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Abstract

We consider slip with friction and penetration with resistance boundary conditions in the steady state Navier–
Stokes equations. This paper describes some aspects of the implementation of these boundary conditions for
/nite element discretizations. Numerical tests on two- and three-dimensional channel 2ows across a step using
the slip with friction boundary condition study the in2uence of the friction parameter on the position of the
reattachment point and the reattachment line of the recirculating vortex, respectively. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The incompressible Navier–Stokes equations are a part of many complex models in science and
applications. Often, other than the well understood no slip boundary condition of the velocity arise in
these models. For instance, the Navier–Stokes equations in domains with free capillary boundaries
require free slip boundary conditions, e.g., see [1]. Another example comes from the large eddy
simulation (LES) of turbulent 2ows. The LES seeks to compute the large eddies of a turbulent 2ow
accurately neglecting small 2ow structures. Galdi and Layton [4] propose to apply slip with friction
and no penetration boundary conditions for the large eddies. Such boundary conditions are more

� This work was partially supported by the DAAD (Deutsche Akademische Austauschdienst).
∗ Tel.: +49-391-67-12633; fax: +49-391-67-18073.
E-mail address: john@mathematik.uni-magdeburg.de (V. John).

0377-0427/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(02)00437-5



288 V. John / Journal of Computational and Applied Mathematics 147 (2002) 287–300

suitable than Dirichlet boundary conditions to describe phenomena which can be observed in nature.
E.g., the main vortices of a hurricane do not stick at the boundary such that homogeneous Dirichlet
boundary conditions are not satis/ed. These vortices move on the boundary (slip), loosing energy
while moving (friction) and do not penetrate the boundary. The last application, we like to mention,
arises if a part of the boundary of the 2ow domain consists of porous material. Then, one has to
take into account that the 2uid may penetrate through the boundary. Altogether, one can observe
a growing importance of slip with friction and penetration with resistance boundary conditions in
applications.

Finite element methods are widely used discretizations of the incompressible Navier–Stokes equa-
tions. The use of these methods is of advantage especially in complex domains. Moreover, /nite
element methods allow the analysis of the arising discretizations. For no slip boundary conditions,
we refer to [5] and the references therein. The mathematical properties of /nite element discretiza-
tions of the Navier–Stokes equations with free slip boundary conditions are studied, e.g., in [14] and
more recently in [10].

This paper describes some aspects of the implementation of the slip with linear friction and
penetration with resistance boundary condition into a /nite element discretization of the Navier–
Stokes equations. The Navier–Stokes equations are linearized by a /xed point iteration. This boundary
condition is implemented in such a way that it gives contributions to the matrix of the discrete system
and the new iterate ful/ls it in each step of the /xed point iteration. Numerical tests with the slip
with friction boundary condition on the 2ow across a step in two and three dimensions study the
dependency of the reattachment point and reattachment line, respectively, of the recirculating vortex
on the friction parameter.

2. The Navier--Stokes equations and their �nite element discretization

Let � ⊂ Rd, d = 2; 3, be a bounded domain with boundary 9� = �diri ∪ �sfpr ∪ �out such that all
three parts of the boundary are mutually disjoint. The outer normal vector on 9�, which is assumed
to exist almost everywhere on 9�, is denoted by n9�. In addition, we use matrix vector notations,
i.e., a vector v is always a column vector and the corresponding row vector is denoted by vT. We
consider the steady state incompressible Navier–Stokes equations in �

−�Ju + (u · ∇)u + ∇p = f in �;

∇ · u = 0 in �;

u = g on �diri;

(2�D(u) − pI)n9� = 0 on �out ;

u · n9� + �nT
9�(2�D(u) − pI)n9� = 0 on �sfpr ;

u · 	k + �−1nT
9�(2�D(u) − pI)	k = 0 on �sfpr ; 16 k6d − 1: (1)

The unknown quantities are the velocity u and the pressure p. The kinematic viscosity �, the body
force f and the Dirichlet boundary conditions g on �diri are prescribed. Slip with linear friction and
penetration with resistance boundary conditions are applied on �sfpr. The penetration parameter �
and the friction parameter � are given positive functions on �sfpr. The unit tensor is denoted by I
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and D(u) is the velocity deformation tensor

D(u) =
∇u + ∇uT

2
:

The tangential vectors 	k , 16 k6d − 1 are chosen such that {n9�; 	1} in two dimensions and
{n9�; 	1; 	2} in three dimensions build an orthonormal system of vectors. On �out, an out2ow or
do-nothing boundary condition is prescribed.

We describe now the derivation of the discrete equations obtained by a /nite element discretization.
Let

Vg:={v∈ (H 1(�))d: v|�diri = g};

V0:={v∈ (H 1(�))d: v|�diri = 0};

Q:=L2(�):

The inner product in (L2(�))d, d = 1; 2; 3, is denoted by (·; ·). The variational formulation of (1)
is obtained in the usual way by multiplying (1) with a pair of test functions (v; q)∈ (V0; Q) and
integrating the momentum equation by parts. The boundary condition on �sfpr requires to use the
deformation tensor formulation of the viscous term. Since ∇ · u= 0, it follows Ju= 2∇ ·D(u). The
symmetry of the deformation tensor yields

(D(u);∇v) =
(
D(u);

∇v
2

)
+
(
D(u)T;

∇vT

2

)

=
(
D(u);

∇v
2

)
+
(
D(u);

∇vT

2

)
= (D(u);D(v)):

Thus, the weak problem is to /nd (u; p)∈ (Vg; Q) such that for all (v; q)∈ (V0; Q)

2�(D(u);D(v)) + ((u · ∇)u; v) − (p;∇ · v) −
∫

�sfpr

(2�D(u) − pI)n9� · v ds = (f ; v);

(∇ · u; q) = 0: (2)

The boundary integral in the variational problem (2) can be rewritten by decomposing the test
function v on �sfpr into d orthonormal components

v = (v · n9�)n9� +
d−1∑
k=1

(v · 	k)	k :

This gives, using the de/nition of the slip with linear friction and penetration with resistance boundary
condition∫

�sfpr

(2�D(u) − pI)n9� · v ds

=
∫

�sfpr

nT
9�(2�D(u) − pI)n9�v · n9� ds +

∫
�sfpr

d−1∑
k=1

nT
9�(2�D(u) − pI)	kv · 	k ds

= −
∫

�sfpr

�−1(u · n9�)(v · n9�) ds −
∫

�sfpr

d−1∑
k=1

�(u · 	k)(v · 	k) ds: (3)
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Thus, the variational problem can be reformulated: /nd (u; p)∈ (Vg; Q) such that for all (v; q)∈ (V0; Q)

2�(D(u);D(v)) + ((u · ∇)u; v) − (p;∇ · v)

+
∫

�sfpr

�−1(u · n9�)(v · n9�) ds +
∫

�sfpr

d−1∑
k=1

�(u · 	k)(v · 	k) ds = (f ; v);

(∇ · u; q) = 0: (4)

Remark 2.1. The boundary integrals which originate from the slip with friction and penetration with
resistance boundary condition give a positive semi-de/nite contribution to the left-hand side of (4).
The positivity follows from the positivity of � and �. Since the boundary integrals become zero for
functions which vanish on �sfpr ; they de/ne a semi-de/nite operator.

Remark 2.2. In the computations presented in this report; the functions � and � are chosen to be
piecewise constants on �sfpr. With the limits of these constants; other boundary conditions than slip
with linear friction and penetration with resistance can be simulated. The choice � → 0 gives no
penetration conditions. Choosing � → ∞ prescribes free penetration conditions. If � → 0; then the
parameter � → 0 prescribes free slip conditions on �sfpr whereas � → ∞ sets no slip conditions
(homogeneous Dirichlet boundary conditions).

The value of the friction coeKcient � in model situations, applying wall laws for the velocity,
was studied in [13].

Eq. (4) is solved by a /xed point iteration starting with the initial iterate (u0; p0). Given (um; pm),
the iterate (um+1; pm+1) is computed by solving the variational problem for all (v; q)∈ (V0; Q)

2�(D(um+1);D(v)) + ((um · ∇)um+1; v) − (pm+1;∇ · v)

+
∫

�sfpr

�−1(um+1 · n9�)(v · n9�) ds +
∫

�sfpr

d−1∑
k=1

�(um+1 · 	k)(v · 	k) ds = (f ; v);

(∇ · um+1; q) = 0; m = 0; 1; 2; : : : : (5)

System (5) is a linear saddle point problem called Oseen equation. The Oseen equation is discretized
by a /nite element method. Let (V h

g ; Qh) be a pair of /nite element spaces and V h
0 the /nite element

test space for the velocity. The subscripts refer again to the Dirichlet boundary condition g of the
functions belonging to Vg and the homogeneous Dirichlet boundary conditions of the test functions.
The discrete problem is to /nd (uh; ph)∈ (V h

g ; Qh) such that for all (vh; qh)∈ (V h
0 ; Qh)

2�(D(uh);D(vh)) + ((uh
old · ∇)uh; vh) − (ph;∇ · vh) +

∫
�sfpr

�−1(uh · n9�)(vh · n9�) ds

+
∫

�sfpr

d−1∑
k=1

�(uh · 	k)(vh · 	k) ds = (f ; vh);

(∇ · uh; qh) = 0: (6)

The convection uh
old is the current iterate of the velocity.
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The matrix–vector form of (6) is(
A(uh

old) B

C 0

)(
u

p

)
=

(
f

0

)
(7)

with

A(uh
old) =

(
A11(uh

old) A12

A21 A22(uh
old)

)
if d = 2;

A(uh
old) =




A11(uh
old) A12 A13

A21 A22(uh
old) A23

A31 A32 A33(uh
old)


 if d = 3: (8)

If �sfpr = ∅, the matrix blocks Aij are determined by the viscous and the convective term. Since we
have to use the deformation tensor formulation of the viscous term, none of the blocks Aij vanishes
and all blocks are in general mutually diLerent. In the case meas(�sfpr) ¿ 0, the implementation of
the slip with friction and penetration with resistance boundary conditions, which will be described
in the next section, gives in general contributions to each matrix block Aij.

3. Aspects of the implementation of the slip with friction and penetration with resistance boundary
conditions

In this section, some aspects of the implementation of the boundary integral term in (6)

∫
�sfpr

�−1(uh · n9�)(vh · n9�) ds +
d−1∑
k=1

∫
�sfpr

�(uh · 	k)(vh · 	k) ds (9)

coming from the slip with friction and penetration with resistance boundary conditions are described.
We describe the implementation for d = 3. The modi/cations in the two-dimensional case are

obvious. Let {va
j}3Nv

j=1 be a basis of the velocity ansatz space V h
g and vt

i ∈V h
0 be a test function which

does not vanish on �sfpr. Typically, the basis and test functions of the velocity are chosen and
ordered such that the /rst Nv functions do not vanish only in the /rst component, the second Nv

functions in the second component and the last Nv functions in the third component, i.e.,

va
j =




va
j1

0

0


 if j6Nv; va

j =




0

va
j2

0


 if Nv ¡ j6 2Nv;

va
j =




0

0

va
j3


 if 2Nv ¡ j6 3Nv:
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With the following ansatz and notations:

uh =
3Nv∑
j=1

ujva
j ; va

j =




va
j1

va
j2

va
j3


 ; vt

i =




vt
i1

vt
i2

vt
i3


 ; n9� =




n1

n2

n3


 ;

we obtain∫
�sfpr

�−1(uh · n9�)(vt
i · n9�) ds

=
3Nv∑
j=1

�−1uj

∫
�sfpr

(va
j1n1 + va

j2n2 + va
j3n3)(vt

i1n1 + vt
i2n2 + vt

i3n3) ds:

This gives for i6Nv, i.e., for vt
i2 = vt

i3 = 0∫
�sfpr

�−1(uh · n9�)(vt
i · n9�) ds

=
3Nv∑
j=1

�−1uj

(∫
�sfpr

va
j1v

t
i1n

2
1 ds +

∫
�sfpr

va
j2v

t
i1n1n2 ds +

∫
�sfpr

va
j3v

t
i1n1n3 ds

)
:

Similar formulas are obtained for Nv ¡ i6 2Nv and 2Nv ¡ i6 3Nv. If the integral

�−1
∫

�sfpr

va
jlv

t
iknlnk ds; k; l = 1; 2; 3;

does not vanish, it gives a contribution to the matrix entry Akl(i; j) of system matrix (8).
The other two terms of (9) are treated in a similar way. Let

	1 =


 	11

	12

	13


 ; 	2 =


 	21

	22

	23


 ;

then the contribution to the matrix entry Akl(i; j) from (9) has the form

�−1
∫

�sfpr

va
jlv

t
iknlnk ds + �

∫
�sfpr

va
jlv

t
ik(	1l	1k + 	2l	2k) ds: (10)

Remark 3.1. For d = 2; a tangential vector is immediately given by 	1 = (n2;−n1)T. The only
alternative tangential vector is −	1 and it is obvious that the value of (10) does not depend on the
choice of the tangential vector.

For d= 3, let 	1; 	2 be two arbitrary vectors which span the tangential plane such that {n9�; 	1; 	2}
is a system of orthonormal vectors. One alternative choice of the system of tangential vectors is
to re2ect one of them, giving, e.g., the system {n9�; 	1;−	2}. Clearly, this alternative choice leaves
(10) unchanged. Another way of changing the original systems of tangential vectors is to rotate them
in the tangential plane around the axis n9� by the angle $. This operation transforms the original
system of orthonormal vectors into {n9�; 	1 cos $ + 	2 sin $; 	2 cos $ − 	1 sin $}. It is a straightfor-
ward calculation to check that this operation also does not change (10). Altogether, also for d = 3
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one can choose arbitrary tangential vectors 	1; 	2 such that {n9�; 	1; 	2} is a system of orthonormal
vectors.

The tangential vectors are chosen in the computations presented in this report as follows.

Algorithm 3.2. Computation of 	1 = (	11; 	12; 	13) and 	2 = (	21; 	22; 	23). Given the normal vector
n9� = (n1; n2; n3) with the Euclidean norm ‖n9�‖2 = 1. Then; there is at least one component ni with
|ni|¿ 0:5.

1. if (|n1|¿ 0:5 OR |n2|¿ 0:5)
2. n :=

√
n21 + n22

3. 	11 := n2=n
4. 	12 := −n1=n
5. 	13 := 0
6. 	21 := −	12n3
7. 	22 := 	11n3
8. 	23 := 	12n1 − 	11n2
9. else

10. n :=
√

n22 + n23
11. 	11 := 0
12. 	12 := −n3=n
13. 	13 := n2=n
14. 	21 := 	13n2 − 	12n3
15. 	22 := −	13n1
16. 	23 := 	12n1
17. endif

The distinction of the two cases in Algorithm 3.2 ensures that a division by zero cannot happen.

Remark 3.3. The implementation of the slip with friction and penetration with resistance boundary
condition for the time-dependent Navier–Stokes equations can be done in the analogous way as
described in this section. A numerical example using this implementation; which computes a large
eddy model of the time dependent Navier–Stokes equations; can be found in [7].

Remark 3.4. An alternative approach to implement the slip with friction and penetration with re-
sistance boundary condition is to use uh

old instead of uh in the boundary integrals in (6). Then; the
boundary integrals can be evaluated and they give contributions to the right-hand side of (7) in-
stead to the system matrix. The evaluation of the boundary integrals requires also the evaluation of
integrals of form (10).

4. Numerical studies

This section presents numerical tests for 2ows in a channel across a step in two and three
dimensions. The most distinctive feature of these 2ows is a recirculating vortex behind the step,
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Fig. 1. Two-dimensional channel with a step, streamlines of the solution, �−1 = 50, parabolic in2ow.

see Fig. 1 for an illustration. We will study the dependency of the position of the reattachment point
in 2d and the reattachment line in 3d on the value of the friction parameter �.

We used in all computations the mapped Q2=Pdisc
1 /nite element. Given the reference mesh cell

K̂ = (−1; 1)d, we de/ne

Q2(K̂):=




2∑
i; j=0

aijxi
1x

j
2


 ; P1(K̂):=




∑
06i+j61

aijxi
1x

j
2


 if d = 2;

Q2(K̂):=




2∑
i; j;l=0

aijlxi
1x

j
2x

l
3


 ; P1(K̂):=




∑
06i+j+l61

aijlxi
1x

j
2x

l
3


 if d = 3:

The spaces on an arbitrary mesh cell K are de/ned by the reference map FK : N̂K → NK , where the
overline denotes the closure,

Q2(K):={p = p̂ ◦ F−1
K : p̂∈Q2(K̂)}; P1(K):={p = p̂ ◦ F−1

K : p̂∈P1(K̂)}
and the global spaces by

Q2:={v∈H 1(�): v|K ∈Q2(K)}; Pdisc
1 :={v∈L2(�): v|K ∈P1(K)}:

This conforming pair of /nite element spaces ful/ls the inf–sup or BabuOska–Brezzi stability condi-
tion, see [11]. It is considered as a stable and well performing pair of elements for /nite element
discretizations of Navier–Stokes equations, e.g., see [2] or [6]. In addition, it has been proven to be
superior to other pairs of /nite elements in studies of benchmark problems for laminar 2ows [8,9].

The computations were performed only for such values of the viscosity parameter � for which no
additional stabilization for the reason of dominating convection was necessary. Thus, the in2uence
of stabilization schemes on the computed results was avoided.

4.1. The two-dimensional 8ow across a step

The domain of the two-dimensional 2ow across a step is presented in Fig. 2. The same domain
was used in computations in [3]. On the left-hand side, an in2ow boundary condition is prescribed.
We present results for a parabolic and a constant in2ow pro/le. On the top and bottom boundary
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Fig. 2. Two-dimensional channel with a step.

Fig. 3. Two-dimensional channel with a step, coarsest grid (level 0).

Table 1
Two-dimensional channel with a step, number of degrees of freedom

Level Velocity Pressure Total

0 482 153 635
3 26690 9792 36482
4 105602 39168 144770
5 420098 156672 576770

as well as on the step, slip with friction and no penetration boundary conditions are prescribed. The
no penetration property of the walls was imposed weakly by setting the parameter � = 10−12. The
2ow leaves the domain by an out2ow boundary condition on the right-hand side of the channel.

We are interested in computing the reattachment point of the recirculating vortex behind the step.
The end of the step is at the position x = 6. Since the tangential velocity on the bottom boundary
does not vanish due to the slip with friction boundary condition, the reattachment point is de/ned
by the change of the sign of the tangential velocity. Left of the reattachment point, the tangential
velocity is negative because of the recirculation of the vortex and right of the reattachment point it
is positive.

The computations were performed with the initial grid (level 0) presented in Fig. 3. The number
of degrees of freedom for /ner levels are given in Table 1. The /xed point iteration (5) was stopped
if the Euclidean norm of the residual vector was ¡ 10−10.

Results for the parabolic in2ow pro/le u = (u1; u2)T, with u1 = y(10 − y)=25, u2 = 0 on �diri are
presented for the viscosity parameters �−1 = 50 and �−1 = 100 in Figs. 4 and 5. For �−1 = 100, the
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Fig. 4. Two-dimensional channel with a step, parabolic in2ow pro/le, �−1 = 50.

Fig. 5. Two-dimensional channel with a step, parabolic in2ow pro/le, �−1 = 100.

position of the reattachment point moves towards the out2ow boundary if the friction on the boundary
decreases. For �−1 = 50, the reattachment point is naturally closer behind the step. There is a local
minimum of the positions of the reattachment point. On level 5, this minimum is approximately at
� = 0:4. But smaller values of the friction parameter leading again to a considerable movement of
the reattachment point in the direction of the out2ow boundary.

Figs. 6 and 7 present results which are computed for the constant in2ow pro/le u1 = 1, u2 = 0 on
�diri. The results were obtained with the values �−1 =50 and �−1 =100 for the viscosity. The position
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Fig. 6. Two-dimensional channel with a step, constant in2ow pro/le, �−1 = 50.

Fig. 7. Two-dimensional channel with a step, constant in2ow pro/le, �−1 = 100.

of the reattachment point moves in all computations towards the out2ow boundary for smaller values
of the friction parameter �.

Remark 4.1. The position of the reattachment point for large values of � is very close to the position
of this point using no slip boundary conditions on the bottom and top wall. It can be observed that
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Fig. 8. Three-dimensional channel with a step.

Table 2
Three-dimensional channel with a step, number of degrees of
freedom

Level Velocity Pressure Total

0 7953 1020 8973
1 56007 8160 64167
2 419307 65280 484587

it is in general not possible to catch the reattachment point for no slip boundary conditions on a
/ne level by an appropriate choice of � on a coarse level.

Remark 4.2. One can think of applying no slip boundary conditions weakly by choosing a large
value of the friction parameter �. However; in our computations; we could not solve the arising
systems of equations for large values of �. We applied as solver the 2exible GMRES method
de/ned in [12] with a so-called multiple discretization multilevel method; as introduced in [8,9]; as
preconditioner. This solver has been proven to be very robust and eKcient in a benchmark problem
for the Navier–Stokes equations [9]. We think that the problems in the solution of the linear system
are caused by the growing dominance of a semi-de/nite operator in the system matrix for large �;
see Remark 2.1. Thus; no slip boundary conditions should be applied always in the standard way
by setting the degrees of freedom on the boundary.

4.2. The three-dimensional 8ow across a step

The domain as well as the boundary conditions in these tests are given in Fig. 8. In the /rst test,
we applied free slip boundary conditions at the left and right wall and in the second test no slip
boundary conditions. At the in2ow, the constant in2ow pro/le u1 = 1; u2 = u3 = 0 was prescribed.
The no penetration condition was again imposed weakly by setting � = 10−12.
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Fig. 9. Three-dimensional channel with a step, slip boundary conditions at the lateral boundaries, �−1 = 20.

Fig. 10. Three-dimensional channel with a step, reattachment line for no slip boundary conditions at the lateral boundaries,
�−1 = 20.

The initial grid is generated by the so-called sandwich grid technique. The grid presented in
Fig. 3 can be seen on the left and the right wall of the domain and in between there are /ve equal
sized layers of mesh cells. The corresponding numbers of degrees of freedom arising in the Q2=Pdisc

1
/nite element discretization are given in Table 2. The /xed point iteration (5) was stopped if the
Euclidean norm of the residual was ¡ 10−10.
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Using free slip conditions on the left and right wall gives a 2ow /eld which is independent of z.
Thus, the reattachment point for each value of z is the same and the reattachment line is a straight
line. We present the coordinate of this straight line for the viscosity parameter �−1 = 20 in Fig. 9.
As in the two-dimensional tests, the reattachment line moves toward the out2ow boundary if the
friction parameter is chosen smaller.

Applying no slip boundary conditions at the left and the right wall, one gets reattachment lines
which are symmetric for z = 5, see Fig. 10. The computations in this test were performed on
level 2. As expected, the reattachment line is the closer to the out2ow boundary the smaller the
friction parameter � is. But there are only small diLerences in the position of this line for � = 0:5
and � = 10.

As in the two-dimensional computations, the use of larger values of � then presented here failed
because we could not solve the arising systems of equations, see Remark 4.2.
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