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Abstract Stabilized finite element methods for convection-dominated problems
contain parameters whose optimal choice is usually not known. This paper presents
techniques for computing stabilization parameters in an adaptive way by minimiz-
ing a target functional characterizing the quality of the approximate solution. This
leads to a constrained nonlinear optimization problem. Numerical results obtained
for various target functionals are presented. They demonstrate that a posteriori op-
timization of parameters can significantly improve the quality of solutions obtained
using stabilized methods.

1 Introduction

This paper is devoted to the numerical solution of a steady scalar convection-
diffusion equation

−ε ∆ u+b ·∇u+ cu = f in Ω , u = ub on ∂Ω (1)

by means of the finite element method. In (1),Ω ⊂ R
d , d = 2,3, is a bounded

domain with a polygonal (resp. polyhedral) Lipschitz-continuous boundary∂Ω ,
ε > 0 is constant,b ∈W 1,∞(Ω)d , c ∈ L∞(Ω), f ∈ L2(Ω), andub ∈ H1/2(∂Ω). The
Dirichlet boundary condition is used for the sake of simplicity only. In the numerical
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computations presented in this paper also more general boundary conditions were
used.

Problem (1) is a simple model problem for convection-diffusion effects appearing
in many more complicated applications. Therefore, it is important to be able to solve
this problem numerically in a satisfactory way. However, this is by no means easy if
convection dominates diffusion, i.e.,ε ≪ |b|, since then the solution of (1) contains
so-called layers, which are narrow regions where the solution changes abruptly. It is
well known that the standard Galerkin finite element method provides approximate
solutions that are globally polluted by spurious oscillations unless the computational
mesh is sufficiently fine, i.e.,ε & |b|h whereh is the mesh parameter.

To suppress the spurious oscillations, there are basicallytwo options. Either one
can use a layer-adapted mesh (e.g., a piecewise uniform meshor a mesh obtained by
an anisotropic adaptive refinement strategy) or one can consider a relatively coarse
mesh and employ a modification of the standard discretization. There are various
modifications that can be found in the literature: special discretizations of the con-
vective term (upwinding), introduction of additional terms (stabilization) or manip-
ulations at the algebraic level (e.g., FEMTVD schemes). In this paper, we shall be
interested in stabilization techniques applied on relatively coarse meshes.

A common feature of stabilized finite element methods is thatthey contain pa-
rameters whose values significantly influence the quality ofthe approximate solu-
tion but whose optimal choice is usually not known. The aim ofthe present paper
is to describe techniques that make it possible to compute stabilization parameters
in an adaptive way by minimizing a functional characterizing the quality of the ap-
proximate solution. This leads to a constrained nonlinear optimization problem. The
paper is a continuation of our previous work published in [3]where basic ideas of
the optimization of stabilization parameters were presented.

The plan of the paper is as follows. In the next two sections wediscuss lin-
ear and nonlinear stabilization approaches for finite element discretizations of (1).
Then, in Section 4, we describe our approach of parameter optimization and explain
how the Fŕechet derivative of the target functional can be computed inan efficient
way. Finally, in Section 5, we construct several target functionals and illustrate their
properties by means of numerical results.

2 Linear stabilized methods

Let Wh be a finite element space approximating the spaceH1(Ω) and setVh :=
Wh ∩H1

0(Ω). Let ubh ∈Wh be a function whose trace approximates the functionub.
The simplest finite element discretization of (1) is the Galerkin method that reads:
Find uh ∈Wh such thatuh = ubh on ∂Ω and

a(uh,vh) = ( f ,vh) ∀ vh ∈Vh ,
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wherea(u,v) = ε (∇u,∇v)+ (b ·∇u,v)+ (cu,v) and(·, ·) denotes the inner prod-
uct in L2(Ω) or L2(Ω)d . As we mentioned in the introduction, the Galerkin dis-
cretization is not appropriate if convection dominates diffusion and, as a remedy, a
stabilization of the Galerkin method will be considered.

A stabilized finite element method for the numerical solution of (1) can be obtain
from the Galerkin method by adding a stabilization term. We shall consider methods
that read: Finduh ∈Wh such thatuh = ubh on ∂Ω and

a(uh,vh)+ ∑
K∈Th

τK sK(uh,vh) = ( f ,vh) ∀ vh ∈Vh .

HereTh is the triangulation used for constructing the finite element spaceWh, τK

is a nonnegative stabilization parameter, andsK is a local form whose arguments
are functions defined on the setK ∈ Th. The formsK is always linear in the second
argument and, iff = 0, it is also linear in the first argument. There are examples of
sK which are bilinear for anyf . The parameterτK determines the artificial diffusion
added by the stabilization term and it should be not ‘too small’ to remove oscilla-
tions but also not ‘too large’ to avoid excessive smearing. Consequently, it is very
difficult to find appropriate values ofτK a priori.

One of the most popular finite element approaches for convection-dominated
problems is the SUPG method for which

sK(u,v) = (Lh u− f ,b ·∇v)K

with the differential operatorLh =−∆h +b ·∇+ c where the subscripth indicates
that the Laplace operator is applied elementwise. The stabilization parameter is of-
ten defined by

τK =
hK

2|b|

(
cothPeK −

1
PeK

)
with PeK =

|b|hK

2ε
, (2)

wherehK is the diameter ofK in the direction ofb.

3 Nonlinear stabilized methods

Since solutions of linear stabilized methods usually possess spurious oscillations
in layer regions, the so-called SOLD (spurious oscillations at layers diminishing)
methods have been developed. These methods add an additional stabilization term
to the left-hand side of a linear stabilized method. Typicalexamples of this term
are(ε̃ ∇uh,∇vh) adding isotropic artificial diffusion and(ε̃ P∇uh,P∇vh) with the
orthogonal projectionP onto the plane orthogonal tob, adding crosswind artificial
diffusion. The parameter̃ε usually depends on the unknown approximate solution
uh and hence the resulting method is nonlinear.
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In the literature, many proposals for the parameterε̃ can be found and we refer
to [1, 2] for a review and computational comparison. One of the most successful
formulas is

ε̃ |K = η
diam(K) |Lh uh − f |

2|∇uh|
∀ K ∈ Th ,

whereη is a user-chosen parameter. From now on, the notion ‘SOLD method’ will
mean that the crosswind diffusion term(ε̃ P∇uh,P∇vh) together with this choice
of ε̃ is used. In the framework of parameter optimization, the parameterη will be
considered piecewise constant. If an optimization ofη is not considered, we set
η = 0.7.

4 A posteriori optimization of stabilization parameters

In this section, we describe basic ideas of our approach to a posteriori optimization
of stabilization parameters. For clarity of the presentation, we shall restrict ourselves
to ub = 0.

Let us write a linear or nonlinear stabilized method in the abstract form:

Given a stabilization parameteryh ∈ Yh, find uh ∈Vh such thatRh(uh,yh) = 0.

Here,Yh is a finite-dimensional space of functions onΩ and the operatorRh maps
the spaceVh ×Yh into the dual spaceV ′

h. E.g., for the SUPG method introduced in
Section 2, we have

〈Rh(uh,yh),vh〉= a(uh,vh)+(Lh uh − f ,yh b ·∇vh)− ( f ,vh)

andYh can be the space of piecewise constant functions onΩ . To emphasize that
the approximate solutionuh depends on the choice of the stabilization parameter
yh ∈ Yh, we shall writeuh(yh) instead ofuh in the following.

We introduce a functionalIh : Vh → R such thatIh(uh(yh)) represents a measure
of the error or the quality ofuh(yh). We assume that the solutionuh(yh) improves if
the functionalΦh(yh) := Ih(uh(yh)) decreases. Thus, our aim is to findyh ∈ Yh such
that Φh(yh) is ‘small’. This is a constrained nonlinear optimization problem since
yh has to be nonnegative and smaller than some upper bound. E.g., for the SUPG
method,

0≤ yh|K ≤ 10τK ∀ K ∈ Th , (3)

whereτK is defined by (2). The factor 10 can be changed to another valuebut nu-
merical experiments indicate that the factor should not differ too much from 10.

Common minimization algorithms require at least the knowledge of the deriva-
tive of the function which should be minimized. Thus, we haveto compute the
Fréchet derivative of the functionalΦh. Using the chain rule, we obtain

DΦh(yh) = DIh(uh(yh))Duh(yh) .
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However, it is not efficient to computeDΦh(yh) using this formula since it requires
the solution of dimYh linear problems of the size of the original discrete problem.
Therefore, we first define the adjoint problem: Findψh(yh) ∈Vh such that

(∂uRh)
′(uh(yh),yh)ψh(yh) = DIh(uh(yh)) ,

where 〈(∂uRh)
′(wh,yh)vh, ṽh〉 = 〈(∂uRh)(wh,yh)ṽh,vh〉 ∀ vh, ṽh,wh ∈ Vh,yh ∈ Yh.

SinceRh(uh(yh),yh) = 0, we have∂uRh(uh(yh),yh)Duh(yh)+∂yRh(uh(yh),yh) = 0.
Thus, combining the above relations, we deduce that

DΦh(yh) =−(∂yRh)
′(uh(yh),yh)ψh(yh) ,

where 〈(∂yRh)
′(wh,yh)vh, ỹh〉 = 〈(∂yRh)(wh,yh)ỹh,vh〉 ∀ vh,wh ∈ Vh,yh, ỹh ∈ Yh.

Note that, for the SUPG method, the functionψh(yh) solves

a(vh,ψh(yh))+(Lh vh,yh b ·∇ψh(yh)) = 〈DIh(uh(yh)),vh〉 ∀ vh ∈Vh

and the Fŕechet derivative ofΦh is given by

〈DΦh(yh), ỹh〉=−(Lh uh(yh)− f , ỹh b ·∇ψh(yh)) .

5 Choice of the functional Ih

In this section, we propose various choices of the functional Ih introduced in the
previous section and present numerical results illustrating the properties of these
functionals.

All numerical results were computed forΩ = (0,1)2 and, in all cases, we consid-
ered a triangulationTh of Ω constructed by dividingΩ into 32×32 equal squares
and each square into two triangles by drawing a diagonal frombottom right to top
left. The spaceWh consisted of continuous piecewise linear functions. The func-
tional Φh was minimized using the BFGS method [4]. The SUPG parameter was
initialized by (2) and the SOLD parameter by 0. The SUPG parameter satisfied the
constraints (3) and the SOLD parameter was required to be in the interval[0,1].

In each iteration of the BFGS method, one has to solve once theadjoint problem
and several times the discrete problem for various values ofthe stabilization param-
eter. Consequently, the cost of the computation of an optimized SUPG stabilization
parameter is significantly higher than the computation of the SUPG solution for a
prescribed stabilization parameter. Comparing the cost ofthe optimization with the
cost of the solution of a nonlinear SOLD method, the difference is not so large. We
believe that the higher computational cost of the parameteroptimization is justified
by the quality of the resulting approximate solution, cf. the examples in this section.

We denote byΓ + = {x ∈ ∂Ω ; (b ·n)(x)> 0}, Γ 0 = {x ∈ ∂Ω ; (b ·n)(x) = 0}
the outflow and characteristic boundaries ofΩ , respectively. Furthermore, we set
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Fig. 1 Example 1: SUPG standard (top left), SUPG optimized usingIres
h (top right), SUPG opti-

mized usingIres
h +α Icross

h (bottom left), SOLD optimized usingIres
h +α Icross

h (bottom right)

Gh =
⋃

K∈Gh

K with Gh = {K ∈ Th ; K ∩Γ + 6= /0 or K ∩Γ 0 6= /0} .

Note thatGh represents a strip alongΓ + andΓ 0 made up of elements ofTh having
at least one vertex on these parts of the boundary. A functional characterizing the
quality of an approximate solutionuh of (1) can be now defined by

Ires
h (uh) = ‖Lh uh − f‖2

0,Ω\Gh
.

We exclude the stripGh since even a nodally exact solution has a large error inGh.
Let us apply the functionalIres

h to the numerical solution of the following example.

Example 1. (Solution with an interior layer and two exponential boundary layers)
We consider the convection-diffusion equation (1) withΩ = (0,1)2, ε = 10−8,
b = (cos(−π/3),sin(−π/3))T , c = f = 0, ub(x,y) = 0 for x = 1 or y ≤ 0.7,
andub(x,y) = 1 else. The functionub could also be replaced by a function from
H1/2(∂Ω) leading to the same numerical results as presented in this paper.

Fig. 1 (top left) shows the SUPG solution computed with the stabilization param-
eterτK given by (2). If we optimize the stabilization parameter using the functional
Ires
h , the spurious oscillations along the exponential boundarylayer are removed but

those along the interior layer are not suppressed sufficiently. Moreover, the interior
layer is smeared, see Fig. 1 (top right).

If we observe a cut through the solution in Fig. 1, top left, across the interior
layer, we shall see a curve like in Fig. 2 A. We would like to compute a solution
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Fig. 2 Idealized cuts through approximate solutions across an interior layer
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Fig. 3 Example 2: SUPG standard (left), SOLD optimized usingIres
h (right)

without spurious oscillations corresponding to Fig. 2 B or C. A candidate for a
functional which prefers a solution without spurious oscillations is

∫ 1
0 |u′|pdx, where

u represents the functions in Fig. 2. Denoting byd the width of the layer in Fig. 2 B
or C, the integral equalsd1−p. Since we prefer the curve C, we have to usep < 1.
Thus, we may consider the functional

Icross
h (uh) =

∫

Ω\Gh

√
|b⊥ ·∇uh|dx ,

whereb⊥ is a unit vector orthogonal tob. In our implementation, the square root
is regularized near 0, see [3] for details. If we now optimizethe SUPG stabilization
parameter using a combination ofIres

h andIcross
h , the solution improves considerably,

see Fig. 1 (bottom left). Finally, if we perform the optimization with the same func-
tional but for the SOLD method, we obtain a solution without any visible spurious
oscillations and with steep layers, see Fig. 1 (bottom right).

Example 2. (Solution with one exponential and two parabolic boundary layers) We
consider the convection-diffusion equation (1) withΩ = (0,1)2, ε = 10−8, b =
(1,0)T , c = 0, f = 1, andub = 0.

For this example, a comparison of the SUPG solution without parameter opti-
mization and an optimized SOLD solution is given in Fig. 3. Itcan be observed, that
the parameter optimization leads to an almost nodally exactsolution.

Example 3. (Solution with two interior layers) We consider the convection-diffusion
equation (1) withΩ = (0,1)2, ε = 10−8, b(x,y) = (−y,x)T , andc = f = 0. On
Γ N := {0} × (0,1), we prescribe a homogeneous Neumann boundary condition
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Fig. 4 Example 3: SUPG standard (left), SOLD standard (right)
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Fig. 5 Example 3: SOLD optimized usingIcross
h

whereas the Dirichlet boundary condition is considered only on Γ D := ∂Ω \Γ N

with ub(x,y) = 1 for (x,y) ∈ (1/3,2/3)×{0} andub(x,y) = 0 else onΓ D.

Fig. 4 shows results for this example obtained without parameter optimization.
We see that the SOLD method suppresses the oscillations present in the SUPG so-
lution but leads to a slight smearing of the layers. The quality of the SOLD solution
obtained using parameter optimization is much better, see Fig. 5.
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