
Chapter 5

The Two-Level Method

Remark 5.1 The two-level method. In this chapter, the two-level method or coarse
grid correction scheme will be analyzed. The two-level method, whose principle was
already introduced in Remark 4.6, has the following form:

• Smooth Ahuh = fh on Ωh with some steps of a simple iterative scheme. This
procedure gives an approximation vh. Compute the residual rh = fh −Ahvh.

• Restrict the residual to the coarse grid Ω2h using the restriction operator I2hh
(weighted restriction for finite difference methods, canonical restriction for finite
element methods).

• Solve the coarse grid equation

A2he2h = I2hh
(

rh
)

(5.1)

on Ω2h.
• Prolongate e2h to Ωh using the prolongation operator Ih2h.
• Update vh := vh + Ih2h

(

e2h
)

.

After the update, one can apply once more some iterations with the smoother. This
step is called post smoothing, whereas the first step of the two-level method is called
pre smoothing. 2

5.1 The Coarse Grid Problem

Remark 5.2 The coarse grid system. The two-level method still lacks a definition
of the coarse grid matrix A2h. This matrix should be a “Ω2h version of the fine grid
matrix Ah”. Possible choices of A2h will be discussed in this section. 2

Remark 5.3 Definition of the coarse grid matrix by using a discrete scheme on

Ω2h. A straightforward approach consists in defining A2h by applying a finite
difference or finite element method to the differential operator on Ω2h. 2

Remark 5.4 Definition of the coarse grid matrix by Galerkin projection. Start-
ing point for the derivation of an appropriate coarse grid matrix by the Galerkin
projection is the residual equation

Aheh = rh. (5.2)

It will be assumed for the moment that eh lies in the range of the prolongation
operator Ih2h. Then, there is a vector e2h defined on the coarse grid such that

eh = Ih2h
(

e2h
)

.
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Substituting this equation into (5.2) gives

AhIh2h
(

e2h
)

= rh.

Applying now on both sides of this equation the restriction operator gives

I2hh AhIh2h
(

e2h
)

= I2hh rh.

Comparing this definition with (5.1) leads to the definition

A2h := I2hh AhIh2h. (5.3)

This definition of the coarse grid matrix is called Galerkin projection.
The derivation of (5.3) was based on the assumption that the error eh is in the

range of the prolongation. This property is in general not given. If it would be true,
then an exact solution of the coarse grid equation would result in obtaining the so-
lution of Auh = fh with one step of the coarse grid correction scheme. Nevertheless,
this derivation gives a motivation for defining A2h in the form (5.3). 2

Remark 5.5 Matrix representation of the Galerkin projection. For all operators
on the right-hand side of (5.3), matrix representations are known, e.g., see (2.3),
(4.3), and (4.5) for the case of the finite difference discretization. Using these
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representations, one obtains
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This matrix has the form of the matrix (2.3) with h replaced by 2h. Thus, in the
case of the model problem, the matrix defined by the Galerkin projection (5.3) and
the matrix (2.3) obtained by discretizing the differential operator on the coarse grid
Ω2h coincide.

In the finite element case, the matrices differ only by the factors in front of
the parentheses: 1/2, 1/h, 1/2, instead of 1/4, 1/h2, 1/2. Then, the final factor
is 1/(2h) instead of 1/(4h2). The factor 1/(2h) is exactly the factor of the finite
element matrix on Ω2h, see (2.4). That means, also in this case Galerkin projection
and the discretization on Ω2h coincide.

This connection of the Galerkin projection and of the discretized problem on
Ω2h does not hold in all cases (problems and discretizations), but it can be found
often. 2
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5.2 General Approach for Proving the Convergence

of the Two-Level Method

Remark 5.6 The iteration matrix of the two-level method. For studying the con-
vergence of the two-level method, one first has to find the iteration matrix S2lev of
this scheme. For simplicity, only the case of pre smoothing is considered, but no
post smoothing.

Let Ssm be the iteration matrix of the smoother. The approximation of the
solution before the pre smoothing step is denoted by v(n) and the result after the
update will be v(n+1). Applying ν pre smoothing steps, then it is known from (3.7)
that

e(ν) = Sν
sme

(0), with e(0) = u− v(n), e(ν) = u− v(n)
ν .

It follows that
v(n)
ν = u− Sν

sm

(

u− v(n)
)

,

where now v
(n)
ν stands for vh in the general description of the two-level method

from Remark 5.1. It follows that

r = f −Ahv(n)
ν = f −Ahu+AhSν

sm

(

u− v(n)
)

= AhSν
sm

(

u− v(n)
)

.

Applying this formula in the two-level method from Remark 5.1, starting with the
update step, one obtains

v(n+1) = v(n)
ν + Ih2h

(

e2h
)

= u− Sν
sm

(

u− v(n)
)

+ Ih2h
(

A2h
)

−1
I2hh r

= Sν
smv

(n) + (I − Sν
sm)

(

Ah
)

−1
f

+Ih2h
(

A2h
)

−1
I2hh AhSν

sm

(

(

Ah
)

−1
f − v(n)

)

=
(

I − Ih2h
(

A2h
)

−1
I2hh Ah

)

Sν
smv

(n) (5.4)

+
(

(I − Sν
sm) + Ih2h

(

A2h
)

−1
I2hh AhSν

sm

)

(

Ah
)

−1
f .

Hence, the iteration matrix of the two-level method is given by

S2lev =
(

I − Ih2h
(

A2h
)

−1
I2hh Ah

)

Sν
sm. (5.5)

Inserting u =
(

Ah
)

−1
f into the two-level method (5.4) shows that u is a fixed

point, exercise. It follows that in the case this fixed point is the only fixed point
and that the two-level method converges, then it converges to u. 2

Remark 5.7 Goal of the convergence analysis. From the course Numerical Math-
ematics II, Theorem 3.3 in the part on iterative solvers, it is known that a sufficient
and necessary condition for the convergence of the fixed point iteration is that
ρ (S2lev) < 1. But the computation of ρ (S2lev) is rather complicated, even in sim-
ple situations. However, from linear algebra it is known that ρ (S2lev) ≤ |||S2lev|||
for induced matrix norms, e.g., the spectral norm. The goal of the convergence
analysis will be to show that

|||S2lev||| ≤ ρ < 1

independently of h. The analysis is based on a splitting of S2lev in the form

S2lev =
(

(

Ah
)

−1
− Ih2h

(

A2h
)

−1
I2hh

)

AhSν
sm.
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It follows that

|||S2lev||| ≤ |||
(

Ah
)

−1
− Ih2h

(

A2h
)

−1
I2hh ||| |||AhSν

sm|||. (5.6)

The first factor in (5.6) describes the effect of the coarse grid approximation. The
second factor measures the efficiency of the smoothing step. The smaller the first
factor is, the better is the coarse grid solution which approximates eh. Hence, the
two essential components of the two-level method, the smoothing and the coarse
grid correction, can be analyzed separately. 2

Definition 5.8 Smoothing property. The matrix Ssm is said to possess the
smoothing property, if there exist functions η(ν) and ν(t), whose definition is inde-
pendent of h, and a number α > 0 such that

|||AhSν
sm||| ≤ η(ν)h−α for all 1 ≤ ν ≤ ν(h), (5.7)

with η(ν) → 0 as ν → ∞ and ν(h) = ∞ or ν(h) → ∞ as h → 0. 2

Remark 5.9 On the smoothing property. The smoothing property does not nec-
essarily mean that the smoothing iteration is a convergent iteration. It is only
required that the error is smoothed in a certain way using up to ν(h) smooth-
ing steps. In fact, there are examples where divergent iterative schemes are good
smoothers. But in this course, only the case ν(h) = ∞ will be considered, i.e., the
case of a convergent smoothing iteration. 2

Definition 5.10 Approximation property. The approximation property holds
if there is a constant Ca, which is independent of h, such that

|||
(

Ah
)

−1
− Ih2h

(

A2h
)

−1
I2hh ||| ≤ Cah

α (5.8)

with the same α as in the smoothing property. 2

Theorem 5.11 Convergence of the two-level method. Suppose the smoothing

property and the approximation property hold. Let ρ > 0 be a fixed number. If

ν(t) = ∞ for all t, then there is a number ν such that

|||S2lev||| ≤ Caη(ν) ≤ ρ, (5.9)

whenever ν ≥ ν.

Proof: From (5.6) one obtains with the approximation property (5.8) and the smooth-
ing property (5.7)

|||S2lev||| ≤ Cah
α η(ν)h−α = Caη(ν).

Since η(ν) → 0 as ν → ∞, the right-hand side of this estimate is smaller than any given

ρ > 0 if ν is sufficiently large, e.g., if ν ≥ ν.

Remark 5.12 On the convergence theorem. Note that the estimate Caη(ν) is inde-
pendent of h. The convergence theorems says that the two-level method converges
with a rate that is independent of h if sufficiently many smoothing steps are applied.
For many problems, one finds that only a few pre smoothing steps, i.e., 1 to 3, are
sufficient for convergence. 2
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5.3 The Smoothing Property of the Damped Ja-

cobi Iteration

Remark 5.13 Contents of this section. In this section, the smoothing property of
the damped Jacobi iteration for the model problem will be proved. Therefore, one
has to estimate |||AhSν

jac,ω|||, where now the spectral matrix norm
∥

∥AhSν
jac,ω

∥

∥

2
is

considered. In the proof, one has to estimate a term of the form ‖B(I −B)ν‖2 for
some symmetric positive definite matrix with 0 < B ≤ I, i.e., it is for all eigenvalues
λ of B that λ ∈ (0, 1]. 2

Lemma 5.14 Estimate for a symmetric positive definite matrix. Let 0 <
B = BT ≤ I, then

‖B(I −B)ν‖2 ≤ η0(ν)

with

η0(ν) =
νν

(ν + 1)ν+1
, ν ∈ N. (5.10)

Proof: The matrix B(I −B)ν is symmetric, exercise.
First, the eigenvalues of B(I −B)ν will be computed. Let λ ∈ R+ be an eigenvalue of

B. It will be shown that λ(1− λ)ν is an eigenvalue of B(I −B)ν . The proof is performed
by induction Let ν = 1. Then, one has

B(I −B)x = Bx−BBx = λx−Bλx = λx− λ2
x = λ(1− λ)x.

Thus, the statement of the theorem is true for ν = 1. The induction step has the form

B(I −B)νx = B(I −B)(I −B)ν−1
x = B(I −B)ν−1

x−BB(I −B)ν−1
x

= λ(1− λ)ν−1
x−Bλ(1− λ)ν−1

x = λ(1− λ)ν−1
x− λ2(1− λ)ν−1

x

=
(

λ− λ2) (1− λ)ν−1
x = λ(1− λ)νx.

Since 0 ≤ B ≤ I, one has 0 < λ ≤ 1. Then, it is obvious that

0 ≤ λ(1− λ)ν ≤ 1,

since both factors are between 0 and 1. Hence B(I − B)ν is positive semi-definite. One
gets, using the definition of the spectral norm, the symmetry of the matrix, the eigenvalue
of the square of a matrix, and the nonnegativity of the eigenvalues,

‖B(I −B)ν‖2 =
(

λmax

(

(B(I −B)ν)T B(I −B)ν
))1/2

=
(

λmax

(

(B(I −B)ν)2
))1/2

=
(

(λmax (B(I −B)ν))2
)1/2

= λmax (B(I −B)ν)

= max
λ is eigenvalue of B

λ(1− λ)ν .

Thus, one has to maximize λ(1 − λ)ν for λ ∈ [0, 1] to get an upper bound for
‖B(I −B)ν‖2. This expression takes the value zero at the boundary of the interval and it
is positive in the interior. Thus, one can compute the maximum with standard calculus

d

dλ
λ(1− λ)ν = (1− λ)ν − νλ(1− λ)ν−1 = 0.

This necessary conditions becomes

1− λ− νλ = 0 =⇒ λ =
1

1 + ν
.
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It follows that

‖B(I −B)ν‖2 ≤
1

1 + ν

(

1−
1

1 + ν

)ν

=
νν

(1 + ν)1+ν
.

Remark 5.15 Damped Jacobi method. Now, the smoothing property of the damped
Jacobi method can be proved. The iteration matrix of the damped Jacobi method
for the model problem is given by, see also (3.11),

Sjac,ω = I − ωD−1Ah, ω ∈ (0, 1], (5.11)

where D−1Ah is the same for the finite difference and the finite element method. 2

Theorem 5.16 Smoothing property of the damped Jacobi method. Let

Sjac,ω be the iteration matrix of the damped Jacobi method given in (5.11), let ν ≥ 1,
ν ∈ N, and let ω ∈ (0, 1/2]. Then it is

∥

∥AhSν
jac,ω

∥

∥

2
≤

2

ωh
η0(ν),

where η0(ν) was defined in (5.10).

Proof: The proof will be presented for the finite element method, it can be performed
analogously for the finite difference method. For the finite element method, it is D = 2I/h.
Hence, one gets

∥

∥

∥
AhSν

jac,ω

∥

∥

∥

2
=

∥

∥

∥
Ah

(

I − ωD−1Ah
)ν∥

∥

∥

2
=

∥

∥

∥

∥

Ah

(

I −
ωh

2
Ah

)ν∥
∥

∥

∥

2

=
2

ωh

∥

∥

∥

∥

ωh

2
Ah

(

I −
ωh

2
Ah

)ν∥
∥

∥

∥

2

.

The matrix B = ωh
2
Ah is symmetric and positive definite and its eigenvalues are, see (2.6),

λ

(

ωh

2
Ah

)

=
ωh

2
λ
(

Ah
)

=
ωh

2

4

h
sin2

(

kπ

2N

)

≤ 2ω ≤ 1

with the assumptions of the theorem. Hence B ≤ I and Lemma 5.14 can be applied, which

gives immediately the statement of the theorem.

Remark 5.17 To the smoothing property.

• The smooting property does not hold for the non-damped Jacobi method or
the SOR method with relaxation parameter ω ≥ ωopt, see (Hackbusch, 1994, p.
340).

• The bound η0(ν) behaves like ν−1, exercise. It follows that

∥

∥AhSν
jac,ω

∥

∥

2
≤

2

ωh

1

ν

and the smoothing rate is said to be linear, i.e., O
(

ν−1
)

.

2

5.4 The Approximation Property

Remark 5.18 Contents. Proofs of the approximation property are not only of
algebraic nature. They generally use properties of the underlying boundary value
problem. Hence, results from the theory of partial differential equations, like error
estimates, have to be applied. 2
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Remark 5.19 Isomorphism between finite element spaces and Euclidean spaces.

There is a bijection between the functions in the finite element space V h and the
coefficients of the finite element functions in the space Rnh . This bijection is denoted
by Ph : R

nh → V h, vh 7→ vh with

vh(x) =

nh
∑

i=1

vhi ϕ
h
i (x), vh =

(

vhi
)

.

If the Euclidean space Rnh is equipped with the standard Euclidean norm, then
the norm equivalence

C0h
1/2

∥

∥vh
∥

∥

2
≤

∥

∥Phvh
∥

∥

L2((0,1))
≤ C1h

1/2
∥

∥vh
∥

∥

2
(5.12)

holds with constants that are independent of the mesh size, exercise.
There are commutation properties between the grid transfer operators and the

bijektion. For instance, for a function given in V 2h, one gets the same result if one
first applies the bisection to R

n2h and then the interpolation to R
nh or if one first

applies the prolongation to V h (imbedding) and then applies the bisection to R
nh ,

i.e.,

Ih2h
(

P 2h
)

−1
v2h =

(

Ph
)

−1
Ih
2hv

2h, (5.13)

where Ih2h on the left-hand side is the matrix representation of the prolongation
operator Ih

2h between the finite element spaces. Similarly, if the vector of coefficients
is given on the fine grid, one can first apply the bijection and then the restriction
or vice versa

I2h
h Phvh = P 2hI2hh vh. (5.14)

2

Theorem 5.20 Approximation property for the finite element discretiza-

tion. Let Ah be defined in (2.4), A2h be defined by the Galerkin projection (5.3),
the prolongation Ih

2h be defined in Example 4.9, and the restriction in Example 4.16.

Assume that the boundary value problem (2.1) is 2-regular, then the approximation

property
∥

∥

∥

(

Ah
)

−1
− Ih2h

(

A2h
)

−1
I2hh

∥

∥

∥

2
≤ Ch

holds.

Proof: Using the definition of an operator norm, the left-hand side of the approxi-
mation property (5.8) can be rewritten in the form

sup
w

h∈R
nh

∥

∥

∥

(

(

Ah
)−1

− Ih2h
(

A2h
)−1

I2hh

)

w
h
∥

∥

∥

2

‖wh‖2
(5.15)

Let Ah
z
h = w

h, A2h
z
2h = I2hh w

h, then the numerator can be written as
∥

∥

∥
z
h − Ih2hz

2h
∥

∥

∥

2
. (5.16)

By construction, zh is the solution of a finite element problem on the fine grid and z
2h

is the solution of almost the same problem on the coarse grid. The right-hand side of
the coarse grid problem is the restriction of the right-hand side of the fine grid problem.
Therefore, it is a straightforward idea to apply results that are known from finite element
error analysis. Consider the finite element problems

((

uh
)

′

,
(

ϕh
)

′
)

=
(

Ph
w

h, ϕh
)

=
(

wh, ϕh
)

, ∀ ϕh ∈ V h,

(7.5)
((

u2h
)

′

,
(

ϕ2h
)

′
)

=
(

wh, ϕ2h
)

, ∀ ϕ2h ∈ V 2h.
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Approximating the right-hand side of the first problem by the composite trapezoidal rule
and using ϕh

i (xi−1) = ϕh
i (xi+1) = 0, ϕh

i (xi) = 1, one gets

∫ xi+1

xi−1

wh(x)ϕh
i (x) dx

≈ h
wh(xi−1)ϕ

h
i (xi−1) + wh(xi)ϕ

h
i (xi)

2
+ h

wh(xi)ϕ
h
i (xi) + wh(xi+1)ϕ

h
i (xi+1)

2

= hwh(xi) = hwi.

This formula, which is exact for constant vectorswh, is the algebraic form of the right-hand
side of the first problem Ah

u
h = hwh. With the definition of zh, one obtains

z
h =

(

Ah
)

−1

w
h = h−1

u
h = h−1

(

Ph
)

−1

uh.

Using the commutation P 2hI2hh w
h = I2h

h Ph
w

h = I2h
h wh, see (5.14), the finite element

function z2h = P 2h
z
2h is the solution of the coarse grid problem

((

z2h
)

′

,
(

ϕ2h
)

′
)

=
(

I2h
h wh, ϕ2h

)

=
(

wh, Ih
2hϕ

2h
)

, ∀ ϕ2h ∈ V 2h,

where the duality of prolongation and restriction was used, see Example 4.16. The canon-
ical prolongation of ϕ2h is the embedding, see Example 4.9, hence Ih

2hϕ
2h = ϕ2h and one

obtains
((

z2h
)

′

,
(

ϕ2h
)

′
)

=
(

wh, ϕ2h
)

, ∀ ϕ2h ∈ V 2h.

With the same quadrature rule as on the fine grid, it follows that

z2h =
(

P 2h
)

z
2h = (2h)−1u2h =⇒

Ih2hz
2h = (2h)−1Ih2h

(

P 2h
)

−1

u2h = (2h)−1
(

Ph
)

−1

Ih
2hu

2h,

where (5.13) was used. Since Ih
2h is the identity, one gets that (5.16) can be written in the

form
∥

∥

∥
z
h − Ih2hz

2h
∥

∥

∥

2
= h−1

∥

∥

∥

∥

(

Ph
)

−1 (

uh − u2h
)

∥

∥

∥

∥

2

. (5.17)

Since the norm equivalence (5.12) should be applied, the error
∥

∥uh − u2h
∥

∥

L2((0,1))
will

be estimated. Let u ∈ H1
0 ((0, 1)) be the solution of the variational problem

(

u′, ϕ′
)

=
(

wh, ϕ
)

∀ ϕ ∈ H1
0 ((0, 1)).

This problem is by assumption 2-regular, i.e., it is u ∈ H2((0, 1)) and it holds ‖u‖H2((0,1)) ≤

c
∥

∥wh
∥

∥

L2((0,1))
. Then, it is known from Numerical Mathematics 3 that the error estimates

∥

∥

∥
u− uh

∥

∥

∥

L2((0,1))
≤ Ch2

∥

∥

∥
wh

∥

∥

∥

L2((0,1))
,

∥

∥

∥
u− u2h

∥

∥

∥

L2((0,1))
≤ C (2h)2

∥

∥

∥
wh

∥

∥

∥

L2((0,1))

hold. Thus, one obtains with the triangle inequality

∥

∥

∥
uh − u2h

∥

∥

∥

L2((0,1))
≤

∥

∥

∥
u− uh

∥

∥

∥

L2((0,1))
+

∥

∥

∥
u− u2h

∥

∥

∥

L2((0,1))
≤ Ch2

∥

∥

∥
wh

∥

∥

∥

L2((0,1))
. (5.18)

Finally, inserting (5.16), (5.17), (5.18) into (5.15) and using the norm equivalence
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(5.12) gives

sup
w

h∈R
nh

∥

∥

∥

(

(

Ah
)−1

− Ih2h
(

A2h
)−1

I2hh

)

w
h
∥

∥

∥

2

‖wh‖2

= sup
w

h∈R
nh

∥

∥

z
h − Ih2hz

2h
∥

∥

2

‖wh‖2

= Ch−1 sup
w

h∈R
nh

∥

∥

∥

(

Ph
)−1 (

uh − u2h
)

∥

∥

∥

2

‖wh‖2

≤ Ch−3/2 sup
w

h∈R
nh

∥

∥

∥
Ph

(

Ph
)−1 (

uh − u2h
)

∥

∥

∥

L2((0,1))

‖wh‖2

= Ch−3/2 sup
w

h∈R
nh

∥

∥uh − u2h
∥

∥

L2((0,1))

‖wh‖2

≤ Ch1/2 sup
w

h∈R
nh

∥

∥wh
∥

∥

L2((0,1))

‖wh‖2

≤ Ch sup
w

h∈R
nh

∥

∥

w
h
∥

∥

2

‖wh‖2

= Ch.

Remark 5.21 On the approximation property.

• In the one-dimensional model problem, the assumption on the regularity are sat-
isfied if the right-hand side f(x) is sufficiently smooth. In multiple dimensions,
one needs in addition conditions on the domain.

• The proof is literally the same in higher dimensions.

2

5.5 Summary

Remark 5.22 Summary. This chapter considered the convergence of the two-level
method or coarse grid correction scheme. First, an appropriate coarse grid operator
was defined. It was shown that the spectral radius of the iteration matrix of the
two-level method can be bounded with a constant lower than 1, independently of
the mesh width h, if

• the smoothing property holds and sufficiently many smoothing steps are per-
formed,

• and if the approximation property holds.

Considering the model problem (2.1), the smoothing property for the damped Jacobi
problem with ω ∈ (0, 1/2] was proved as well as the approximation property. 2
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