
Chapter 1

Literature

Remark 1.1 Literature. There are several text books about multigrid methods,
e.g.,

• Briggs et al. (2000), easy to read introduction,
• Hackbusch (1985), the classical book, sometimes rather hard to read,
• Shaidurov (1995),
• Wesseling (1992),
• Trottenberg et al. (2001).

✷
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Chapter 2

Model Problems

Remark 2.1 Motivation. The basic ideas and properties of multigrid methods will
be explained in this course on two model problems. ✷

Example 2.2 A two-point boundary value problem. Consider the boundary value
problem

−u′′ + au = f in Ω = (0, 1),
u(0) = u(1) = 0,

(2.1)

with a ≥ 0 for all x ∈ (0, 1). Often, this problem can be solved analytically. How-
ever, multigrid methods are solvers for linear system of equations that arise, e.g., in
the discretization of partial differential equations. For this reason, discretizations
of (2.1) will be considered: a finite difference method and a finite element method.
These discretizations are described in detail in the lecture notes of Numerical Math-
ematics III.

Consider an equidistant triangulation of Ω with the nodes 0 = x0 < x1 < . . . <
xN = 1 with the distance h = 1/N between two neighboring nodes.

The application of the second order finite difference scheme leads to a linear
system of equations

Au = f (2.2)

with the tridiagonal matrix A ∈ R
(N−1)×(N−1) with

aij =
1

h2











2 if i = j, i = 1, . . . , N − 1,

−1 if i = j − 1, i = 2, . . . , N − 1, or i = j + 1, i = 1, . . . , N − 2,

0 else,

and the right-hand side

(f)i = fi = f(xi), i = 1, . . . , N − 1.

Using the P1 finite element method leads to a linear system of equations (2.2)
with the tridiagonal matrix

aij =
1

h











2 if i = j, i = 1, . . . , N − 1,

−1 if i = j − 1, i = 2, . . . , N − 1, or i = j + 1, i = 1, . . . , N − 2,

0 else,

and the right-hand side

fi =

∫ xi+1

xi−1

f(x)ϕi(x) dx, i = 1, . . . , N − 1,
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where ϕi(x) is the function from the local basis that does not vanish in the node
xi. Note that there is a different scaling in the matrices of the finite difference and
the finite element method. ✷

Example 2.3 Poisson equation in two dimension. The Poisson equation in two
dimensions with homogeneous boundary conditions has the form

−∆u = f in Ω = (0, 1)2,
u = 0, on ∂Ω.

(2.3)

Again, an equidistant grid is considered for the discretization of (2.3) with mesh
width hx = hy = h = 1/N . The nodes are numbered lexicographically.

The application of the finite difference method with the five point stencil leads
to a linear system of equations of dimension (N − 1) × (N − 1) with the matrix
entries

aij =
1

h2











4 if i = j,

−1 if i = j − 1, i = j + 1, i = j − (N + 1), i = j + (N + 1),

0 else,

with obvious modifications for the nodes near the boundary of the domain.
For applying the P1 finite element method, the grid has to be decomposed into

triangles. Using a decomposition where the edges are either parallel to the axes or
parallel to the line y = x, one obtains the matrix

aij =











4 if i = j,

−1 if i = j − 1, i = j + 1, i = j − (N + 1), i = j + (N + 1),

0 else,

again with obvious modifications for the degrees of freedom near the boundary. ✷

Remark 2.4 Properties of the matrices.

• The matrix A is sparse. In one dimensions, there are not more than three
non-zero entries per row and column, the matrix is even tridiagonal. In the
two-dimensional case, there are not more than five non-zero entries per row and
column.

• The matrix A is symmetric. It follows that all eigenvalues are real.
• The matrix A is positive definite, i.e.,

xTAx > 0 ∀ x \ {0},

where the dimension of the vector x corresponds to the dimension of the matrix
A. It follows that all eigenvalues are positive.

• The matrix A is diagonally dominant, i.e., it is

|aii| ≥
∑

j 6=i

|aij | ∀ i,

and there is at least one index for which the equal sign is not true. For the
considered problems, the upper sign applies for all nodes or degrees of freedom
which are close to the boundary.

It is well known from the course on iterative methods for sparse large linear systems
of equations, Numerical Mathematics II, that these properties are favorable. In fact,
also for multigrid methods, the state of the art is that most of the analysis is known
for systems with symmetric positive definite matrices, or matrices which are only
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slight perturbations of such matrices. However, in practice, multigrid methods often
work very well also for the solution of systems with other matrices.

Even if the properties given above are favorable, the condition of the matrices
might be large. A direct calculation reveals (this was an exercise problem in Nu-
merical Mathematics II) that in one dimension, the eigenvalues of the finite element
matrix A are

λi =
4

h
sin2

(

iπ

2N

)

, i = 1, . . . , N − 1,

and the corresponding eigenvectors vi = (vi,1, . . . , vi,N−1)
T with

vij = sin

(

ijπ

N

)

, i, j = 1, . . . , N − 1.

Then, a direct calculation, using a theorem for trigonometric functions and a Taylor
expansion, shows for the spectral condition number

κ2(A) =
λmax(A)

λmin(A)
=

sin2
(

(N−1)π
2N

)

sin2
(

π
2N

) =
sin2

(

(1− h)π2
)

sin2
(

hπ
2

)

=

(

sin
(

π
2

)

cos
(

hπ
2

)

− cos
(

π
2

)

sin
(

hπ
2

)

sin
(

hπ
2

)

)2

=

(

cos
(

hπ
2

)

sin
(

hπ
2

)

)2

= cot2
(

h
π

2

)

=

(

2π

h
−O(h)

)2

= O
(

h−2
)

.

Also in higher dimensions, the condition number is κ2(A) = O
(

h−2
)

. ✷

Example 2.5 Behavior of iterative methods for the Poisson equation. Consider
the Poisson equation (2.3) with f = 1 for all x ∈ Ω and the P1 finite element
discretization of this problem on meshes with different fineness.

Table 2.1 gives the number of iterations and the computing times for different
solvers applied to the solution of this problem. The simulations were performed
with the research code MooNMD, John and Matthies (2004). The SSOR method
and the conjugate gradient method (CG) are already known from Numerical Math-
ematics II. For these methods, not the system Au = f was solved, but the system

D−1Au = D−1f ,

where D is the diagonal of A. It is known from Numerical Mathematics II that the
number of iterations for SSOR can be estimated to be proportional to the condition
number of the matrix and the number of iterations for CG to be proportional to
the square root of the condition number. If κ2(D

−1A) < κ2(A), then the estimates
become better. As comparison, the number of iterations with a multigrid method
as solver and with a multigrid method as preconditioner within a flexible general
minimized residual (GMRES) method are presented. Finally, the computing times
for the application of the sparse direct solver UMFPACK, Davis (2004), are given.
UMFPACK is the solver behind the backslash command in MATLAB.
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The number of floating point operations per iteration is for all iterative methods
proportional to the number of degrees of freedom. One gets for the complete number
of operations the values from Table 2.2. One can observe that the estimate for the
number of iterations is sharp for PCG. For the multigrid approaches, the total
number of operations is proportional to the number of unknowns. Since in the
solution of a linear system of equations, each unknown has to be considered at
least once, the total number of operations is asymptotically optimal for multigrid
methods.

Table 2.2: Example 2.5. Number of floating point operations, where n is the number
of degrees of freedom.
method op./iter. no. of iterations total no. of operations

SSOR O (n) O (κ2(A)) = O
(

h−2
)

= O
(

n2
)

O
(

n3
)

PCG O (n) O
(

√

κ2(A)
)

= O
(

h−1
)

= O (n) O
(

n2
)

MG O (n) O (1) O (n)

In addition, it can be seen that it is even more efficient to use the multigrid
method as a preconditioner in a Krylov subspace method than as a solver. One
has to use here the flexible GMRES method since the preconditioner is not a fixed
matrix but a method. That means, the preconditioner might change slightly from
iteration to iteration. The flexible GMRES method can cope with this difficulty.

The development of sparse direct solvers has shown remarkable progress in the
last couple of years. One can observe that for the model problem, the direct solver is
best for small and medium sized problems, up to about 100000 degrees of freedom.
But for large problems, good iterative methods are still better. On the fine grid,
UMFPACK is not able to solve the problem because there is an internal memory
limitation in this program. ✷
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