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Abstract

This paper presents a numerical study of a posteriori error estimators for convection±di�usion equations. The study involves the

gradient indicator, an a posteriori error estimator which is based on gradient recovery, three residual-based error estimators for

di�erent norms, and two error estimators which are de®ned by solutions of local Neumann problems. They are compared with respect

to the reliable estimation of the global error and with respect to the accuracy of the computed solutions on adaptively re®ned grids. The

numerical study shows for both criteria of comparison that none of the considered error estimators works satisfactorily in all

tests. Ó 2000 Elsevier Science S.A. All rights reserved.

MSC: 65N50; 65N30

Keywords: Convection-dominated problems; A posteriori error estimation; Adaptive grid re®nement

1. Introduction

Scalar convection±di�usion equations describe the transport of a scalar quantity, e.g. temperature or
concentration. This transport is composed of a di�usive part and a convective part which dominates in
general. The mathematical analysis and the numerical solution of convection-dominated convection±dif-
fusion equations have been of great interest for the last decades, for an overview of the development and the
results see [16,18]. The solution of a convection±di�usion equation possesses, in general, layers. These are
small subregions where the derivatives of the solution are very large. From their mathematical properties,
one distinguishes between regular or exponential boundary layers, parabolic boundary layers, interior
layers, and corner layers. The accurate computation of such singularities is of great importance in the
numerical solution of convection±di�usion equations.

The use of a posteriori error estimators for estimating the global error as well as for obtaining infor-
mation for adaptive mesh-re®nement techniques is nowadays a standard component in numerical codes for
solving partial di�erential equations. Rigorous analysis of a posteriori error estimators started at the end of
the 1970s by the pioneering paper [6]. During the 1980s and at the beginning of the 1990s, fundamental and
general approaches for analyzing a posteriori error estimators for ®nite element solutions of many classes of
partial di�erential equations have been developed, e.g. in [3,4,7,11,19]. However, these techniques often
lead to problem-dependent constants in a posteriori error estimates for convection±di�usion equations.
These constants may be very large and they may dominate the a posteriori error estimate in such a way that
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the error estimator does not give reliable information on the error. During the last years, increasing e�orts
were made in the development of a posteriori error estimators for which the constants in the estimates do
not or do only weakly depend on the problem [5,21].

This report presents a numerical comparison of some standard a posteriori error estimators which are
often used in the numerical solution of convection±di�usion equations, see Table 1 for an overview of
the error estimators. The comparison is twofold. First, the reliability of the error estimators is studied,
i.e. the accuracy of the approximation of the true global error. Second, adaptively re®ned grids are used
in order to compute solutions with sharp layers. We compare the quality of the adaptive meshes which
are generated by the di�erent error estimators, i.e. the accuracy of the computed solutions on these
meshes.

The report is organized as follows: in Section 2, the scalar convection±di�usion equations and their
discretization are presented. Section 3 contains a detailed description of the a posteriori error estimators
which are studied. In Section 4, we give some general comments to the numerical tests. The numerical tests
with respect to the estimation of the global error are presented in Section 5 and with respect to the adaptive
grid generation in Section 6. Section 7 summarizes the results of the numerical studies.

2. Scalar convection±di�usion equations

In this section, we give the class of problems we are interested in, describe the ®nite element discreti-
zation of the problems and introduce the notations which will be used in this report.

Let X � R2 be a bounded domain with boundary oX. We consider scalar convection±di�usion equations

ÿr � eru� b � ru� cu � f in X;

u � g on oXD; �1�
e
ou
on
� gN on oXN ;

where the boundary oX � oXD [ oXN is Lipschitz-continuous with oXD \ oXN � ; and meas�oXD� > 0. The
constant e is positive. The coe�cient functions b; c; f and the boundary data g; gN are assumed to be
su�ciently smooth.

For any open subset x � �X, we denote by L2�x� and Hk�x�; k P 1, the standard Lebesgue and Sobolev
spaces equipped with the norms k � k0;x :� k � kL2�x�, k � kk;x :� k � kHk�x� and the inner product

��; ��x :� ��; ��L2�x�, see [1]. The energy norm is de®ned to be k � k1;e;x :� �ej � j21;x � k � k2
0;x�1=2

. If x � X, we

will omit the index x.

We de®ne V0 :� fv 2 H 1�X�; v � 0 on oXDg. A weak formulation of problem (1) reads as follows:
Find u 2 H 1�X� such that 8v 2 V0

a�u; v� � b�u; v� � c�u; v� � �f ; v� � �gN ; v�oXN
;

u � g on oXD;
�2�

Table 1

A posteriori error estimators included in the numerical study

Name Type Norm

ggradind Gradient indicator

gZZ-H1 Gradient recovery, Zienkiewicz±Zhu H 1-semi norm

gres-H1 Residual-based H 1-semi norm

gres-L2 Residual-based L2-norm

gres-eng Residual-based Energy norm

gNeumGa-H1 Local Neumann problems, Galerkin discretization H 1-semi norm

gNeumSD-H1 Local Neumann problems, SDFEM discretization H 1-semi norm
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where

a�u; v� � �eru;rv�; b�u; v� � �b � ru; v�; c�u; v� � �cu; v�:
Let Th be a decomposition of X into open triangles. A triangle is denoted by K, its diameter (longest

edge) by hK , an edge by E, and the length of the edge by hE. We consider only admissible and shape-regular
families of triangulations fThg. A triangulation is called admissible if the intersection of the closure of two
triangles is either empty, a common vertex, or a common edge. A family of triangulations is said to be
shape-regular if there exists a constant C independent of Th such that for all triangulations

hK

hE
6C 8K 2Th 8E � oK:

We use the streamline-di�usion ®nite element method (SDFEM) to discretize (2), [12]. The SDFEM
stabilizes a convection-dominated problem by adding weighted residuals to the standard Galerkin ®nite
element method. This corresponds to an addition of arti®cial viscosity along streamlines. Let P1�K� be the
space of polynomials of degree not greater than 1 de®ned on the mesh cell K and de®ne the ®nite element
spaces

Vh :� fvh 2 H 1�X� : vhjK 2 P1�K�g; Vh0 :� fvh 2 Vh : vhjoXD
� 0g:

The discrete problem obtained with the SDFEM is the following:
Find uh 2 Vh such that 8vh 2 Vh0

a�uh; vh� � b�uh; vh� � c�uh; vh� �
X

K2Th

dK�ÿeDuh � b � ruh � cuh; b � rvh�K

� �f ; vh� � �gN ; vh�oXN
�
X

K2Th

dK�f ; b � rvh�K ; �3�

u � g on oXD:

A constant dK must be chosen for every mesh cell K. Let the cell Pecl�et number be de®ned by

PeK :� kbk1;KhK

2e
;

where k � k1;K denotes the norm in L1�K�� �2. From the analysis of the SDFEM, the following choices of dK

are optimal:

dK � d0hK=kbk1;K if PeK > 1 �convection-dominated�;
d1h2

K=e if PeK 6 1 �diffusion-dominated�;
�

�4�

with appropriate user-chosen constants d0 and d1, e.g. see [18].
The jump vhj j� �E of a function vh 2 Vh across a face E is de®ned by

vhj j� �E :�
lim
t!�0

vh�x� tnE� ÿ vh�xÿ tnE�f g; E 6� oX;

lim
t!�0

ÿ vh�xÿ tnE�f g; E � oX;

(

where nE is a normal unit vector on E and x 2 E. If E � oX, we choose the outer normal, otherwise nE has
an arbitrary but ®xed orientation. With that, every edge E which separates two neighbouring triangles K1

and K2 is associated with a uniquely oriented normal nE (for de®niteness from K1 to K2) and we have
vhj j� �E � vhjK2

ÿ vhjK1
.

3. A posteriori error estimators and indicators

This section starts with some general remarks on the tasks and properties of a posteriori error
estimators. Its main part is the presentation of the a posteriori error estimators and indicators which are
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included in the numerical studies. Last, we mention some a posteriori error estimators which are not studied
in this report.

3.1. Tasks and properties of a posteriori error estimators

As a ®rst step in a posteriori error estimation, a norm has to be chosen in which the error should be
estimated. The question of what are appropriate norms for error estimation for convection±di�usion
equations is still under discussion within the scienti®c community. In this report, we investigate error es-
timators for the L2-norm, the H 1-semi norm, and the energy norm. From uÿ uh � 0 on oXD and Poincare's
inequality follow that the H 1-semi norm of the error is equivalent to its H 1-norm.

A posteriori error estimators estimate the error of the computed discrete solution uh of (3) and the
unknown solution u of the continuous problem (1) in a prescribed norm k � k using only information which
are available during the solution process, like the discrete solution itself and the data of the problem.

Let gK be the estimated error on the mesh cell K and g � �PK2Th
g2

K�1=2
the estimated global error. The

error estimation should be twofold. A global upper estimate

kuÿ uhk6 cg �5�

gives information on the global error. The global error estimate (5) serves as a stopping criterion of the
solution process. Given a required accuracy tol, then the discrete solution uh is suf®ciently accurate if
cg6 tol. Here, the constant c in (5) must be known at least approximately. A local lower estimate

gK 6 cKkuÿ uhkU�K�; �6�

where U�K� is a neighbourhood of the mesh cell K, insures a local error where gK is positive. This justi®es,
in combination with the assumption that the constants cK are of the same magnitude for all mesh cells K,
the use of a posteriori error estimators for the control of the adaptive grid re®nement. Summation of (6)
over all mesh cells gives a lower estimate of the global error. In general, (5) and (6) can be proven only with
some extra terms on the right-hand side which, for e.g. measure errors coming from the numerical inte-
gration of the coef®cients of the problem. Using appropriate quadrature rules, these additional terms are of
higher order.

De®nition 3.1. The e�ciency index of an a posteriori error estimator is the ratio of the estimated and the
true error

Ieff :� g
kuÿ uhk :

An a posteriori error estimator is called e�cient, if Ieff and Iÿ1
eff are bounded for all triangulations. An

e�cient a posteriori error estimator is called robust for a class of problems, if Ieff and Iÿ1
eff are bounded

independently of the particular problem, especially independently of the coe�cients of the problem.

3.2. The gradient indicator ggradind

The gradient indicator is widely used in software packages for the control of the adaptive grid re®nement
for the reason of its simplicity. It is de®ned on the mesh cell K by

ggradind;K :� kruhkL2;K ;

i.e., the indicator is large in mesh cells where the L2- norm of the gradient of uh is large. These mesh cells will
be re®ned. The gradient indicator is easy to implement and independent of the class of problems. However,
an estimate of the global error is not possible with ggradind.
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3.3. The Zienkiewicz±Zhu estimator gZZ-H1

The Zienkiewicz±Zhu estimator was proposed in [22]. Its aim is to estimate kruÿruhkL2�K�: For this
purpose, a higher-order recovery Gu of ru will be constructed using only uh. If the approximation Gu is
more accurate than ruh, i.e.

kruÿ GukL2�K�6 ckruÿruhkL2�K�; c < 1;

then the two-sided estimate of the true error

1

1� c
kGuÿruhkL2�K�6 kruÿruhkL2�K�6

1

1ÿ c
kGuÿruhkL2�K�

is valid. In this case

gZZ-H1;K :� kGuÿruhkL2�K� 8K

is an error estimator for the H 1-semi norm.
There are di�erent ways to construct Gu. In general, the function Gu at a point is an average of the

gradient of uh in a neighbourhood of that point. We assume that Gu is completely determined by its values in
the nodes of the grid, i.e. in the vertices of the triangles. Thus, we can identify Gu with a continuous and
piecewise linear function in each component. Let A be a node of the mesh and xA be the union of all mesh
cells with node A . Then, Gu�A� is de®ned as the weighted average of the gradients of uh of all mesh cells in xA

Gu�A� �
X
K2xA

jKj
jxAj ruhjK ;

where jKj is the area of K and jxAj the area of xA. This error estimator is independent of the class of
problems. To our knowledge, there is no analysis for this type of error estimator for convection±diffusion
problems.

3.4. A residual-based error estimator in the H 1-semi norm gres-H1

The general form of residual-based a posteriori error estimators for convection±di�usion problems is

g2
�;K :� aKkfh � eDuh ÿ bh � ruh ÿ chuhk2

0;K �
X

E�oK; E 6� oXN

bE

2
k eruh � nEj j� �Ek2

0;E

�
X

E�oK; E�oXN

bEkeruh � nE ÿ gNhk2
0;E; �7�

where fh, bh, ch and gNh are approximations of f ; b; c; gN such that the restriction to each element K of
fh � eDuh ÿ bh � ruh ÿ chuh and the restriction of gNh to each edge E � oXN are polynomials of some ®xed
degree k. The ®rst term of g�;K is the norm of the residual of the strong formulation (1) of the convection±
diffusion equation. The second term measures the jumps of ruh across edges. The third term measures the
error in the Neumann boundary condition.

An a posteriori error estimator for the H 1-semi norm gres-H1 is obtained by choosing aK � h2
K and

bE � hE. For gres-H1 , a global upper estimate (5) and a local lower estimate (6) can be proven for the SDFEM
discretization (3), e.g. see [19]. However, the constants in these estimates depend on the data of the problem
and for large mesh Pecl�et numbers they even may depend on the size of the triangles. It turns out that gres-H1

is not robust, see also Section 5.

3.5. A residual-based error estimator in the L2-norm gres-L2

A residual-based a posteriori error estimator gres-L2 for kuÿ uhk0 can be obtained by choosing aK � h4
K

and bE � h3
E in (7). A local lower estimate of type (6) can be proven with the help of smooth cut-o�
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functions, see [15,20]. For the standard Galerkin discretization, a global upper estimate (5) can be proven
using a duality technique proposed in [11]. The constants in these estimates depend on the mesh size for
large mesh Pecl�et numbers and on the coe�cients of the particular problem for small mesh Pecl�et numbers.
Thus, gres-L2 is not robust, which is also demonstrated in Section 5.

3.6. A residual-based error estimator in the energy norm gres-eng

In [21], a residual-based a posteriori error estimator for the energy norm gres-eng is de®ned by choosing
aK � minfh2

Keÿ1; 1g and bE � minfhEeÿ1; eÿ1=2g in (7). A global upper estimate (5) and a local lower esti-
mate (6) are proven for the SDFEM discretization (3). In the case of small mesh Pecl�et numbers, gres-eng is
robust. However, for the more interesting case of large mesh Pecl�et numbers, the constants in the estimates
may depend on the coe�cients of the problem. The character of this dependence varies with properties of
the solution of the particular problem, cf. Section 5.

3.7. An error estimator based on the solution of local Neumann problems, Galerkin discretization, gNeumGa-H1

Error estimation with the solution of local Neumann problems, which are de®ned on a single mesh cell,
was proposed ®rst in [7]. This approach is also called element residual method [3,4].

The global error can be represented as the solution of a convection±di�usion equation (1) with the re-
sidual as right-hand side. In the element residual method, this global error residual problem is solved
approximately in a ®nite element space consisting of piecewise polynomials of a higher order than the
polynomials in Vh. Continuity across edges of these ®nite element functions is not required.

We consider a mesh cell K with edges Ei; i � 1; 2; 3. Let kEi denote the barycentric coordinates of edge Ei.
We de®ne the four-dimensional space on K

VK � spanfBK ;BEi ; i � 1; 2; 3g;
where BK is the element bubble function and BEi are the edge bubble functions de®ned in K by

BK � 27kE1
kE2

kE3
; BEi � 4kE�i�1�modulo3

kE�i�2�modulo3
:

An approximate solution of the global error residual problem is computed in the space [K2Th VK . Because of
the discontinuity of the functions in this space, the solution of the global equation can be split into solutions
of Neumann problems which are de®ned in a single mesh cell K:

Find eK 2 VK such that 8vK 2 VK

a�eK ; vK� � b�eK ; vK� � c�eK ; vK� � �f � eDuh ÿ b � ruh ÿ cuh; vK�K ÿ
1

2

X
E; E�oK; E 6� oX

� eruh � nEj j� �E; vK�E

�
X

E; E�oK; E�oXN

�g ÿ eruh � nE; vK�E: �8�

The right-hand side of the global error residual problem contains the term ÿ� eruh � nEj j� �E; vK�E for each
inner edge E. In the de®nition of (8), this term is distributed in equal parts to both mesh cells having the
common edge E. As local error estimator for the H 1-semi norm, we de®ne

gNeumGa-H1;K :� jeK j1;K :

This approach contains two di�culties. First, the continuous local Neumann problem corresponding to (8)
is, in general, not solvable since compatibility conditions between the right-hand side and the Neumann
boundary data may not be ful®lled. The reason is the simple, problem-independent distribution of
ÿ� eruh � nEj j� �E; vK�E for inner edges. This problem led to the development of more sophisticated and
complicated distributions called equilibrated flux approach [2,4]. Nevertheless, the discrete problem (8) has a
unique solution. Second, (8) is the Galerkin discretization of a possible convection-dominated problem.
This discretization is not H 1-stable and the solution eK may have oscillations.
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3.8. An error estimator based on the solution of local Neumann problems, SDFEM discretization, gNeumSD-H1

The problem of the non-stable Galerkin discretization in (8) can be solved by using an additional sta-
bilization in the de®nition of the local Neumann problems. We use a (simpli®ed) SDFEM discretization:

Find eK 2 VK such that 8vK 2 VK

a�eK ; vK� � b�eK ; vK� � c�eK ; vK� � dK�b � reK � ceK ; b � rvK�K
� �f � eDuh ÿ b � ruh ÿ cuh; vK � dKb � rvK�K ÿ

1

2

X
E; E�oK; E 6� oX

� eruh � nEj j� �E; vK�E

�
X

E; E�oK; E�oXN

�g ÿ eruh � nE; vK�E:

The parameter dK is chosen in accordance with (4), where the same values of d0 and d1 were used as in the
stabilization of the global problem. The local a posteriori error estimator in the H 1-semi norm is de®ned by

gNeumSD-H1;K :� jeK j1;K :
To our knowledge, there are no estimates of type (5) and (6) for gNeumGa-H1 and gNeumSD-H1 for convection-
dominated convection±di�usion equations.

3.9. Some a posteriori error estimators not considered in this report

Residual-based a posteriori error estimators can be de®ned also for Lp and W 1;p-norms, 1 < p <1, see
[19,20]. The extension of the other types of error estimators to di�erent norms can be done simply by using
these norms in the de®nition of the error estimators.

In [5], a robust a posteriori error estimator is constructed in a norm which is somewhat weaker than the
energy norm and which is de®ned implicitly by an in®nite dimensional variational problem. Thus, the norm
can be hardly computed in practice. To compute the error estimate, local Dirichlet problems have to be solved.

In [13], an error indicator which is based on information from a wavelet decomposition of the discrete
solution is used as adaptive re®nement criterion. The solution u of (1) can be decomposed into a large scale
space component and components in wavelet spaces. The solution of the reduced convection±diffusion
problem can be represented in the large scale space very well. The absolute values of the wavelet coef®cients
are larger in a neighbourhood of layers than in regions away from layers. To compute the error indicator,
the discrete solution uh is decomposed instead of u and the wavelet coef®cients of this decomposition are
used as error indicator.

4. General comments to the numerical studies

In this section, some parameters are explained which are important in the practical application of a
posteriori error estimators and some general comments to the numerical tests presented below are given.

For the solution of the discrete problem (3), we apply the program ¯ow depicted in Fig. 1. Within this
program ¯ow, some parameters have to be chosen whose values may in¯uence the results of the compu-
tations considerably.

The computation starts on an initial grid (level 0). First, an error estimator and a level on which the
adaptive grid re®nement should start (max_uni_level) must be chosen. Up to the max_uni_level, uniform grid
re®nement is applied. The most important features of the solution should be recognizable on the
max_uni_level, e.g. the position of layers. It depends on the particular problem when this will be achieved. In
general, an appropriate max_uni_level has to be found by numerical tests. After the computation of the error
estimator, every mesh cell K possesses a number g�;K . With the help of these numbers, it must be decided
which mesh cells should be re®ned or coarsened. In all our experiences, the coarsening of cells is unim-
portant for stationary problems and an appropriate chosen max_uni_level. Given a tolerance ref_tol and a
reference value �g, a mesh cell K will be re®ned if g�;K P ref_tol �g. There are several ways to choose �g, [14,17].
We use �g � maxK2Th g�;K . To obtain an ef®cient adaptive algorithm for the solution of stationary problems,
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a suf®cient increase of the number of degrees of freedom after an adaptive re®nement step is important. This
prevents the expensive assembling and solving of a discrete system with only few new degrees of freedom
which in general results only in a minor improvement of the discrete solution. We prescribe a minimal
amount of mesh cells (in %) which must be marked for re®nement (min_ref ). If not suf®ciently many mesh
cells are marked for re®nement, then we set ref_tol :� ref_tol/1.1 and the mesh cells are marked again.

The following parameters were used in the examples presented in Sections 5 and 6: max_uni_level � 3,
ref_tol � 0.5, min_ref � 0.1 (� 10%). It turned out in all tests that this choice of min_ref dominated the
choice of ref_tol, i.e. ref_tol had to be decreased several times before enough cells were marked for re-
®nement.

To have a fair comparison of the di�erent a posteriori error estimators, the di�erent adaptive meshes
should possess approximately the same number of degrees of freedom. The computations were stopped
after the ®rst mesh on which the sum of degrees of freedom (d.f.) and Dirichlet nodes exceeded 100 000.
This stopping criterion re¯ects the fact that the computation terminates if the memory of the computer is
exhausted. Loosely speaking, we de®ne the memory to be exhausted after the ®rst computation with more
than 100 000 d.f. The errors in the di�erent norms were computed with a 7-point quadrature rule, see
[10, (25.19)]. The computations were carried out on simple geometries and the coarsest grids (level 0)
presented in Fig. 2. The streamline-di�usion parameters d0 � 0:5 and d1 � 0:25 in (4) were used in all tests.

5. The estimation of the global error

This section presents numerical tests which study the behaviour of the a posteriori error estimators with
respect to the estimation of the global error. First, we consider an example with polynomial solution,
second a solution which possesses regular boundary layers, and third a solution with a circular inner layer.

Fig. 2. Coarsest grids for the numerical studies, Grid 1, 2, 3, 4 (left to right).

Fig. 1. The program ¯ow.
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Example 5.1 (Polynomial solution). We consider (1) for di�erent values of e, b � �3; 2�T; c � 2, X � �0; 1�2,
oXD � oX, and g � 0. The right-hand side is chosen such that

u�x; y� � 100�1ÿ x�2x2y�1ÿ 2y��1ÿ y�
is the solution. The derivatives of the solution do not depend on e which is not typical for solutions of
convection±di�usion equations. We used uniform re®nement starting with the initial Grid 1, Fig. 2, which
results in 263 169 d.f. on level 8. The results of the numerical tests are presented in Figs. 3±5.

Fig. 3. E�ciency indices, gZZ-H1 (left) and gres-H1 (right), Example 5.1.

Fig. 4. E�ciency indices, gres-L2 (left) and gres-eng (right), Example 5.1.

Fig. 5. E�ciency indices, gNeumGa-H1 (left) and gNeumSD-H1 (right), Example 5.1.
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The error estimator gZZ-H1 has e�ciency indices close to 1 independent of e. The global error is estimated
very well. Also, the e�ciency indices obtained with gNeumSD-H1 are quite good independent of e. The e�-
ciency indices of gNeumGa-H1 are oscillating somewhat for large mesh Pecl�et numbers due to the non-stable
discretization of the local problems. But the results are still acceptable for all e. In Example 5.1, all coef-
®cients are constant, the derivatives of the solution do not depend on e, and all mesh cells have the same
size. Thus, the behaviour of the residual-based a posteriori error estimators can be predicted from ana-
lytical results. From local lower estimates of type (6) for gres-H1 [19], and gres-L2 [14], follow

Ieff 6C
hK if hKkbk1 > e;
e if hKkbk16 e:

�
The numerical tests con®rm these predictions. These error estimators are not robust and the estimated
errors do not give reliable information about the true errors. Analogously, the local lower estimate for
gres-eng, [20], leads to the prediction

Ieff 6C
eÿ1=2 if hK > e1=2;
1� hKeÿ1 if e1=2 P hK > e;
1 if e > hK :

8<:
This behaviour can be observed well in the numerical tests. Especially in the most interesting case of large
mesh Pecl�et numbers, gres-eng overestimates the true energy error considerably (see Fig. 4).

Example 5.2 (Solution with regular boundary layers). We solve (1) for di�erent values of e, b � �2; 3�T,
c � 1, X � �0; 1�2, and oXD � oX. The right-hand side and the boundary conditions are chosen such
that

u�x; y� � xy2 ÿ y2 exp
2�xÿ 1�

e

� �
ÿ x exp

3�y ÿ 1�
e

� �
� exp

2�xÿ 1� � 3�y ÿ 1�
e

� �
is the solution, see Fig. 6. The solution possesses typical regular boundary layers at x � 1 and y � 1.

The computations were carried out on adaptive grids which were generated by the investigated error
estimator itself. The accuracy of the solutions on these grids is studied in Example 6.1. We used Grid 1,
Fig. 2, as initial grid and present the e�ciency indices obtained with the di�erent error estimators in
Figs. 7±9.

The e�ciency index of gZZ-H1 behaves for large mesh Pecl�et numbers like O�e� and converges for small
mesh Pecl�et numbers to 1. However, within the range of about 100 000 d.f., the error is largely underes-
timated for small e (see Fig. 7). The error estimator gNeumSD-H1 shows a similar behaviour (see Fig. 9). The
situation is much better for gNeumGa-H1 . Even for only some 1000 d.f., the error is underestimated less than
the factor 5 for all e. However, we think this is the result of two errors which act in opposite directions and
which are of the same order of magnitude in this example. First, the solution of local problems seems to

Fig. 6. Solution and contour-lines of Example 5.2, e � 10ÿ6.
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lead to a large underestimation of the error for small e, see gNeumSD-H1 . Second, the non-stable discretization
of the local problems for computing gNeumGa-H1 leads to oscillating local solutions of (8) and causes a large
H 1-semi norm of eK . This results in an increase of the estimated error. Analytical investigations are nec-
essary to clarify the interaction of these two errors. The error estimators gres-H1 and gres-L2 strongly un-
derestimate the error. In this example, gres-L2 shows the same behaviour as in Example 5.1 whereas the
e�ciency indices of gres-H1 behave like O�e� for all meshes. In contrast, gres-eng gives reliable error estimates
provided the mesh within the boundary layers is su�ciently ®ne. This is achieved for about 1000 d.f. for all

Fig. 7. E�ciency indices, gZZ-H1 (left) and gres-H1 (right), Example 5.2.

Fig. 9. E�ciency indices, gNeumGa-H1 (left) and gNeumSD-H1 (right), Example 5.2.

Fig. 8. E�ciency indices, gres-L2 (left) and gres-eng (right), Example 5.2.
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considered values of e. The behaviour of the residual-based a posteriori error estimators can be explained
with local lower estimates proven in [19±21].

Example 5.3 (Solution with a circular inner layer). This example is given by b � �2; 3�T, c � 2, X � �0; 1�2,
oXD � oX, and g � 0. The right-hand side is chosen such that

u�x; y� � 16x�1ÿ x�y�1ÿ y� 1

2

 
� arctan�2 ��

e
p �0:252 ÿ �xÿ 0:5�2 ÿ �y ÿ 0:5�2��

p

!

is the solution of (1), see Fig. 10. The solution possesses a circular inner layer where its gradient behaves like
O�eÿ1=2�.

The computations were carried out on adaptively re®ned grids which were produced by the investigated
error estimator itself, starting with Grid 1, Fig. 2, as initial grid. The accuracy of the numerical solutions on
these grids is studied in Example 6.2 and the e�ciency indices are presented in Figs. 11±13.

The e�ciency indices of gZZ-H1 behave in between Examples 5.1 and 5.2. On one hand, they are close to 1
for all e. But on the other, the tendency of underestimating the error for large mesh Pecl�et numbers can be
already observed. The residual-based error estimators gres-H1 and gres-L2 underestimate the error in all tests.
The underestimation is larger the smaller e is. The residual-based error estimator gres-eng behaves like in
Example 5.1. For large mesh Pecl�et numbers, it overestimates the error considerably. A similar behaviour
shows gNeumGa-H1 . The stabilization of the local problems leads to much better results. The e�ciency indices
with gNeumSD-H1 are good for all values of e (see Fig. 12).

Remark 5.1. Numerical tests show that the behaviour of the residual-based error estimators can be im-
proved considerably by applying a feed-back approach [8,9]. In this approach, a dual problem with an
appropriate right-hand side has to be solved. Important constants arising in the error estimates can be

Fig. 10. Solution of Example 5.3, e � 10ÿ6.

Fig. 11. E�ciency indices, gZZ-H1 (left) and gres-H1 (right), Example 5.3.
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estimated with the solution of the dual problem. However, solving the dual problem is approximately as
expensive as solving (3).

6. The adaptive grid re®nement

This section presents numerical studies of the behaviour of the a posteriori error estimators with respect
to the adaptive grid re®nement. The examples cover all kinds of singularities which were mentioned in
Section 1. In some examples, the solution does not possess the regularity which is assumed in the analysis of
some error estimators. However, we think that such examples are of interest since in practical applications,
the regularity of the solution is not known in general but appropriate re®ned grids are also necessary. The
error is denoted by eh � uÿ uh.

Example 6.1 (Solution with regular boundary layers). We consider the same problem with the same pa-
rameters in the numerical tests as in Example 5.2.

The errors of the solutions computed on adaptive grids which were generated by the a posteriori error
estimators are given in Table 2. The corresponding adaptively re®ned grids for e � 10ÿ6 are presented in
Figs. 14±16.

The solutions on the grids produced by ggradind are unsatisfactory for all e. Fig. 14 shows that not the
complete boundary layers are re®ned but only the region where the layers are steepest. A similar behaviour
shows gZZ-H1 for small e. All residual-based a posteriori error estimators produce adaptively re®ned grids on
which the solutions are much more accurate than for uniform re®nement. It can be derived from the

Fig. 12. E�ciency indices, gres-L2 (left) and gres-eng (right), Example 5.3.

Fig. 13. E�ciency indices, gNeumGa-H1 (left) and gNeumSD-H1 (right), Example 5.3.
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Table 2

Errors of computed solutions on adaptively re®ned grids, Example 6.1

Estimator e � 10ÿ2 e � 10ÿ4 e � 10ÿ6

d.f. kehk0 jehj1 d.f. kehk0 jehj1 d.f. kehk0 jehj1
Uniform 263 169 3:04ÿ 3 1.43 263 169 1:60ÿ 2 318 263 169 1:57ÿ 2 32 391

ggradind 126 878 1:50ÿ 3 0.35 161 114 1:40ÿ 2 277 166 057 2:07ÿ 2 42 370

gZZ-H1 100 425 3:42ÿ 4 0.22 113 621 1:08ÿ 2 211 101 826 2:76ÿ 2 53 493

gres-H1 149 842 1:98ÿ 4 0.18 101 814 1:83ÿ 3 39 135 545 2:26ÿ 3 4522

gres-L2 137 957 1:33ÿ 4 0.21 132 791 2:10ÿ 3 45 141 850 2:65ÿ 3 5347

gres-eng 149 842 1:98ÿ 4 0.18 117 265 1:65ÿ 3 34 133 252 3:40ÿ 3 6390

gNeumGa-H1 113 514 2:44ÿ 4 0.21 124 653 1:71ÿ 3 32 107 608 2:62ÿ 3 5122

gNeumSD-H1 140 602 2:73ÿ 4 0.19 130 801 1:69ÿ 3 34 100 129 7:01ÿ 3 12953

Fig. 16. Mesh with gNeumSD-H1 , Example 6.1, e � 10ÿ6.

Fig. 14. Mesh with ggradind, gZZ-H1 , gres-H1 (left to right), Example 6.1, e � 10ÿ6.

Fig. 15. Mesh with gres-L2 , gres-eng, gNeumGa-H1 (left to right), Example 6.1, e � 10ÿ6.
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weights aK and bE of these error estimators that gres-L2 tends to re®ne large mesh cells earlier than gres-H1 , and
gres-H1 tends to re®ne large mesh cells earlier than gres-eng. This can be observed very well on the meshes
presented in Figs. 14 and 15. The a posteriori error estimator gNeumGa-H1 generates good meshes indepen-
dently of e whereas gNeumSD-H1 does not re®ne within the complete boundary layer for e � 10ÿ6.

This example shows that some error estimators have problems to produce appropriate adaptively re®ned
grids already in the relatively simple situation that the solution possesses only regular boundary layers.

Example 6.2 (Solution with a circular inner layer). This example is described in Example 5.3. The errors of
the computed solutions are given in Table 3 and the adaptively re®ned meshes for e � 10ÿ8 are presented in
Figs. 17±19.

Table 3

Errors of computed solutions on adaptively re®ned grids, Example 6.2

Estimator e � 10ÿ4 e � 10ÿ6 e � 10ÿ8

d.f. kehk0 jehj1 d.f. kehk0 jehj1 d.f. kehk0 jehj1
Uniform 263 169 6:31ÿ 5 1:71ÿ 1 263 169 5:27ÿ 3 5.81 263 169 1:62ÿ 1 87.35

ggradind 150 046 3:05ÿ 4 1:08ÿ 1 122 656 6:28ÿ 3 1.29 103 482 4:43ÿ 1 44.04

gZZ-H1 128 761 6:48ÿ 5 7:83ÿ 2 120 211 3:27ÿ 4 0.89 115 861 4:66ÿ 1 49.38

gres-H1 120 021 2:15ÿ 5 8:76ÿ 2 114 901 1:10ÿ 4 0.95 113 612 4:62ÿ 3 16.99

gres-L2 126 598 2:16ÿ 5 9:77ÿ 2 116 059 1:35ÿ 4 1.17 113 593 5:35ÿ 3 22.63

gres-eng 126 274 2:31ÿ 5 8:46ÿ 2 115 342 2:14ÿ 4 0.93 127 698 2:92ÿ 1 66.72

gNeumGa-H1 157 203 9:02ÿ 5 7:66ÿ 2 118 976 7:56ÿ 2 22.65 134 782 2:74ÿ 1 53.66

gNeumSD-H1 134 535 5:19ÿ 5 9:00ÿ 2 141 760 3:94ÿ 4 1.05 106 149 2:01ÿ 2 29.63

Fig. 17. Mesh with ggradind, gZZ-H1 , gres-H1 (left to right), Example 6.2, e � 10ÿ8.

Fig. 18. Mesh with gres-L2 , gres-eng, gNeumGa-H1 (left to right), Example 6.2, e � 10ÿ8.
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The results for e � 10ÿ4 are satisfying for all error estimators but ggradind. The error estimator gNeumGa-H1

fails completely for e � 10ÿ6. Instead of re®ning the region where the inner layer is situated, the out¯ow
boundary is re®ned like in Fig. 18. For e � 10ÿ8, gres-H1 , gres-L2 , and gNeumSD-H1 produce meshes where the
region of the inner layer is re®ned completely. The computed solutions on these meshes are much more
accurate than for uniform re®nement although they still possess some oscillations. All other error esti-
mators fail to re®ne appropriately and the computed solutions are of poor quality.

Example 6.3 (Solution with discontinuous boundary conditions and inner layers). We consider (1) with
e � 10ÿ3, b � �1; 0�T , c � 0, f � 0, X � �0; 1�2 and the boundary condition

g�x; y� � 0 for

y � 0 and x6 1;

y � 1 and x6 1;

x � 0 and jy ÿ 0:5j > 0:05;

8<:
g�x; y� � 1 for x � 0 and jy ÿ 0:5j6 0:05;

e ou
on � 0 for x � 1 and y6 1:

The solution of this example is

u�x; y� �
X1
k�1

�ak/1k�x� � bk/2k�x��wk�y� with wk�y� � sin�kpy�

and

/1k�x� � ex=�2e� sinh�bk�1ÿ x��
sinh�bk� ; /2k�x� � e�xÿ1�=�2e� sinh�bkx�

sinh�bk� ; bk �
���������������������������

1

�2e�2 � �kp�2
s

:

The constants are

ak � 2

kp
�cos�0:45kp� ÿ cos�0:55kp��; bk � ak

bke1=�2e�

sinh�bk�
� �

1

2e

��
� bk

cosh�bk�
sinh�bk�

�
:

For a graphical representation of the solution see Fig. 20. The solution does not belong to H 1�X� due to the
jump in the boundary conditions. The computations were carried out on Grid 1, Fig. 2.

The results of the numerical tests are presented in Table 4. Besides the L2-error and the l1-error (node
error), we give the error in the midpoint of the out¯ow boundary. The exact value in this point is
u�1; 0:5� � 0:7368946.

The H 1-semi norm error estimator gres-H1 generates a mesh which is re®ned above all near the jumps of
the in¯ow boundary condition. This leads to an insu�cient re®nement at the interior layers and to the worst
discrete solution among all error estimators. Also the solution on the mesh produced by ggradind is not
satisfying in comparison to the other results. All other error estimators produce meshes on which the
solutions have approximately the same accuracy. The graphical representations of the adaptively re®ned

Fig. 19. Mesh with gNeumSD-H1 , Example 6.2, e � 10ÿ8.
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grids di�er not very much for the di�erent error estimators. A typical grid is presented in Fig. 20. This
example demonstrates that several a posteriori error estimators are able to generate appropriate adaptively
re®ned meshes despite the missing regularity of the solution.

Example 6.4 (Solution with regular boundary layers, corner singularity and inner layer). We consider an
example in the L-shaped domain �0; 1�2 n �0:5; 1� � �0; 0:5�. The coef®cients in (1) are e � 10ÿ6; b � �3; 1�T;
c � 1; f � 100r�r ÿ 0:5��r ÿ ���

2
p

=2� with r � ��xÿ 0:5�2 � �y ÿ 0:5�2�1=2
, oXD � oX, and g � 0. An analyt-

ical solution of this problem is not known. The solution possesses a corner singularity at �0:5; 0:5�, an inner
layer in the direction of the convection starting at the corner singularity, and regular boundary layers at
y � 1, at f�0:5; y� : 0 < y6 0:5g, and at f�1; y� : 0:5 < y6 1g. Because of the re-entrant corner, u 62 H 2�X�.

Grid 4, Fig. 2, was used as coarsest grid. Since we do not know an analytical solution of this problem, we
compare the behaviour of the error estimators with graphical representations of the computed solutions
and the adaptive grids, see Figs. 21±27. We use as criteria for the quality of the solution the sharpness of the
inner layer and the boundary layers.

The error estimators gres-H1 and gres-L2 produce meshes which are well re®ned within all layers. As a result,
the layers in the computed solutions are sharp. The error estimator gres-eng only starts to re®ne within the
inner layer and does not ®nish the re®nement of the boundary layers. Thus, the inner layer is broadly
smeared. The position of the inner layer is not found by gNeumGa-H1 and gNeumSD-H1 . These error estimators
re®ne only at the corner singularity and within the boundary layers. An insu�cient re®nement within the
inner layer and the boundary layers can be observed on the meshes generated by ggradind and gZZ-H1 . The
corresponding discrete solutions are unsatisfactory.

This example shows that most of the studied error estimators have great problems to generate an ap-
propriate mesh if the solution possesses singularities of a di�erent kind. Only two error estimators worked
satisfactorily.

Fig. 20. Solution of Example 6.3 and typical adaptively re®ned grid �gZZ-H1 �.

Table 4

Errors of computed solutions on adaptively re®ned grids, Example 6.3

Estimator d.f. kehk0 kehkl1 j�eh��1; 0:5�j

Uniform 263 169 5:70ÿ 3 4:57ÿ 3 1:28ÿ 3

ggradind 140 051 5:63ÿ 3 1:47ÿ 3 1:36ÿ 3

gZZ-H1 136 320 5:54ÿ 3 6:35ÿ 4 2:51ÿ 4

gres-H1 124 493 6:38ÿ 3 1:71ÿ 2 1:71ÿ 2

gres-L2 103 818 5:50ÿ 3 6:10ÿ 4 2:08ÿ 4

gres-eng 124 360 5:54ÿ 3 6:35ÿ 4 2:72ÿ 4

gNeumGa-H1 103 265 5:54ÿ 3 4:41ÿ 4 2:82ÿ 4

gNeumSD-H1 118 605 5:54ÿ 3 6:99ÿ 4 2:71ÿ 4
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Fig. 22. Mesh and solution obtained with gZZ-H1 , Example 6.4.

Fig. 23. Mesh and solution obtained with gres-H1 , Example 6.4.

Fig. 24. Mesh and solution obtained with gres-L2 , Example 6.4.

Fig. 21. Mesh and solution obtained with ggradind, Example 6.4.
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Example 6.5 (Solution with parabolic and exponential boundary layers). This example is de®ned by choosing
in (1) e � 10ÿ6, b � �1; 0�T, c � 0, f � 1, X � �0; 1�2, oX � oXD, and g � 0. We do not know an analytical
solution of this problem. The solution possesses a regular boundary layer at the out¯ow boundary x � 1
and two parabolic boundary layers at y � 0 and y � 1.

The computations were carried out on Grid 2, Fig. 2. Since we do not know an analytical solution, we
compare the numerical results with graphical representations of the computed solutions, see Figs. 28±34.
All error estimators should have no problems to re®ne within the regular boundary layer which is the
strongest singularity in this example. We use as criterion for the quality of the computed solutions the
sharpness of the parabolic boundary layers.

Insu�cient or no re®nement within the parabolic boundary layers can be observed on the meshes
produced by ggradind, gZZ-H1 , gres-eng, and gNeumGa-H1 . The corresponding discrete solutions show broadly
smeared parabolic boundary layers. The situation is much better for all other error estimators. The sharpest
parabolic layers are obtained on the mesh generated by gres-L2 .

Fig. 27. Mesh and solution obtained with gNeumSD-H1 , Example 6.4.

Fig. 26. Mesh and solution obtained with gNeumGa-H1 , Example 6.4.

Fig. 25. Mesh and solution obtained with gres-eng, Example 6.4.
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Fig. 29. Mesh and solution obtained with gZZ-H1 , Example 6.5.

Fig. 30. Mesh and solution obtained with gres-H1 , Example 6.5.

Fig. 28. Mesh and solution obtained with ggradind, Example 6.5.

Fig. 31. Mesh and solution obtained with gres-L2 , Example 6.5.
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This example demonstrates again the problems of some error estimators to generate appropriate meshes
in the presence of singularities of a di�erent kind.

Example 6.6 (Solution with parabolic and exponential boundary layers, variable convection). We consider
(1) with e � 10ÿ6, b � �0; x�1ÿ x��T, c � 0, f � x�1ÿ x�y�1ÿ y�, X � �0; 1�2, oXD � oX, and g � 0. An
analytical solution of this problem is not known. The solution possesses a regular boundary layer at the
out¯ow boundary y � 1 and two parabolic boundary layers at x � 0 and x � 1.

We used for the computations Grid 3, Fig. 2, as coarsest grid. The numerical results obtained with the
di�erent error estimators are compared with graphical representations of the computed solutions, see
Figs. 35±42. The sharpness of the parabolic boundary layers as well as the shape of the solution near the
regular boundary layer are used as criteria for the quality of the solution.

Fig. 32. Mesh and solution obtained with gres-eng, Example 6.5.

Fig. 33. Mesh and solution obtained with gNeumGa-H1 , Example 6.5.

Fig. 34. Mesh and solution obtained with gNeumSD-H1 , Example 6.5.
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Fig. 36. Mesh and solution obtained with ggradind, Example 6.6.

Fig. 37. Mesh and solution obtained with gZZ-H1 , Example 6.6.

Fig. 35. Computed solution with uniform re®nement, Example 6.6.

Fig. 38. Mesh and solution obtained with gres-H1 , Example 6.6.
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Fig. 39. Mesh and solution obtained with gres-L2 , Example 6.6.

Fig. 40. Mesh and solution obtained with gres-eng, Example 6.6.

Fig. 41. Mesh and solution obtained with gNeumGa-H1 , Example 6.6.

Fig. 42. Mesh and solution obtained with gNeumSD-H1 , Example 6.6.
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All a posteriori error estimators fail to produce appropriate meshes in this example. Some error esti-
mators do not detect the parabolic layers (ggradind, gZZ-H1 , gres-eng). The other error estimators re®ne in regions
where the solution is smooth. All computed solutions on adaptively re®ned grids are unsatisfactory. The
clearly best numerical solution is obtained with uniform re®nement, see Fig. 35.

7. Summary

The numerical results are classi®ed into those which we consider as good ones (+), as acceptable ones (�),
and as unsatisfactory ones �ÿ�.

The behaviour of the error estimators with respect to the estimation of the global error is summarized in
Table 5. In examples, in which the derivatives of the solution do not or only slightly depend on e, gZZ-H1 and
gNeumSD-H1 gave reliable error estimates. If the solution possesses regular boundary layers, the error was
estimated reliably by gres-eng. But there is no error estimator which worked satisfactorily in all examples. The
construction of such an error estimator is still an open problem.

Table 6 summarizes the behaviour of the error estimators with respect to the grid generation. The error
estimator gres-L2 worked well in nearly all examples. The meshes produced by gres-L2 are in general more
broadly re®ned then the meshes produced by the other error estimators. This turned out to be better than
not ®nding all subregions of interest for the re®nement. The simple gradient indicator ggradind worked
unsatisfactorily in all examples. It cannot compete with most of the error estimators. However, even all
error estimators failed to work acceptable in Example 6.6. This shows that the problem of the adaptive grid
re®nement for convection-dominated convection±di�usion equations is not yet completely solved.

Table 5

Behaviour of the error estimators with respect to the estimation of the global error

Example

5.1 5.2 5.3

e 10ÿ2 10ÿ4 10ÿ6 10ÿ2 10ÿ4 10ÿ6 10ÿ8

gZZ-H1 + + ÿ ÿ + + + +

gres-H1 ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
gres-L2 ÿ ÿ ÿ ÿ ÿ ÿ ÿ ÿ
gres-eng ÿ + + + + ÿ ÿ ÿ
gNeumGa-H1 � + + � + ÿ ÿ ÿ
gNeumSD-H1 + + � ÿ + + + +

Table 6

Behaviour of the error estimators with respect to the adaptive mesh generation

Example

6.1 6.2 6.3 6.4 6.5 6.6

e 10ÿ2 10ÿ4 10ÿ6 10ÿ4 10ÿ6 10ÿ8

ggradind � ÿ ÿ � � ÿ � ÿ ÿ ÿ
gZZ-H1 + ÿ ÿ + + ÿ + ÿ ÿ ÿ
gres-H1 + + + + + + ÿ + � ÿ
gres-L2 + + + + + + + + + ÿ
gres-eng + + + + + ÿ + ÿ ÿ ÿ
gNeumGa-H1 + + + + ÿ ÿ + ÿ ÿ ÿ
gNeumSD-H1 + + � + + � + ÿ � ÿ
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The numerical costs of computing the error estimators were di�erent. The cheapest error estimator was
ggradind. The computation of gZZ-H1 was about twice as expensive, the computation of the residual-based
error estimators 3±4 times, and the computation of the error estimators based on the solution of local
problems 11±12 times. However, the computation of all error estimators was fast in comparison to the
solution of the discrete problems.
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