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SUMMARY

This paper studies the e�ciency of two ways to treat the non-linear convective term in the time-
dependent incompressible Navier–Stokes equations and of two multigrid approaches for solving the
arising linear algebraic saddle point problems. The Navier–Stokes equations are discretized by a second-
order implicit time stepping scheme and by inf–sup stable, higher order �nite elements in space.
The numerical studies are performed at a 3D �ow around a cylinder. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The e�cient and accurate simulation of incompressible �ows by solving the incompressible
Navier–Stokes equations is of importance not only by itself but it is also the core of many
complex applications, e.g. like the simulation of crystal growth [1, 2] or of fuel cells [3].
The numerical solution of the Navier–Stokes equations requires basically the choice of

discretizations in time and space, the choice of an iterative scheme for treating the charac-
teristic non-linear convective term and the choice of a solver for the arising algebraic saddle
point problems. In the last decades, many approaches for solving these equations have been
developed, see References [4, 5] for overviews. The challenge nowadays consists in combining
accuracy of the solution and e�ciency of the solution process.
This paper presents a numerical evaluation of two di�erent ways to deal with the non-

linear convective term in the Navier–Stokes equations and of two di�erent coupled
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multigrid approaches for solving the linear algebraic saddle point problems. This evaluation
will be done at a particular example—a 3D time-dependent laminar �ow around a cylinder.
Flows around obstacles are of high practical interest. The consideration of a laminar �ow
allows the application of Galerkin discretizations whereas the simulation of turbulent �ows
requires the application of a turbulence model. Turbulence modelling is an active �eld of
research, see References [6, 7] for recent developments. A turbulence model introduces in
general additional non-linear terms and it will also in�uence the behaviour of the multigrid
methods. In the numerical studies presented in this paper, we want to concentrate on basic dis-
cretizations of the Navier–Stokes equations without further modelling and therefore we do not
consider turbulent �ows. The investigation of iteration schemes to treat the non-linearities
and multigrid solvers for the simulation of such �ows will be subject of a forthcoming
study.
The Crank-Nicolson scheme will be used as temporal discretization of the Navier–Stokes

equations. This is a second-order implicit scheme. It has been shown that such schemes
are necessary for performing accurate simulations of laminar incompressible �ows [8–11].
As discretization of the linear saddle point problems which arise after a linearization of the
Navier–Stokes equations, we use inf–sup stable pairs of �nite element spaces of higher order.
The ful�llment of the inf–sup condition guarantees the unique solvability of the algebraic
saddle point problems [12], without having to choose an additional pressure stabilization. The
use of higher order �nite elements (at least second-order velocity and �rst-order pressure) is
necessary to obtain accurate solutions for �ows around obstacles, e.g. for the drag and the
lift coe�cient at the obstacle, see References [8, 10, 13–16]. We will present studies with
the popular Taylor-Hood �nite element of second and third order on tetrahedral grids and
with second- and third-order �nite elements with discontinuous pressure approximation on
hexahedral grids.
The two ways to treat the non-linear convective term of the Navier–Stokes equations are a

�xed point iteration and Newton’s method. These ways, their advantages and drawbacks will
be presented in detail in Section 3.
In each step of the �xed point iteration and Newton’s method, a large linear algebraic saddle

point problem has to be solved, see Reference [17] for a state-of-the-art overview on solving
such problems. It was found in numerical studies that so-called coupled multigrid methods
with local smoothers are among the most e�cient approaches [8, 9, 18, 19]. Coupled multigrid
methods compute the solution for both types of unknowns, the velocity and the pressure,
simultaneously. We will study their behaviour as well as solver and as preconditioner in the
Krylov subspace method Flexible GMRES [20, 21].
It is well known that multigrid methods work much more e�cient for low order discretiza-

tions than for higher order ones. Based on this observation, a so-called multiple discretization
multilevel method was developed and analysed in References [13, 14, 22] which uses in the
multigrid hierarchy lower-order discretizations on coarser levels. This multigrid approach will
be compared in the numerical studies with the standard one. Both multigrid approaches and
their components are described in Section 4.
The paper is organized as follows. The problem of the 3D �ow around a cylinder is

introduced in Section 2. Section 3 describes the discretization of the Navier–Stokes equations
and the two ways of linearization which are studied in this paper. The multigrid methods
are presented in Section 4. Section 5 contains the results of the numerical studies and �nal
conclusions are presented in Section 6.
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2. A TIME-DEPENDENT 3D FLOW AROUND A CYLINDER

We consider the �ow around a cylinder which was de�ned in Reference [8] as a bench-
mark problem within the DFG high priority research program Flow Simulation with High-
Performance Computers. The �ow is governed by the incompressible Navier–Stokes
equations:

@u
@t

− ��u+ (u · ∇)u+ 1
�

∇p= 0 in (0; 8]×�

∇ · u=0 in [0; 8]×�

u= g(t;x) on [0; 8]× @�in

(−pI+ �∇u)n= 0 on [0; 8]× @�out

u= 0 on [0; 8]× @� \ (@�in ∪ @�out)

u(0; ·) = 0 in �

(1)

Figure 1 presents the domain �. The boundary of � is denoted by @�, the outer normal by n
and x=(x; y; z). The channel has a height of H =0:41 m and the diameter of the cylinder is
D=0:1 m. Parameters of the �uid are the kinematic viscosity �=10−3 m2=s and the density
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Figure 1. The channel with the cylinder.
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Figure 2. Drag and lift coe�cient at the cylinder.

�=1 kg=m3. The in�ow is prescribed by

g(t;x)=

⎛
⎜⎜⎜⎜⎝
16U sin

(
�
t
8

)
yz(H − y)(H − z)

H 4

0

0

⎞
⎟⎟⎟⎟⎠

with U =2:25 m=s. The �ow has the Reynolds number 06Re(t)6100 based on �; D and the
mean in�ow �U (t)= sin(�t=8)m=s.
Important features of this �ow are the drag and the lift coe�cient at the cylinder, see

Figure 2. Our numerical simulations for the computation of these coe�cients were performed
using the Crank-Nicolson scheme with an equi-distant time step �t=0:01 s and the Q2=Pdisc1
�nite element discretization in space on a very �ne mesh (6 052 800 velocity degrees of
freedom (d.o.f.), 983 040 pressure d.o.f.). The drag and lift coe�cients have been computed
using volume integrals like, e.g.

cd(t)=− 2

�D �U
2
maxH

∫
�

[
�
(
@u
@t

· vd+�∇u(t) : ∇vd+(u(t) · ∇)u(t) · vd
)

−p(t)(∇ · vd)
]
dx

with �Umax =1m=s and an appropriately de�ned dimensionless test function vd, see
[13, 14, 10] for details. The maximal drag coe�cient cd;max =3:2968 is obtained at t=4:00 s.
The lift coe�cient is around zero. A vortex shedding behind the cylinder cannot be observed
in this problem.

3. DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS AND APPROACHES
FOR THE LINEARIZATION

The discretization and linearization approach for (1) which has been used consists of the
following steps:

1. Semi-discretization of (1) in time. An implicit time stepping scheme is used. The semi-
discretization in time leads in each discrete time step to a non-linear system of equations.
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2. Variational formulation and linearization. The non-linear system of equations is refor-
mulated as variational problem and the non-linear variational problem is linearized by
an iterative scheme.

3. Discretization of the linear saddle point problems in space. The linear saddle point
problems arising in each step of the iterative scheme are discretized by a �nite element
discretization using an inf–sup stable pair of �nite element spaces.

In the �rst step, the Crank-Nicolson scheme was used as temporal discretization in the
numerical studies presented in Section 5. Let �tn be the current time step from tn−1 to
tn, i.e. �tn = tn − tn−1. Then, the semi-discretization in time of the dimensionless form of the
Navier–Stokes equations (1) with the Crank-Nicolson scheme has the form

un + 0:5�tn[−Re−1�un + (un · ∇)un] + �tn∇pn

= un−1 − 0:5�tn[−Re−1�un−1 + (un−1 · ∇)un−1]

∇ · un=0
The Crank-Nicolson scheme is one of the most popular time-stepping schemes for the

incompressible Navier–Stokes equations. In a competitive study of such schemes, [11], the
Crank-Nicolson scheme was in general twice as fast as the fractional-step �-scheme. It is
well known that the fractional-step �-scheme is more stable (strongly A-stable) than the
Crank-Nicolson scheme (A-stable). However, we did not encounter stability problems with
the Crank-Nicolson scheme in the numerical studies presented in this paper.
To describe the variational formulation in the second step of our approach, some function

spaces are introduced: V0 = (H 1
0 (�))

d, Vg= {v : v ∈ (H 1(�))d ; v|@�in = g}, and Q=L2(�). Here,
L2(�) is the Lebesgue space of square integrable functions and H 1(�) the Sobolev space
of square integrable functions whose �rst (weak) derivative is also square integrable. The
functions of H 1

0 (�) are those of H
1(�) which vanish on @�.

The variational problem reads as follows: �nd (un; pn)∈Vg ×Q such that for all (v; q)∈V0Q

(un; v) + 0:5�tn[(Re−1∇un;∇v) + ((un · ∇)un; v)]−�tn(pn;∇ · v)

= (un−1; v)− 0:5�tn[(Re−1∇un−1;∇v) + ((un−1 · ∇)un−1; v)] (2)

0= (∇ · un; q)
This is a non-linear system of equations which we solve iteratively starting with an
initial guess (u0n; p0n). The initial guess is chosen to be the solution of the previous time
step (u0n; p0n)= (un−1; pn−1). The comparison of two approaches for this iteration is one of the
main topics of the numerical studies presented in Section 5.
The �rst iterative scheme is a �xed point iteration where the non-linear convective term is

approximated by

(um+1n · ∇)um+1n ≈ (umn · ∇)um+1n
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with a known velocity �eld umn . This leads to the following iteration for solving (2): Given
umn ∈Vg, the iterate (um+1n ; pm+1n )∈Vg ×Q is computed by solving

(um+1n ; v) + 0:5�tn[(Re−1∇um+1n ;∇v) + ((umn · ∇)um+1n ; v)]−�tn(pm+1n ;∇ · v)

=(un−1; v)− 0:5�tn[Re−1(∇un−1;∇v) + ((un−1 · ∇)un−1; v)] (3)

0= (∇ · um+1n ; q)

for all (v; q)∈V0 ×Q, m=0; 1; 2; : : : : Equations (3) are called Oseen equations.
The second approach, a Newton iteration, uses the linearization

(um+1n · ∇)um+1n ≈ (umn · ∇)um+1n + (um+1n · ∇)umn − (umn · ∇)umn
of the non-linear convective term. The corresponding iterative scheme is: given umn ∈Vg,
compute (um+1n ; pm+1n )∈Vg ×Q such that

(um+1n ; v) + 0:5�tn[(Re−1∇um+1n ;∇v) + ((umn · ∇)um+1n ; v) + ((um+1n · ∇)umn ; v)]

−�tn(pm+1n ;∇ · v)

= (un−1; v)− 0:5�tn[Re−1(∇un−1;∇v) + ((un−1 · ∇)un−1; v)]

+0:5�tn((umn · ∇)umn ; v) (4)

0 = (∇ · um+1n ; q)

for all (v; q)∈V0 ×Q, m=0; 1; 2; : : : :
An alternative to the full Newton iteration is a quasi Newton iteration which leaves the

left-hand side of (4) unchanged and updates only the right-hand side by the computed iterates.
This approach is used, e.g. in Reference [16].
The �nal step of our approach consists in applying an inf–sup stable �nite element method

for discretizing (3) and (4) in space. This gives a linear algebraic saddle point problem of
the form

A

(
u

p

)
=

(
A BT

B 0

)(
u

p

)
=

(
f

0

)
(5)

We use the standard approach that the velocity �nite element spaces Vh0 and V
h
g are products

of three scalar �nite element spaces, e.g. Vh0 is given by

Vh0 = span{vhi }3Nvi=1

= span

⎧⎪⎪⎨
⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
vhi

0

0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
Nv

i=1

∪

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0

vhi

0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
Nv

i=1

∪

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0

0

vhi

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
Nv

i=1

⎫⎪⎪⎬
⎪⎪⎭
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Here, Nv is the number of d.o.f. for a scalar component of the velocity. Denoting the number
of pressure d.o.f. by Np, the A block of the system matrix in (5) has the dimensions 3Nv × 3Nv
and the B block has the dimension Np × 3Nv. The symbol A(i; j), i; j=1; : : : ; 3Nv, is used for
an entry of the matrix block A. This matrix block can be decomposed into nine subblocks of
dimension Nv ×Nv. The notation Akl, k; l∈ {1; 2; 3}, stands for the subblock corresponding to
the lth velocity component from the ansatz space and the kth velocity component from the
test space. The kth scalar component of the velocity vector vhi is denoted by (vhi )k .
It turns out that the structure of the left upper block A of the system matrix in (5) looks

di�erent for the discretization of the Oseen equations (3) and the discrete equations coming
from Newton’s iteration (4).
Let uhold be a given �nite element approximation of the velocity �eld. In the �xed point

iteration (3), the matrix entries are given by

A(i; j)=
∫
�
(uhold · ∇)vhj · vhi dx=

3∑
k=1

∫
�
(uhold · ∇(vhj )k) · (vhi )k dx

This entry vanishes if the non-vanishing component of vhi and vhj is di�erent. If this component
is the same, the matrix entry is the same independent of the component. Thus, from the
discretization of (3), one obtains a matrix block of the form

A=

⎛
⎜⎜⎝
A11 0 0

0 A11 0

0 0 A11

⎞
⎟⎟⎠

The matrix entries for Newton’s iteration (4) are given by

A(i; j)=
3∑
k=1

∫
�

[
(uhold · ∇(vhj )k) · (vhi )k +

(
3∑
l=1
(vhj )l · ∇(uhold)l

)
· (vhi )k

]
dx

From the second term follows that for all pairs (k; l), the matrix blocks Akl posses in general
non-zero entries. Altogether, the matrix which has to be used for Newton’s method has the
block form

A=

⎛
⎜⎜⎝
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟⎟⎠

where the blocks are in general mutually di�erent since di�erent derivatives of uhold has to be
considered in the assembling of each block.
In summary, using the �xed point iteration (3) requires less memory and matrix–vector

products with the system matrix need less �oating point operations. In addition, much more
assembling of matrices has to be performed in Newton’s method (4). Note, assembling is
quite expensive for higher-order �nite elements in 3D. One needs quadrature rules which are
su�ciently accurate such that the accuracy of the �nite element is not spoiled by quadrature
errors. These quadrature rules posses a lot of quadrature points where the �nite element basis
functions and uhold have to be evaluated, see Reference [23] for details.
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852 V. JOHN

The advantages of the �xed point iteration become smaller if instead of the gradient formu-
lation of the viscous term (�∇uh;∇vh) the deformation tensor formulation (2�D(uh);D(vh)),
D(uh)= (∇uh + (∇uh)T)=2, is used. The block structure of the matrix corresponding to the
deformation tensor formulation is

A=

⎛
⎜⎜⎝
A11 A12 A13

AT12 A22 A23

AT13 AT23 A33

⎞
⎟⎟⎠

Thus, at least six blocks have to be stored. The deformation tensor formulation is correct from
the physical point of view. It should be used for the simulation of turbulent �ows. In addition,
there are some boundary conditions, like slip with friction boundary conditions, which require
this formulation of the viscous term.
We like to emphasize that there is a crucial di�erence concerning the iteration schemes

between the steady state and the time-dependent Navier–Stokes equations. The initial guess
(u0n; p0n)= (un−1; pn−1) in the time-dependent case is very often quite close to the solution in
the current discrete time tn, in particular, if �tn is small. Thus, one expects that only very
few �xed point iterations or Newton steps are necessary to compute the solution in tn. For
the steady state Navier–Stokes equations such a good initial iterate is in general not available,
even if the prolongation of the solution from a coarser grid is used. Thus, the results presented
in this paper cannot be simply carried over to the steady state Navier–Stokes equations and
these equations require new studies.

4. THE SOLVER OF THE LINEAR ALGEBRAIC SADDLE POINT PROBLEMS

This paper studies also the e�ciency of coupled multigrid methods for solving the linear
algebraic saddle point problems which arise in the linearization and discretization of the
time-dependent �ow problem described in Section 2. These coupled multigrid methods are
described in detail in References [14, 23]. To keep this paper self explaining, we will give
here a short overview on their most important components.
A multigrid method is given by its grid hierarchy, the grid transfer operator, the smoother

on the �ner levels, the coarse grid solver and the way of going through the grid hierarchy
(the kind of multigrid cycle). The grid transfer operator is described in References [22–24].
We used the most common types of cycles, which are the V-, the F- and the W-cycle.
The initial triangulation of a domain, which is not too simple, like the channel with the

cylinder, is already rather �ne. Since each uniform re�nement increases the number of degrees
of freedom by the factor eight, the memory limits of present day computers are reached soon.
Thus, one characteristic feature of multigrid methods in 3D is that the multigrid hierarchy
possesses only few levels.
The multiplicative Vanka smoother was applied as smoother. Each smoothing step of a

Vanka-type smoother requires the solution of a number of local problems. The local updates
are appropriately combined to a global update. Vanka-type smoothers start by a decomposition
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of the sets of the velocity d.o.f. Vh and the pressure d.o.f. Qh into J subsets

Vh=
J⋃
j=1

Vh
j ; Qh=

J⋃
j=1

Qhj (6)

Then, for each index j, one takes the d.o.f. in Vh
j ∪Qhj and constructs a small matrix Aj by

the intersection of the rows and the columns of the global matrix A which correspond to
the d.o.f. in Vh

j ∪Qhj . One step of a Vanka-type smoother consists in a loop from j=1; : : : ; J ,
where for each index j a local system of the form

(
u

p

)
j

:=

(
u

p

)
j

+A−1
j

((
f

g

)
− A

(
u

p

))
j

is solved. This gives a local update. We refresh the vector which contains the global update
immediately with each new local update. This is a block Gauss–Seidel approach which is
called multiplicative Vanka smoother. The multiplicative Vanka smoother is now completely
described if the decompositions (6) are given. Our strategy to obtain them is as follows:

1. Take some pressure d.o.f. which form Qhj .
2. The corresponding velocity d.o.f. in Vh

j are all those which are connected to the pressure
d.o.f. in the Qhj by entries in the o� diagonal block B.

Thus, Vh
j is completely described by the choice of Qhj and the connections of the velocity

and pressure d.o.f. of the underlying pair of �nite element spaces. Concerning the choice of
Qhj , we distinguish two situations:

1. The pressure is discretized by a discontinuous �nite element space. Then, we take for
Qhj all pressure d.o.f. which belong to one mesh cell. It turns out that the corresponding
velocity d.o.f. in Vh

j are all velocity d.o.f. which belong to the same mesh cell. Therefore,
this approach is called mesh cell oriented Vanka smoother. The number of local systems
J to solve in each step of the mesh cell oriented Vanka smoother is equal to the number
of mesh cells.

2. The pressure is discretized by a continuous �nite element space. Then, we take for each
Qhj only one pressure d.o.f. This de�nes the pressure node oriented Vanka smoother.
Here, the number of local systems J to solve in each step of the pressure node oriented
Vanka smoother corresponds to the number of pressure d.o.f.

For detailed illustrations of the mesh cell oriented and the pressure node oriented Vanka
smoother, we refer to Reference [14]. Examples for the size of the local systems for di�erent
pairs of �nite element spaces can be found as well in Reference [14].
The size of the local systems using higher-order �nite element discretizations may be rather

large. In our numerical studies, systems with dimension lower or equal than 100 have been
solved by Gaussian elimination. Larger systems were solved only approximately by applying
10 iterations with GMRES [25].
The systems on the coarsest grid, level 0, are solved approximately by the multiplicative

Vanka smoother. The iteration is stopped either after having reduced the Euclidean norm of
the residual by the factor 10 or after 100 iterations.
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Sometimes, it becomes necessary to damp the smoother iteration. Let (ul; pl) be the current
iterate on the multigrid level l and (�ul; �pl) be the update computed by one iteration of
the smoother. Then, the new iterate is given by (ul; pl) +!l(�ul; �pl). Another possibility of
damping exists after the prolongation. Let (�ul−1; �pl−1) be the update which was prolongated
from level l−1 to level l. Instead of accepting this update, one can use �l(�ul−1; �pl−1) with
an appropriately chosen parameter �l. The damping parameters can be chosen di�erently on
all levels of the multigrid hierarchy.
The standard multigrid approach assigns to each level of the geometric grid hierarchy

exactly one level of the multigrid hierarchy and on each level of the multigrid hierarchy,
the same discretization is used. Besides this standard approach, we consider in the numer-
ical studies also two types of so-called multiple discretization multilevel methods (mdml).
A multiple discretization multilevel method has at least two levels of the multigrid hierarchy
on the �nest geometric grid. One of them, which forms the top of the multigrid hierarchy,
uses the discretization of interest, e.g. in our studies a higher-order discretization. The dis-
cretizations of the other levels of the multigrid hierarchy on the �nest geometric grid are of
lower order. On the coarser geometric grids, only lowest order discretizations are used. All
multigrid approaches which were studied are illustrated in Table I. Type 2 of the multiple
discretization multilevel method will be studied the �rst time in this paper.
For discretizing the Oseen equations (3) and the equations arising in Newton’s iteration (4)

with a lowest order discretization on the coarser grids, we used the non-conforming Crouzeix–
Raviart �nite element on tetrahedral grids (Pnc1 =P0), [26], and the non-conforming Rannacher–
Turek �nite element on hexahedral grids, (Qrot1 =Q0), [27]. Since (3) and (4) are convection
dominated equations, we stabilized these lowest order non-conforming discretizations with a
Samarskij upwinding scheme [28].
The saddle point problem (5) has the same abstract form for the steady state and the

time-dependent Navier–Stokes equations. However, the properties of the matrix block A are
di�erent in both cases. Whereas this block consists of a di�usive and a convective part for
the steady state equations, an additional symmetric matrix, the mass matrix, occurs for the
time-dependent Navier–Stokes equations. Moreover, the mass matrix is in general dominant
since the di�usive and convective part are multiplied with the step size �tn which is generally
small. This leads to fundamental di�erences in the properties of the matrix block A in both
cases. For this reason, it is not possible simply to carry over the results for the steady state
Navier–Stokes equations from Reference [14] to the time-dependent case. The time-dependent
Navier–Stokes equations require new studies.

Table I. Correspondence of the levels of the multigrid hierarchy (right) to the levels
of the geometric grid hierarchy (left).

Geometric Standard mdml mdml Multigrid
level multigrid type 1 type 2 level

L — — Third order L + 2
L — Higher order Second order L + 1
L Higher order Lowest order Lowest order L
L− 1 Higher order Lowest order Lowest order L− 1
...

...
...

...
...

1 Higher order Lowest order Lowest order 1
0 Higher order Lowest order Lowest order 0
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It was found in numerical studies for the steady state Navier–Stokes equations in
Reference [14] that all multigrid methods were more e�cient and more robust as precon-
ditioner in the Krylov subspace iterative method �exible GMRES (FGMRES), [20, 21], than
as solver. We could observe the same in the numerical studies for time-dependent problems.
This statement will be supported by presenting one characteristic result of using the multigrid
methods as solver. Otherwise, we will concentrate on their behaviour as preconditioner in
FGMRES.

5. THE NUMERICAL STUDIES

This section presents numerical studies which compare

• the e�ciency of using a �xed point iteration (3) vs Newton’s method (4),
• the e�ciency of the di�erent multigrid approaches presented in Section 4.
The computations were performed on hexahedral and tetrahedral grids using discretizations

of order k for the velocity and k − 1 for the pressure, k ∈ {2; 3}. Since we obtained similar
results for the Taylor–Hood �nite elements on hexahedral and tetrahedral grids, we present
only the results for the tetrahedral grids. The initial grids are shown in Figure 3.
The Crank-Nicolson scheme was applied with an equi-distant time step �tn=0:01 such

that 800 time steps were to be computed.
Results concerning parameters of the �ow which were obtained on the grids used in the

evaluation of the linearization schemes and the multigrid approaches are presented in Table II.
They are compared with results for lowest order �nite element discretizations (stabilized with
Samarskij upwinding) with considerably more d.o.f. as well as with the reference computation
presented at the end of Section 2. The lift coe�cient cl(t) was always rather small. Table II
gives its largest absolute value. Another benchmark parameter de�ned in Reference [8] was
the di�erence of the pressure

�p :=p(8; (0:45; 0:2; 0:205))− p(8; (0:55; 0:2; 0:205))
at the �nal time t=8 s between one point at the front and one point at the back of the cylinder.
The results in Table II emphasize the superior accuracy of higher-order discretizations, above

Figure 3. The initial grids.
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Table II. Parameters of the �ow for the discretizations used in the numerical studies.

Disc L d.o.f. tcd ;max[s] cd;max |cl;max| �p

Qrot1 =Q0 3 2 496 000 4.06 3.4340 0.0295 −0.0561
Pnc1 =P0 2 1 309 440 3.99 3.6253 0.1046 −0.0777
Q2=Pdisc1 2 899 040 3.96 3.2805 0.0849 −0.1027
P2=P1 2 810 160 4.00 3.2847 0.0080 −0.1096
Q3=Pdisc2 1 371 400 4.11 3.3029 0.0611 −0.1023
P3=P2 1 367 000 4.00 3.2762 0.0631 −0.1017
Reference: Q2=Pdisc1 3 7 035 840 4.00 3.2968 0.0110 −0.1087

all with respect to the maximal drag coe�cient and the di�erence of the pressure. Almost all
computations with fewer d.o.f. than the reference computation showed stronger oscillations of
the lift coe�cient.
The solution of the linear algebraic saddle point problems arising from the �xed point

iteration (3) and Newton’s method (4) was stopped after an reduction of the Euclidean norm
of the residual by a factor of 10 or after �ve FGMRES iterations. Iterations (3) and (4)
for solving the non-linearity were terminated in each discrete time if the Euclidean norm of
the residual was less than 10−5. It happened that this criterion was ful�lled even for the
initial iterate in some discrete times tn. In this case, no iteration was performed in tn and the
simulation of the �ow was continued at tn+1.
The computations were performed at a computer with HP PA-RISC 8500 processors

(440MHz, 1760M�ops=s peak). The computing times are given in seconds. The computations
were performed with the code MooNMD [29].
The abbreviations in the tables of this section are the followings:

mg—standard multigrid,
mdml—multiple discretization multilevel method, type 1,
mdml2—multiple discretization multilevel method, type 2,
ite—total number of FGMRES iterations,
t(sol)—time needed by the solver,
t(tot)—total computing time,
%—percentage of solver time with respect to the total computing time,
2lev—2-level method,
Div.—solver diverged,
Slow—computation too slow (much more than 106 s).

The three fastest computations with respect to the total computing time and all computations
which are within 10% of the fastest one are emphasized.

5.1. Computations with the Q2=Pdisc1 �nite element on a hexahedral grid

The computations with the second-order velocity and the �rst order discontinuous pressure
were performed on a hexahedral grid which was obtained by two re�nements of the initial
grid. The numbers of d.o.f. on each level for the standard multigrid method and the multiple
discretization multilevel method are given in Table III. Damping within the multigrid methods
was not applied in these computations.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:845–862



EFFICIENCY OF LINEARIZATION SCHEMES AND COUPLED MULTIGRID METHODS 857

Table III. Discretizations and d.o.f. for the computations
with the Q2=Pdisc1 �nite element.

Standard mg mdml, type 1

Level Disc d.o.f. Disc d.o.f.

3 Q2=Pdisc1 899 040
2 Q2=Pdisc1 899 040 Qrot1 =Q0 316 800
1 Q2=Pdisc1 117 360 Qrot1 =Q0 40 800
0 Q2=Pdisc1 15 960 Qrot1 =Q0 5 400

Table IV. Q2=Pdisc1 , multigrid methods as solver.

Fixed point iteration (3) Newton’s method (4)

Solver Cycle ite t(sol) t(tot) % ite t(sol) t(tot) %

mg V(1,1) Div. — — — Div. — — —
mg V(2,2) 762 167 864 207 570 80 761 213 059 363 273 58
mg F(1,1) 1300 181 931 222 182 81 1285 230 393 384 315 59
mg F(2,2) 758 195 218 234 834 83 755 246 228 396 645 62
mg W(1,1) 1300 182 013 222 261 81 1285 228 962 381 811 59
mg W(2,2) 758 195 446 235 064 83 755 244 463 394 523 61
mdml V(1,1) Div. — — — Div. — — —
mdml V(2,2) 1041 200 516 239 851 83 1029 252 121 396 852 63
mdml F(1,1) Div. — — — Div. — — —
mdml F(2,2) 1133 227 255 266 812 85 1107 281 428 426 628 65
mdml W(1,1) Slow — — — Slow — — —
mdml W(2,2) Slow — — — Slow — — —

For the Q2=Pdisc1 �nite element discretization, we present a comparison of the behaviour of
the multigrid approaches as solver and as preconditioner in FGMRES, see Tables IV and V.
It can be clearly seen that they are much more e�cient and robust as preconditioner. We
obtained similar results for all other discretizations and the same observations are reported
for the steady state Navier–Stokes equations [14]. For this reason, no further results for the
multigrid methods as solver will be presented here.
With respect to the iterative scheme for solving the Navier–Stokes equations, the �xed point

iteration (3) was always much more e�cient than Newton’s method (4). The total number of
FGMRES iterations is in general similar such that the large overhead of Newton’s method led
to considerably longer computing times. In Newton’s method, approximately half of the total
computing time is needed for other tasks than solving, in particular for assembling matrices.
Both multigrid approaches behaved quite similar for the Q2=Pdisc1 �nite element. The same

was observed for the steady state Navier–Stokes equations in Reference [14].
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Table V. Q2=Pdisc1 , multigrid methods as preconditioner in FGMRES.

Fixed point iteration (3) Newton’s method (4)

Prec. Cycle ite t(sol) t(tot) % ite t(sol) t(tot) %

mg V(1,1) 861 103 899 144 838 71 851 131 534 288 911 45
mg V(2,2) 623 137 334 173 054 79 649 185 788 328 968 56
mg F(1,1) 689 108 098 147 070 73 708 141 909 294 550 48
mg F(2,2) 618 167 154 202 955 82 640 218 221 357 912 60
mg W(1,1) 689 107 337 145 908 73 708 144 221 299 172 48
mg W(2,2) 618 166 207 201 704 82 640 219 567 360 197 60
mdml V(1,1) 955 93 869 133 613 70 959 120 967 269 009 44
mdml V(2,2) 703 135 704 173 188 78 723 177 417 319 784 55
mdml F(1,1) 1010 104 067 143 137 72 1038 137 138 284 523 48
mdml F(2,2) 678 136 576 173 729 78 694 177 442 317 777 55
mdml W(1,1) 1231 127 144 166 545 76 1178 155 536 300 343 51
mdml W(2,2) 926 186 439 226 372 82 851 218 545 367 006 59

Table VI. Discretizations and d.o.f. for the computations
with the Q3=Pdisc2 �nite element.

Standard mg mdml, type 1 mdml, type 2

Level Disc d.o.f. Disc d.o.f. Disc d.o.f.

3 Q3=Pdisc2 371 400
2 Q3=Pdisc2 371 400 Q2=Qdisc1 117 360
1 Q3=Pdisc2 371 400 Qrot1 =Q0 40 800 Qrot1 =Q0 40 800
0 Q3=Pdisc2 49 260 Qrot1 =Q0 5 400 Qrot1 =Q0 5 400

5.2. Computations with the Q3=Pdisc2 �nite element on a hexahedral grid

The �nest geometric level in these computations was level L=1. Thus, the standard multigrid
is just a 2-level method. The multiple discretization multilevel method type 1 possesses three
levels and the multiple discretization multilevel method type 2 has even four levels. The
numbers of degrees of freedom on all levels of the multigrid hierarchies are given in Table VI.
All damping parameters in the multigrid methods were set to be 1.0.
Table VII presents the computational results for the multigrid methods as preconditioner in

FGMRES. Concerning the �xed point iteration (3) and Newton’s method (4), the situation
is the same as for the Q2=Qdisc1 �nite element discretization. The huge overhead of Newton’s
method is again remarkable.
The computational results show that type 1 of the multiple discretization multilevel method

is often more e�cient than type 2 with respect to the total computing time. The number of
FGMRES iterations is general smaller for type 2. However, the costs of the additional level
in the multigrid hierarchy of this type led �nally to longer computing times. The standard
multigrid approach was for the Q3=Pdisc2 �nite element discretization considerably slower than
both types of the multiple discretization multilevel method.
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Table VII. Q3=Pdisc2 , multigrid methods as preconditioner in FGMRES.

Fixed point iteration (3) Newton’s method (4)

Prec. Cycle ite t(sol) t(tot) % ite t(sol) t(tot) %

mg 2lev(1,1) 1533 116 890 164 359 71 1566 169 042 347 478 48
mg 2lev(2,2) 869 136 926 183 617 74 867 203 801 378 166 53
mg 2lev(3,3) 700 157 705 202 763 77 713 239 831 409 824 58
mdml V(1,1) 1597 76 671 118 979 64 1601 109 661 267 474 40
mdml V(2,2) 813 77 274 117 291 65 818 107 756 254 027 42
mdml V(3,3) 723 102 434 144 316 70 724 136 686 290 409 47
mdml F(1,1) 13 627 662 765 832 519 79 Slow — — —
mdml F(2,2) 1173 111 792 155 264 72 1059 142 013 302 136 47
mdml F(3,3) 725 102 980 144 656 71 715 143 994 299 763 48
mdml W(1,1) 13 627 665 686 835 680 79 8431 587 006 1 000 750 58
mdml W(2,2) 1173 112 004 155 556 72 1059 145 155 307 160 47
mdml W(3,3) 725 102 526 144 127 71 715 144 793 300 989 48
mdml2 V(1,1) 1391 82 389 129 556 63 1339 104 483 280 108 37
mdml2 V(2,2) 860 99 988 146 700 68 839 127 798 298 488 42
mdml2 V(3,3) 701 121 170 165 826 73 702 159 265 325 834 48
mdml2 F(1,1) 1472 106 282 153 255 69 1404 137 576 318 507 43
mdml2 F(2,2) 851 121 259 167 729 72 838 161 459 337 029 47
mdml2 F(3,3) 702 148 764 193 473 76 694 196 543 365 383 53
mdml2 W(1,1) 2352 171 260 221 784 77 2385 233 047 421 700 55
mdml2 W(2,2) 834 121 016 168 160 71 826 159 321 334 437 47
mdml2 W(3,3) 702 153 410 198 965 77 703 198 795 366 770 54

Table VIII. Discretizations and d.o.f. for the computations
with the P2=P1 �nite element.

Standard mg mdml, type 1

Level Disc d.o.f. Disc d.o.f.

3 P2=P1 810 160
2 P2=P1 810 160 Pnc1 =P0 1 309 440
1 P2=P1 106 680 Pnc1 =P0 166 080
0 P2=P1 14 740 Pnc1 =P0 21 360

5.3. Computations with the Taylor–Hood �nite element P2=P1 on a tetrahedral grid

The second-order Taylor–Hood �nite element was applied on a tetrahedral grid which was
obtained after two re�nements of the initial grid, see Table VIII for information on the degrees
of freedom. A damping was not applied in the multigrid methods.
Table IX presents the results of the computational studies. Again, the simulations were

much faster if the �xed point iteration (3) was used compared to Newton’s method (4). With
respect to the multigrid approaches, the multiple discretization multilevel method was for each
type of multigrid cycle considerably more e�cient than the standard multigrid approach.
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Table IX. P2=P1, multigrid methods as preconditioner in FGMRES.

Fixed point iteration (3) Newton’s method (4)

Prec. Cycle ite t(sol) t(tot) % ite t(sol) t(tot) %

mg V(1,1) 780 112 520 131 108 85 772 138 247 210 479 65
mg V(2,2) 752 207 991 226 556 91 752 279 555 353 340 79
mg F(1,1) 774 156 139 174 980 89 776 190 195 262 246 72
mg F(2,2) 763 282 509 301 123 93 753 341 287 413 595 82
mg W(1,1) 774 155 090 173 681 89 776 192 108 264 751 72
mg W(2,2) 763 283 564 302 232 93 753 347 775 420 656 82
mdml V(1,1) 764 92 379 113 432 81 763 116 161 194 134 59
mdml V(2,2) 754 171 265 192 294 89 755 218 143 295 960 73
mdml F(1,1) 761 108 566 130 001 83 763 133 411 211 034 63
mdml F(2,2) 754 193 378 214 292 90 762 246 659 324 150 76
mdml W(1,1) 762 111 058 132 102 84 763 142 647 221 240 64
mdml W(2,2) 754 201 288 222 370 90 760 257 596 335 768 76

Table X. Discretizations and d.o.f. for the computations with the P3=P2 �nite element.

Standard mg mdml, type 1 mdml, type 2

Level Disc d.o.f. Disc d.o.f. Disc d.o.f.

3 P3=P2 367 000
2 P3=P2 367 000 P2=P1 106 680
1 P3=P2 367 000 Pnc1 =P0 166 080 Pnc1 =P0 166 080
0 P3=P2 49 140 Pnc1 =P0 21 360 Pnc1 =P0 21 360

5.4. Computations with the Taylor–Hood �nite element P3=P2 on a tetrahedral grid

The numbers of d.o.f. for the Taylor–Hood pair of �nite element spaces with third-order veloc-
ity and second-order pressure are presented in Table X. In type 2 of the multiple discretization
multilevel method, we used the P2=P1 �nite element discretization on the multigrid level 2.
In these computations, the damping factor in the pressure node oriented Vanka smoother was
set to !l = 0:8 on all levels. Also, the updates after the prolongations were damped with
�l = 0:8 on all levels.
Table XI shows that the standard multigrid approach fails completely for this discretization.

We found that much smaller damping factors are necessary for its convergence. However, the
computing times were much longer than those in Table XI obtained with both types of the
multiple discretization multilevel method.
The �xed point iteration (3) was for the P3=P2 �nite element discretization also more ef-

�cient than Newton’s method in terms of computing time. However, the superiority was not
as large as for the other discretizations. For the higher-order P3=P2 �nite element discretiza-
tion, the part of the solver time on the total computing time is considerably larger than for
the other discretizations considered in the numerical studies. Similar to the Q3=Pdisc2 �nite
element discretizations, type 2 of the multiple discretization multilevel method was in general
somewhat slower than type 1.
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Table XI. P3=P2, multigrid methods as preconditioner in FGMRES.

Fixed point iteration (3) Newton’s method (4)

Prec. Cycle ite t(sol) t(tot) % ite t(sol) t(tot) %

mg 2lev(1,1) Div. — — — Div. — — —
mg 2lev(2,2) Div. — — — Div. — — —
mdml V(1,1) 798 276 837 290 545 95 753 312 189 364 314 85
mdml V(2,2) 773 525 908 539 657 97 747 600 546 652 481 92
mdml F(1,1) 790 279 578 293 253 95 753 318 737 370 825 85
mdml F(2,2) 819 565 027 578 803 97 749 615 480 667 653 92
mdml W(1,1) 790 279 422 293 094 95 753 317 661 369 835 85
mdml W(2,2) 819 566 809 580 581 97 749 614 295 666 433 92
mdml2 V(1,1) 816 294 634 309 800 95 743 319 695 377 961 84
mdml2 V(2,2) 922 654 643 669 862 97 793 655 576 713 054 91
mdml2 F(1,1) 858 333 135 348 313 95 744 351 384 409 787 85
mdml2 F(2,2) 898 675 203 690 378 97 800 710 920 768 363 92
mdml2 W(1,1) 829 329 246 344 369 95 744 356 640 414 983 85
mdml2 W(2,2) 892 680 011 695 267 97 802 723 984 781 520 92

6. SUMMARY

The paper studied the e�ciency of two approaches for linearizing the incompressible Navier–
Stokes equations and of two multigrid approaches being used in the solution of the arising lin-
ear algebraic saddle point problems for the simulation of a time-dependent laminar �ow around
a three-dimensional cylinder. The equations were discretized in time by the Crank-Nicolson
scheme and in space by inf–sup stable higher-order Galerkin �nite element discretizations.
The �xed point iteration (3) was always much more e�cient than Newton’s method (4).

Using all multigrid methods as preconditioner in FGMRES was much faster and more robust
than using them as solver. The multiple discretization multilevel method type 1 was in general
the best approach. In particular for Taylor–Hood �nite elements, it was considerably better
than the standard multigrid method. Only for the Q2=Pdisc1 �nite element, the e�ciency of both
multigrid approaches was similar.

REFERENCES

1. Logashenko D, Fischer T, Motz S, Gilles E-D, Wittum G. Simulation of crystal growth in a stirred tank.
Computing and Visualization in Science 2005, in press.

2. �Onc�ul A, Sundmacher K, Th	evenin D. Numerical investigation of the in�uence of the activity coe�cient on
barium sulphate crystallization. Chemical Engineering Science 2005; 60(19):5395–5405.

3. Krewer U, Song Y, Sundmacher K, John V, L�ubke R, Matthies G, Tobiska L. Direct methanol fuel cell (DMFC):
analysis of residence time behaviour of anodic �ow bed. Chemical Engineering Science 2004; 59:119–130.

4. Gresho PM, Sani RL. Incompressible Flow and the Finite Element Method. Wiley: Chichester, 2000.
5. Glowinski R. Finite element methods for incompressible viscous �ow. In Numerical Methods for Fluids
(Part 3), Ciarlet PG et al. (eds), Handbook of Numerical Analysis, vol. IX. North-Holland: Amsterdam, 2003;
3–1176.

6. Hughes TJ, Mazzei L, Jansen KE. Large eddy simulation and the variational multiscale method. Computing
and Visualization in Science 2000; 3:47–59.

7. Sagaut P. Large Eddy Simulation for Incompressible Flows (2nd edn). Springer: Berlin, Heidelberg, New York,
2003.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:845–862



862 V. JOHN

8. Sch�afer M, Turek S. The benchmark problem ‘Flow around a cylinder’. In Flow Simulation with High-
Performance Computers II, Hirschel EH (ed.), Notes on Numerical Fluid Mechanics, vol. 52. Vieweg:
Braunschweig, 1996; 547–566.

9. Turek S. E�cient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach.
Lecture Notes in Computer Science and Engineering, vol. 6. Springer: New York, 1999.

10. John V. Reference values for drag and lift of a two-dimensional time dependent �ow around a cylinder.
International Journal for Numerical Methods in Fluids 2004; 44:777–788.

11. John V, Matthies G, Rang J. A comparison of time-discretization=linearization approaches for the time-dependent
incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering 2005, in
press.

12. Girault V, Raviart P-A. Finite Element Methods for Navier–Stokes Equations. Springer: Berlin, Heidelberg,
New York, 1986.

13. John V, Matthies G. Higher order �nite element discretizations in a benchmark problem for incompressible
�ows. International Journal for Numerical Methods in Fluids 2001; 37:885–903.

14. John V. Higher order �nite element methods and multigrid solvers in a benchmark problem for the 3D Navier–
Stokes equations. International Journal for Numerical Methods in Fluids 2002; 40:775–798.

15. John V, Knobloch P. On non-nested multilevel solvers for the Stokes and Navier–Stokes equations. Proceedings
of the 18th GAMM—Seminar, Leipzig, 2002.

16. Braack M, Richter T. Solutions of 3D Navier–Stokes benchmark problems with adaptive �nite elements.
Computers and Fluids 2005, in press.

17. Benzi M, Golub GH, Liesen J. Numerical solution of saddle point problems. In Acta Numerica, Iserles A (ed.).
Cambridge University Press: Cambridge, 2005; 1–137.

18. John V. A comparison of parallel solvers for the incompressible Navier–Stokes equations. Computing and
Visualization in Science 1999; 4(1):193–200.

19. John V. On the performance of smoothers in coupled multigrid methods for the solution of the incompressible
Navier–Stokes equations on parallel computers. In Advances in Fluid Mechanics III, Rahman M, Brebbia CA
(eds). WIT Press: 2000; 181–190.

20. Saad Y. A �exible inner–outer preconditioned GMRES algorithm. SIAM Journal on Scienti�c Computing
1993; 14(2):461–469.

21. Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn). SIAM: Philadelphia, PA, 2003.
22. John V, Knobloch P, Matthies G, Tobiska L. Non-nested multi-level solvers for �nite element discretizations

of mixed problems. Computing 2002; 68:313–341.
23. John V. Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for

a Class of LES Models. Lecture Notes in Computer Science and Engineering, vol. 34. Springer: Berlin,
Heidelberg, New York, 2004.

24. Schieweck F. A general transfer operator for arbitrary �nite element spaces. Preprint 00-25, Fakult�at f�ur
Mathematik, Otto-von-Guericke-Universit�at Magdeburg, 2000.

25. Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM Journal on Scienti�c and Statistical Computing 1986; 7(3):856–869.

26. Crouzeix M, Raviart P-A. Conforming and nonconforming �nite element methods for solving the stationary
Stokes equations. I. RAIRO Analyse Numerique 1973; 7:33–76.

27. Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numerical Methods for Partial
Di�erential Equations 1992; 8:97–111.

28. Roos H-G, Stynes M, Tobiska L. Numerical Methods for Singularly Perturbed Di�erential Equations. Springer:
Berlin, 1996.

29. John V, Matthies G. MooNMD— a program package based on mapped �nite element methods. Computing and
Visualization in Science 2004; 6:163–170.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:845–862


