the fine system.

• Nodes i and j, which are strongly coupled, have a small relative error

(ei − ej)
2
/e2i

such that a coarse grid correction of this error is not necessary. That means, it
will be inefficient to define both nodes as coarse nodes.

• All fine nodes (F-nodes) should have a substantial coupling to neighboring C-
nodes. In this way, the F-nodes obtain sufficient information from the C-nodes.

• The distribution of the C-nodes and F-nodes in the graph should be reasonably
uniform.

2

Remark 7.21 A standard coarsening procedure. A standard coarsening procedure
starts by defining some first variable i to become a C-node. Then, all variables j
that are strongly coupled with i, i.e., all j ∈ ST

i , become F-nodes. Next, from the
remaining undecided variables, another one is defined to become a C-node and all
variables which are strongly coupled to it and are still undecided become F-nodes,
and so on. This process stops if all variables are either C-nodes or F-nodes.

To obtain a uniform distribution of the C-nodes and F-nodes, the process of
choosing C-nodes has to be done in a certain order. The idea consists in starting
with some variable and to continue from this variable until all variables are covered.
Therefore, an empirical “measure of importance” λi for any undecided variable to
become a C-node is introduced

λi =
∣

∣ST
i ∩ U

∣

∣+ 2
∣

∣ST
i ∩ F

∣

∣ , i ∈ U, (7.11)

where U is the current set of undecided variables, F the current set of F-nodes
and |·| is the number of elements in a set. One of the undecided variables with
the largest value of λi will become the next C-node. After this choice, all variables
which are strongly coupled to the new C-node become F-nodes and for the remaining
undecided variables, one has to update their measure of importance.

With the measure of importance (7.11), there is initially the tendency to pick
variables which are strongly coupled with many other variables to become C-nodes,
because |U | is large and |F | is small, such that the first term dominates. Later,
the tendency is to pick as C-nodes those variables on which many F-nodes depend
strongly, since |F | is large and |U | is small such that the second term in λi becomes
dominant. Thus, the third point of Remark 7.20 is taken into account. 2

Example 7.22 A standard coarsening procedure. Consider a finite difference dis-
cretization of the Laplacian in the unit square with the five point stencil. Assuming
that the values at the boundary are known, the finite difference scheme gives for
the interior nodes i the following matrix entries, apart of a constant factor,

aij =







4 if i = j,
−1 if j is left, right, upper, or lower neighbor of i,
0 else.

Taking an arbitrary εstr, then each node i is strongly coupled to its left, right, upper,
and lower neighbor. Consider a 5 × 5 patch and choose some node as C-node. In
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the first step, one obtains
U U U U U
U U U U U
U U F U U
U F C F U
U U F U U

,

where for U it is λi = 2 + 2 · 2 = 6 and for U it is either λi = 4 + 2 · 0 = 4 or
λi = 3 + 2 · 1 = 5. The next step gives, e.g.,

U U U U U
U U U F U
U U F C F
U F C F U
U U F U U

,

with λi = 2 + 2 · 2 = 6 for U and λi ≤ 5 else. Continuing this process leads to

U U F U U
U F C F U
F C F C F
U F C F U
U U F U U

,

and so on.
In this particular example, one obtains a similar coarse grid as given by a geomet-

ric multigrid method. However, in general, especially with non-symmetric matrices,
the coarse grid of the AMG looks considerably different than the coarse grid of a
geometric multigrid method. 2

Remark 7.23 On coarsening strategies.

• In the standard coarsening scheme, none of the C-nodes is strongly coupled
to any of the C-nodes created prior itself. However, since the relation of be-
ing strongly coupled might be non-symmetric, in particular for non-symmetric
matrices, this property may not be true the other way around. Numerical expe-
rience shows that in any case the resulting set of C-nodes is close to a maximal
set of variables which are not strongly coupled among each other.

• Other ways of coarsening can be found, e.g., in K. Stüben “Algebraic Multigrid
(AMG): An introduction with applications”, which is part of Trottenberg et al.
(2001).

2

7.4 Prolongation

Remark 7.24 Prolongation. The last component of an AMG, which has to be
defined, is the prolongation. It will be matrix-depend, in contrast to geometric
multigrid methods. 2

Remark 7.25 Construction of an prolongation operator. To motivate the con-
struction of an prolongation operator, once more the meaning of an error to be
algebraically smooth will be discussed. From the geometric multigrid methods, it is
known that the prolongation has to work well for smooth functions, see Remark 4.11.
By definition, an algebraic smooth error is characterized by

Se ≈ e
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or
‖e‖

2
� ‖e‖

1
.

In terms of the residual

r = f −Av = Au−Av = A (u− v) = Ae,

this inequality means that
(

D−1Ae, Ae
)

� (Ae, e) ⇐⇒
(

D−1r, r
)

� (r, e) .

One term in both inner products is the same. One can interprete this inequality in
the way that on the average, algebraic smooth errors are characterized by a scaled
residual (first argument on the left-hand side) to be much smaller than the error
(second argument on the right-hand side). On the average, it follows that

a−1

ii r2i � |riei| ⇐⇒ |ri| � aii |ei| .

Thus, |ri| is close to zero and one can use the approximation

0 ≈ ri = aiiei +
∑

j∈Ni

aijej . (7.12)

Let i be a F-node and Pi ⊂ Cnod a subset of the C-nodes, where the set of
C-nodes is denoted by Cnod, the so-called interpolatory points. The goal of the
prolongation consists in obtaining a good approximation of ei using information
from the coarse grid, i.e., from the C-nodes contained in Pi. Therefore, one likes to
compute prolongation weights ωij such that

ei =
∑

j∈Pi

ωijej (7.13)

and ei is a good approximation for any algebraic smooth error which satisfies (7.12).
2

Remark 7.26 Direct prolongation. Here, only the so-called direct prolongation in
the case of A being an M-matrix will be considered. Direct prolongation means
that Pi ⊂ Cnod ∩ Ni, i.e., the interpolatory nodes are a subset of all coarse nodes
which are coupled to i. Inserting the ansatz (7.13) into (7.12) gives

ei =
∑

j∈Pi

ωijej = −
1

aii

∑

j∈Ni

aijej . (7.14)

If Pi = Ni, then the choice ωij = −aij/aii will satisfy this equation. But in general,
Pi ( Ni. If there are sufficiently many nodes which are strongly connected to i
contained in Pi, then for the averages it holds

1
∑

j∈Pi
aij

∑

j∈Pi

aijej ≈
1

∑

j∈Ni
aij

∑

j∈Ni

aijej .

Inserting this relation into (7.14) leads to the proposal for using matrix-dependent
prolongation weights

ωij = −

(

∑

k∈Ni
aik

∑

k∈Pi
aik

)

aij
aii

> 0, i ∈ F, j ∈ Pi.

Summation of the weights gives

∑

j∈Pi

ωij = −

(

∑

k∈Ni
aik

∑

k∈Pi
aik

)

∑

j∈Pi
aij

aii
=

aii − si
aii

= 1−
si
aii

,

where si is the sum of the i-th row of A. Thus, if si = 0, then
∑

j∈Pi
ωij = 1 such

that constants are prolongated exactly. 2
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7.5 Concluding Remarks

Example 7.27 Behavior of an AMG for the Poisson equation. The same situation
as in Example 2.5 will be considered. In the code MooNMD, a simple AMG is
implemented. The number of iterations and computing times for applying this
method as solver or as preconditioner in a flexible GMRES method are presented
in Table 7.1.

Table 7.1: Example 7.27. Number of iterations and computing times (14/01/24
on a HP BL460c Gen8 2xXeon, Eight-Core 2700MHz). The number of degrees of
freedom (d.o.f.) includes the Dirichlet values. The time for the setup of the AMG
is included into the total solution time.

level h d.o.f. AMG FGMRES+AMG setup time
ite time ite time (FGMRES+AMG)

1 1/4 25 1 0 1 0 0
2 1/8 81 1 0 1 0 0
3 1/16 289 34 0.01 18 0.01 0
4 1/32 1089 41 0.02 19 0.01 0.01
5 1/64 4225 45 0.13 21 0.08 0.03
6 1/128 16641 47 0.69 22 0.43 0.15
7 1/256 66049 51 3.81 23 2.66 1.32
8 1/512 263169 49 25.08 24 14.82 7.28
9 1/1024 1050625 50 157.14 24 119.96 84.95
10 1/2048 4198401 50 1500.75 24 1333.09 1103.40

It can be seen, that using AMG as preconditioner is more efficient than using
it as solver. The number of iterations for both applications of AMG is constant
independently of the level. However, the solution time does not scale with the
number of degrees of freedom. The reason is that in the used implementation,
the time for constructing the AMG does not scale in this way but much worse.
Comparing the results with Table 2.2, one can see that AMG is not competitive
with a geometric multigrid method, if the geometric multigrid method works well.

2

Remark 7.28 Concluding remarks.

• A number of algebraic results for AMGs is available, see the survey paper of
K. Stüben. But there are still many open questions, even more than for the
geometric multigrid method.

• As seen in Example 7.27, in problems for which a geometric multigrid method
can be applied efficiently, the geometric multigrid method will in general outper-
form AMG. But there are classes of problems for which AMG is as efficient or
even more efficient than a geometric multigrid method. One of the most impor-
tant fields of application for AMG are problems for which a geometric multigrid
method cannot be performed.

2
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