Adaptive computation of parametersin
stabilized methods for convection-diffusion
problems

\olker John and Petr Knobloch

Abstract Stabilized finite element methods for convection-domidgteoblems
contain parameters whose optimal choice is usually not knd\is paper presents
techniques for computing stabilization parameters in aptde way by minimiz-
ing a target functional characterizing the quality of th@raximate solution. This
leads to a constrained nonlinear optimization problem. Bhical results obtained
for various target functionals are presented. They dematesthat a posteriori op-
timization of parameters can significantly improve the gyalf solutions obtained
using stabilized methods.

1 Introduction

This paper is devoted to the numerical solution of a stea@dasconvection-
diffusion equation

—gAu+b-Ou+cu=f inQ, u=u, ondQ (1)

by means of the finite element method. In (©,c RY, d = 2,3, is a bounded
domain with a polygonal (resp. polyhedral) Lipschitz-¢gonbus boundary Q,
£ > 0is constanth e W1 (Q)4, ce L®(Q), f € LA(Q), andu, € HY2(Q). The
Dirichlet boundary condition is used for the sake of sinmipfionly. In the numerical
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computations presented in this paper also more generadaoyiconditions were
used.

Problem (1) is a simple model problem for convection-diffuseffects appearing
in many more complicated applications. Therefore, it ison@ant to be able to solve
this problem numerically in a satisfactory way. Howeveis th by no means easy if
convection dominates diffusion, i.&. < |b], since then the solution of (1) contains
so-called layers, which are narrow regions where the smuhanges abruptly. It is
well known that the standard Galerkin finite element methayides approximate
solutions that are globally polluted by spurious oscidlas unless the computational
mesh is sufficiently fine, i.eg > |b|h whereh is the mesh parameter.

To suppress the spurious oscillations, there are basiwedypptions. Either one
can use a layer-adapted mesh (e.g., a piecewise uniformanashesh obtained by
an anisotropic adaptive refinement strategy) or one caridemna relatively coarse
mesh and employ a modification of the standard discretizalibere are various
modifications that can be found in the literature: specistdtizations of the con-
vective term (upwinding), introduction of additional tesifstabilization) or manip-
ulations at the algebraic level (e.g., FEMTVD schemes)hls paper, we shall be
interested in stabilization techniques applied on reddyicoarse meshes.

A common feature of stabilized finite element methods is they contain pa-
rameters whose values significantly influence the qualitthefapproximate solu-
tion but whose optimal choice is usually not known. The ainthef present paper
is to describe techniques that make it possible to compat#ligation parameters
in an adaptive way by minimizing a functional charactefizihe quality of the ap-
proximate solution. This leads to a constrained nonlinpéinozation problem. The
paper is a continuation of our previous work published iniBre basic ideas of
the optimization of stabilization parameters were presgnt

The plan of the paper is as follows. In the next two sectionsdigeuss lin-
ear and nonlinear stabilization approaches for finite eférdiscretizations of (1).
Then, in Section 4, we describe our approach of parametenigption and explain
how the Féchet derivative of the target functional can be computeghiefficient
way. Finally, in Section 5, we construct several target fiomals and illustrate their
properties by means of numerical results.

2 Linear stabilized methods

Let W, be a finite element space approximating the sgaéeQ) and setv;, =
WHN H&(Q). Let uyn, € W, be a function whose trace approximates the funatipn
The simplest finite element discretization of (1) is the @afemethod that reads:
Find u, € W, such thau, = up, on9dQ and

a(un,Vh) = (f,vh)  VVh €W,
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wherea(u,v) = € (Ou,0v) + (b - Ou,v) + (cu,v) and(-,-) denotes the inner prod-
uct in L?(Q) or L?(Q)Y. As we mentioned in the introduction, the Galerkin dis-
cretization is not appropriate if convection dominatesudibn and, as a remedy, a
stabilization of the Galerkin method will be considered.

A stabilized finite element method for the numerical solutid (1) can be obtain
from the Galerkin method by adding a stabilization term. Wallsconsider methods
that read: Findi, € W, such thau, = up, ondQ and

a(Un, V) + ; Tk Sk (Un, vh) = (f, V) YVh€W.
Ke

Here % is the triangulation used for constructing the finite eletriggace,,
is a nonnegative stabilization parameter, ards a local form whose arguments
are functions defined on the détc %;,. The formsg is always linear in the second
argument and, if =0, it is also linear in the first argument. There are examples o
sk which are bilinear for any. The parameterx determines the artificial diffusion
added by the stabilization term and it should be not ‘too 8n@mlemove oscilla-
tions but also not ‘too large’ to avoid excessive smearingnsequently, it is very
difficult to find appropriate values ak a priori.

One of the most popular finite element approaches for colmedbminated
problems is the SUPG method for which

s (U, V) = (Zhu— f,b-Ov)k

with the differential operatay, = —Ap + b - O + ¢ where the subscrigt indicates
that the Laplace operator is applied elementwise. Thelgtation parameter is of-
ten defined by

b] hi
2’

K = 2h:)| (coth Peg — 1> with  Peg¢ = (2)

Pe

wherehg is the diameter oK in the direction ofb.

3 Nonlinear stabilized methods

Since solutions of linear stabilized methods usually pesspurious oscillations
in layer regions, the so-called SOLD (spurious oscillagian layers diminishing)
methods have been developed. These methods add an additaliization term

to the left-hand side of a linear stabilized method. Typeemples of this term
are (€ 0up, Ov,) adding isotropic artificial diffusion an¢e P Ou,, POv,) with the
orthogonal projectior® onto the plane orthogonal tg adding crosswind artificial
diffusion. The parameter usually depends on the unknown approximate solution
un and hence the resulting method is nonlinear.
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In the literature, many proposals for the parametean be found and we refer
to [1, 2] for a review and computational comparison. One ef tost successful
formulas is

~ diam(K) | -Zhup — f|
lk=n 2| Clu| h
wheren is a user-chosen parameter. From now on, the notion ‘SOLDaoadétvill
mean that the crosswind diffusion terfaP Oup, P Ovy) together with this choice
of € is used. In the framework of parameter optimization, theupatern will be
considered piecewise constant. If an optimizatiomois not considered, we set
n=0.7.

4 A posteriori optimization of stabilization parameters

In this section, we describe basic ideas of our approach tstepori optimization
of stabilization parameters. For clarity of the presentatie shall restrict ourselves
toup = 0.
Let us write a linear or nonlinear stabilized method in thstedzt form:
Given a stabilization parametgy € Yy, find up € W, such thaR,(up, yn) = 0.

Here,Y; is a finite-dimensional space of functions @nand the operatdr, maps
the spacé/ x Y;, into the dual spac¥,. E.g., for the SUPG method introduced in
Section 2, we have

(Rn(Un,Yn);Vh) = @(Un, Vh) + (Zhun — f,ynb - Ovp) — (f,vh)

andY; can be the space of piecewise constant function®oio emphasize that
the approximate solution, depends on the choice of the stabilization parameter
Yh € Yh, we shall writeu,(yp) instead ofuy, in the following.

We introduce a functiond}, : Vi, — R such that,(uy(yn)) represents a measure
of the error or the quality ofi,(yn). We assume that the solutioR(y,) improves if
the functional®y(yh) := Ih(un(yn)) decreases. Thus, our aim is to fipde Y}, such
that @, (yh) is ‘small’. This is a constrained nonlinear optimizatiorolpiem since
Vh has to be nonnegative and smaller than some upper boundfdt.the SUPG
method,

0 <vyhlx <101k VK e %, 3)

where1yk is defined by (2). The factor 10 can be changed to another \mitipu-
merical experiments indicate that the factor should ndédibo much from 10.

Common minimization algorithms require at least the knaolgke of the deriva-
tive of the function which should be minimized. Thus, we havecompute the
Fréchet derivative of the functionah,. Using the chain rule, we obtain

D®n(yn) = DIn(Un(yn))DUn(Yh) -
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However, it is not efficient to compufe®y,(yy) using this formula since it requires
the solution of dinY;, linear problems of the size of the original discrete problem
Therefore, we first define the adjoint problem: Fifigly,) € Vi, such that

(GuRn)"(Un(Yn),Yn) Wh(Yn) = DIn(Un(yn)) .

where ((duRn)’ (Wh, Yn)Vh, %) = ((9uRn) (Wh, Yn)Vn, V) ¥ Vi, Vi, Wh € Vi, Y € Yh.
SinceRn(Un(Yh),Yh) = 0, we havedyRa(Un(Yn), Yh)Dun(Yn) + dyRa(Un(yh),Yn) = 0.
Thus, combining the above relations, we deduce that

D®n(yh) = —(AyRn)" (Un(Yn), Yn) Yh(Yh) ,

where ((dyRn)" (Wh,Yh)Vh, ¥h) = ((&yR)(Wh,Yh)¥h,Vh) ¥ Vo, Wh € Vh,Yh,¥h € Yh.
Note that, for the SUPG method, the functigr(yn) solves

a(Vh, Yn(yh)) + (ZhVh, Ynb - Oh(¥h)) = (DIn(Un(Yh)), Vi) ¥ Vh € Vh

and the Fechet derivative ofp;, is given by

(D®n(Yn),%h) = —(Zhun(yn) — f,5hb-On(yn)) .

5 Choice of the functional Iy,

In this section, we propose various choices of the functibpantroduced in the
previous section and present numerical results illusigathe properties of these
functionals.

All numerical results were computed f@ = (0,1)? and, in all cases, we consid-
ered a triangulatior;, of Q constructed by dividing?2 into 32x 32 equal squares
and each square into two triangles by drawing a diagonal fsottom right to top
left. The spacéM, consisted of continuous piecewise linear functions. Thecfu
tional @, was minimized using the BFGS method [4]. The SUPG paramedsr w
initialized by (2) and the SOLD parameter by 0. The SUPG patansatisfied the
constraints (3) and the SOLD parameter was required to beimterval0, 1].

In each iteration of the BFGS method, one has to solve oncadjoéint problem
and several times the discrete problem for various valuéiseo§tabilization param-
eter. Consequently, the cost of the computation of an opthBEUPG stabilization
parameter is significantly higher than the computation ef VPG solution for a
prescribed stabilization parameter. Comparing the cotebptimization with the
cost of the solution of a nonlinear SOLD method, the diffeeeis not so large. We
believe that the higher computational cost of the paranmggmization is justified
by the quality of the resulting approximate solution, cé #xamples in this section.

We denote by * = {x € 9Q; (b-n)(x) >0}, r%={x€adQ; (b-n)(x) =0}
the outflow and characteristic boundarieghfrespectively. Furthermore, we set
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Fig. 1 Example 1: SUPG standard (top left), SUPG optimized usitidtop right), SUPG opti-
mized usind[**+ a |5°* (bottom left), SOLD optimized usinkjf*+ o I7°* (bottom right)

Gh=J K with @={KeZ Knr"#0orKnroo}.
Ke,

Note thatGy, represents a strip alorgt and/”® made up of elements of, having
at least one vertex on these parts of the boundary. A furadticmaracterizing the
quality of an approximate solutiam, of (1) can be now defined by

11%(Un) = 1%t — f[1§ 01\, -
We exclude the striy, since even a nodally exact solution has a large err@in
Let us apply the functiond[?®to the numerical solution of the following example.

Example 1. (Solution with an interior layer and two exponential bourydiayers)
We consider the convection-diffusion equation (1) with= (0,1)?, £ = 1078,

b = (cog—1/3),sin(—1/3))T, c = f =0, up(x,y) =0 for x =1 ory < 0.7,
andup(x,y) = 1 else. The functiom, could also be replaced by a function from
HY2(9Q) leading to the same numerical results as presented in thier.pa

Fig. 1 (top left) shows the SUPG solution computed with tladiization param-
etertk given by (2). If we optimize the stabilization parametemgsthe functional
II°5 the spurious oscillations along the exponential bountiygr are removed but
those along the interior layer are not suppressed sufflgidvibreover, the interior
layer is smeared, see Fig. 1 (top right).

If we observe a cut through the solution in Fig. 1, top left,oas the interior
layer, we shall see a curve like in Fig. 2 A. We would like to qgute a solution
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Fig. 3 Example 2: SUPG standard (left), SOLD optimized udjfifright)

without spurious oscillations corresponding to Fig. 2 B orACcandidate for a
functional which prefers a solution without spurious dsgibns isfo1 [u'|Pdx, where
urepresents the functions in Fig. 2. Denotingdithe width of the layer in Fig. 2 B
or C, the integral equald!~P. Since we prefer the curve C, we have to gse 1.
Thus, we may consider the functional

Iﬁ”’ss(uh):/g\G \/|bt - Oup| dx,
h

whereb" is a unit vector orthogonal tb. In our implementation, the square root
is regularized near 0, see [3] for details. If we now optinttze SUPG stabilization
parameter using a combinationl§f® andI ™% the solution improves considerably,
see Fig. 1 (bottom left). Finally, if we perform the optimiime with the same func-
tional but for the SOLD method, we obtain a solution withooy aisible spurious
oscillations and with steep layers, see Fig. 1 (bottom yight

Example 2. (Solution with one exponential and two parabolic boundapets) We
consider the convection-diffusion equation (1) with= (0,1)2, ¢ =108, b =
(1,0)T,c=0,f =1, andu, = 0.

For this example, a comparison of the SUPG solution witheuaimeter opti-
mization and an optimized SOLD solution is given in Fig. Zdh be observed, that
the parameter optimization leads to an almost nodally es@lation.

Example 3. (Solution with two interior layers) We consider the conieatdiffusion
equation (1) withQ = (0,1)2, € = 108, b(x,y) = (—y,x)T, andc = f = 0. On
N := {0} x (0,1), we prescribe a homogeneous Neumann boundary condition
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Fig.5 Example 3: SOLD optimized using®>

whereas the Dirichlet boundary condition is consideredy @m I'° := 9 Q \ﬁ
with up(x,y) = 1 for (x,y) € (1/3,2/3) x {0} andup(x,y) = 0 else on™ P,

Fig. 4 shows results for this example obtained without pa&tamoptimization.
We see that the SOLD method suppresses the oscillationsrriesthe SUPG so-
lution but leads to a slight smearing of the layers. The gualfithe SOLD solution
obtained using parameter optimization is much better, gpeF
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