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SUMMARY

Population balance systems are models for processes in nature and industry that lead to a coupled system
of equations (Navier–Stokes equations, transport equations, etc.) where the equations are defined in
domains with different dimensions. This paper will study the impact of using different schemes for solving
the three-dimensional (3D) equation of a precipitation process in a two-dimensional flow domain. The
numerical schemes for the 3D equation are assessed with respect to the median of the volume fraction
of the particle size distribution and the computational costs. It turns out that in the case of a structured
flow field with small variations in time all schemes give qualitatively the same results. For a highly time-
dependent flow field, the evolution of the median of the volume fraction differs considerably between first
order and higher order schemes. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern computers offer the possibility of simulating problems coming from nature or applications
that are modeled by coupled systems of equations with increasing complexity. Typical examples are
population balance systems. These systems describe the behavior of populations, e.g. of particles,
by means of population balance equations, e.g. for the particle size distribution. An example is
the droplet size distribution in clouds that is modeled with a population balance system [1]. This
example already shows some difficulties that might be connected to the simulation of population
balance systems: generally the droplets are driven by a turbulent flow and scales of very different
sizes occur in this problem.
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From the point of view of simulations, there is another challenge: the particle size distributions
depend not only on space and time, e.g. as the velocity of the flow field, but they depend also
on properties of the particles, so-called internal coordinates. Consequently, the population balance
equations are defined in a higher dimensional domain than the other equations in the population
balance system. The different dimensions of the equations in such systems will influence the
numerical schemes which should be used. Schemes that are accurate and efficient for the equations
defined in the space–time domain might become inefficient for the equations defined in the higher
dimensional domain (curse of dimension). It could be advisable to use instead inexpensive schemes
for these equations. However, the higher efficiency of these schemes will result generally in more
inaccurate solutions. It has to be studied if the gains in the efficiency justify the losses in the
accuracy. To our best knowledge, this paper will present the first investigations of this topic.

The considered model problem in this paper is the simulation of a precipitation process as this
kind of process is rather well understood. In addition, precipitation processes can be studied under
simpler conditions than, e.g. clouds: laminar flow fields can be considered and processes that are
of minor importance, such as breakage and agglomeration of particles, can be neglected. Precipi-
tation processes are widely used in the chemical industry for producing particles with prescribed
properties. They are modeled by population balance systems consisting of equations describing the
flow field (Navier–Stokes equations), equations for the chemical reaction (convection–diffusion–
reaction equations) and an equation for the particle size distribution (PSD) that is a transport
equation.

In the basic form of a precipitation process, a chemical reaction

A+B−→C ↓+D

occurs in the liquid phase. The initially dissolved product C starts to precipitate, i.e. the nucleation
of particles starts, if its local concentration exceeds the saturation concentration. Functionals of the
distribution of particles, in particular at the outlet of the chemical device, are of primary interest
in applications.

There are only initial attempts to simulate population balance systems describing a precipitation
process [2–6]. The present paper will study the example from [3]. This example describes a calcium
carbonate precipitation in a cavity. The modeling assumptions are such that on the one hand some
properties of the actual process are simplified. On the other hand, the arising coupled system
of equations is still so complex that severe difficulties in the simulations, using some standard
numerical methods, have been reported in [3]. For completeness of presentation, the modeling
assumptions from [3] are repeated here:

• The flow is 2D, incompressible and laminar.
• The chemical reaction is isothermal.
• The PSD depends on one internal coordinate, namely the size of the particles.
• The particles, respectively the PSD, do not affect the flow field as their concentration is small.
• The particles follow the streamlines of the flow field because of their small size.
• Nucleation and growth of particles, which are the most important phenomena governing the

process of particle precipitation, are included into the model; agglomeration and breakage of
particles are neglected.

From these assumptions, it follows that the flow field can be simulated independently of the
chemical reaction and the precipitation process. The coupled system of equations describing the
precipitation process based on these assumptions is given in Section 2.
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A main difficulty of the simulations presented in [3] was the solution of the convection–
diffusion–reaction equations describing the chemical reaction. The simulation of linear equations
of this type has been studied meanwhile separately in [7, 8]. In these studies, much better methods
than the standard schemes used in [3] could be identified, see Section 3.2 for details. We will use
one of these better methods in the numerical studies presented in this paper.

The main focus of this paper is on the simulation of the equation describing the behavior of
the PSD. From the modeling assumptions it follows that this equation is given in a 3D domain,
whereas the other equations are given in a 2D domain. For this reason, the solution of the transport
equation for the PSD is potentially much more expensive than the solution of the other equations.
One feels tempt to apply for this equation a comparatively cheap method, thereby accepting losses
in the accuracy of the PSD solution. In practice, a usual way consists even in replacing the
equations defined in the higher dimensional domain with a system of transport equations defined
in the space–time domain via the method of moments (MOM) or variants of this method [9]. This
approach leads to approximations of the first moments of the PSD. However, the reconstruction
of the PSD from its moments is a severely ill–posed problem, see [10] for a review of this topic.
Altogether, this approach possesses a number of potential error sources: the modeling error of the
MOM, simulation errors of the transport equations for the moments, the reconstruction error. The
modeling and the reconstruction error do not occur if the higher dimensional equation for the PSD
is simulated directly. But due to the increased costs, only a few attempts in this direction can be
found so far in the literature [3]. The present paper investigates exactly this approach. Different
methods which can be used for simulating the PSD equation and their effect to an output functional
which is of interest in applications will be studied. To our best knowledge, such studies are not
yet available, at least not for the simulation of precipitation processes. It will be shown that the
different schemes might lead in a situation which is of interest in applications to qualitatively
different results. In order to assess the results, the accuracy of the schemes is studied additionally
in a coupled model problem with prescribed solution. This study shows clearly that the scheme
which is of highest order, but also most expensive, gives the most accurate results. Altogether, this
paper demonstrates that the use of low-order schemes for solving the PSD equations may lead to
qualitatively wrong results.

The paper is organized as follows: Section 2 provides the model of the precipitation process
leading to the dimensionless population balance system which is solved in the simulations. The
numerical methods used in these simulations are described in Section 3. Numerical simulations
are presented in Section 4. Two situations will be considered: a structured flow field with only
small variations in time and a highly time-dependent process. In order to obtain a basis for the
assessment of the results from Section 4, a coupled model problem with prescribed solution is
studied in Section 5. The main results of the numerical studies are summarized in Section 6.

2. THE POPULATION BALANCE SYSTEM FOR THE PRECIPITATION PROCESS

The behavior of incompressible flows is modeled by the incompressible Navier–Stokes equations

�̃u
�̃t

−��ũ+ (̃u·∇ )̃u+ 1

�
∇ p̃ = 0 in (0, T̃ ]×�̃, (1)

∇ ·ũ= 0 in [0, T̃ ]×�̃, (2)
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where ũ [m/s] denotes the fluid velocity, p̃ [kg/(ms2)] the pressure, � [m2/s] the kinematic
viscosity, � [kg/m3] the density, �̃ the flow domain and T̃ [s] the end of a time interval. In the
precipitation process considered in this paper, the influence of the particles onto the flow field can
be neglected as both, the size and the number of particles, will be sufficiently small. Thus (1)
and (2) govern the flow field of the precipitation process.

The concentrations of the dissolved substances A, B and C will be denoted by c̃i [kmol/m3],
i ∈{A, B,C}. The concentrations of the reactants A and B obey a system of non-linear convection–
diffusion–reaction equations

�̃ci
�̃t

−Di�c̃i + ũ·∇ c̃i + r̃chem(̃cA, c̃B)=0 in (0, T̃ ]×�̃, i ∈{A, B}, (3)

where Di [m2/s] denotes the diffusion coefficient of A and B. The rate of the chemical reaction
r̃chem(c̃A, c̃B) [kmol/(m3s)] is given by

r̃chem(̃cA, c̃B)=kRc̃Ac̃B,

with the rate–constant kR [m3/(kmols)]. The reaction of A and B is modeled to be independent
of the dissolved and the solid product C .

The dissolved product C satisfies the following equation

�̃cC
�̃t

−DC�c̃C + ũ·∇ c̃C − r̃chem(̃cA, c̃B)+ r̃nuc(̃cC )+ r̃g (̃cC , f̃ )=0 in (0, T̃ ]×�̃,

with the diffusion coefficient DC [m2/s]. The last three terms on the left-hand side describe,
respectively, the production of dissolved C , the consumption of dissolved C caused by the nucle-
ation of particles, and the consumption of dissolved C caused by the growth of particles. The rate
of decrease of c̃C due to the nucleation r̃nuc(̃cC ) [kmol/(m3s)] is given by

r̃nuc(̃cC )=Cnucd̃
3
p,0 B̃nuc(̃cC ),

where Cnuc [kmol/m3] is a model nucleation constant, d̃p,0 [m] denotes the smallest particle
diameter (the nuclei size), and the nucleation rate B̃nuc(̃cC ) [1/(m3s)] is defined by

B̃nuc(̃cC )=max

⎧⎨⎩knuc
(
c̃C −csatC,∞ exp

(
C2

d̃p,0

))5

,0

⎫⎬⎭ ,

see [11]. Here, knuc [(1/(m3s))/(kmol/m3)5] is the nucleation constant, csatC,∞ [kmol/m3] denotes
the saturation concentration of the dissolved product C and C2 [m] is a model constant. The rate
of decrease of c̃C due to the growth of the particles r̃g (̃cC , f̃ ) [kmol/(m3s)] is given by

r̃g (̃cC , f̃ )=CG

∫ d̃p,max

d̃p,0
G̃ (̃cC )d̃ 2

p f̃ d(d̃p),

where CG [kmol/m3] denotes a growth constant, d̃p,max [m] is an upper bound for the particle
diameter, d̃p [m] the particle diameter and f̃ (̃t, x̃, d̃p) [1/m4] is the PSD. The growth rate G̃ (̃cC )
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[m/s] is considered to be independent of the size of the particles and, similar to the one in [12],
given by

G̃ (̃cC )=kG (̃cC −csatC,∞),

where kG [m4/(kmols)] is the growth rate constant. If c̃C<csatC,∞ and kG>0, particles might be
dissolved again.

The product D is not simulated as it is not of interest for the precipitation process.
Finally, the higher dimensional equation for the PSD is given by

� f̃

�̃t
+ ũ·∇ f̃ +G̃ (̃cC )

� f̃

�d̃p
=0 in (0, T̃ ]×�̃×(d̃p,0, d̃p,max). (4)

For completeness of description, the derivation of the dimensionless equations for the simulations
is given briefly. Let

u= ũ
u∞

, p= p̃

p∞
, t= t̃

t∞
, xi = x̃i

l∞
(i=1,2) (5)

be dimensionless variables. Substituting them into (1), (2), multiplying the equation of the
momentum balance by l∞/u2∞ and setting the time and pressure scales to

t∞ = l∞
u∞

, p∞ =�u2∞,

the dimensionless Navier–Stokes equations

�u
�t

− 1

Re
�u+(u·∇)u+∇ p = 0 in (0,T ]×�, (6)

∇ ·u= 0 in [0,T ]×�, (7)

are obtained, where Re=u∞l∞/� is the Reynolds number and T = T̃ /t∞.
Defining the dimensionless concentrations by ci = c̃i/c∞, i ∈{A, B}, substituting c̃i into (3) and

multiplying with l∞/(c∞u∞) lead to equations for the dimensionless reactants A and B

�ci
�t

− Di

u∞l∞
�ci +u·∇ci +kR

l∞c∞
u∞

cAcB =0 in (0,T ]×�. (8)

In a similar way, using the dimensionless variables

cC = c̃C
cC,∞

, f = f̃

f∞
, dp = d̃p

dp,∞

and the scales

cC,∞ =csatC,∞ exp

(
C2

d̃p,0

)
, dp,∞ = d̃p,max, f∞ = u∞

CGkGd3p,∞l∞
, (9)
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the dimensionless equation for the concentration of the dissolved product C is obtained:

�cC
�t

− DC

u∞l∞
�cC +u·∇cC −�chemcAcB +�nucmax{0, (cC −1)5}

+
(
cC − csatC,∞

cC,∞

)∫ 1

dp,min

d2pfd(dp)=0 in (0,T ]×�. (10)

The constants in (10) are

�chem=kR
c2∞l∞

cC,∞u∞
, dp,min= d̃p,0

dp,∞
, �nuc=Cnucd

3
p,mind

3
p,∞knuc

l∞c4C,∞
u∞

.

A different choice of f∞ than in (9) would result in an additional factor in the last term on the
left-hand side of (10).

The derivation of the equation for the dimensionless PSD proceeds in the same manner as for
the other equations. One obtains from (4)

� f

�t
+u·∇ f +G(cC )

l∞
u∞dp,∞

� f

�dp
=0 in (0,T ]×�×(dp,min,1) (11)

with

G(cC )=kGcC,∞

(
cC − csatC,∞

cC,∞

)
.

Altogether, the coupled system of equations (6), (7), (8) for cA, (8) for cB , (10) and (11) has to
be solved.

3. THE NUMERICAL APPROACHES FOR SOLVING THE
POPULATION BALANCE SYSTEM

This section describes in detail the methods which were studied for solving the coupled system
(6), (7), (8) for cA, (8) for cB , (10) and (11). The general strategy consists in first applying a
temporal discretization with the same length of the time step to each equation of the system. This
leads in each discrete time to a coupled system of equations which has to be linearized, discretized
in space and solved iteratively.

3.1. The Navier–Stokes equations

The Navier–Stokes equations (6), (7) are the first set of equations which is solved in each discrete
time as they do not depend on the concentrations cA, cB , cC and on the PSD f . In addition, the
computed velocity field will be needed as convection field in all other equations.

Fractional–step �–schemes will be used for the temporal discretization of the Navier–Stokes
equations. Considering the time step from tk−1 to tk , with �tk = tk− tk−1, these schemes have the
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form

uk+�1�tn[−��uk+(uk ·∇)uk]+�tk∇ pk = uk−1−�2�tn[−��uk−1+(uk−1 ·∇)uk−1]
+�3�tnfk−1+�4�tnfk, (12)

∇ ·uk = 0, (13)

with the parameters �1, . . . ,�4 and the right-hand side f of the Navier–Stokes equations. In our
application f=0, see (6), therefore the last two terms on the right-hand side are not present.

In the numerical studies the Crank–Nicolson scheme (�1=�2=�3=�4=0.5) will be used. This
is an implicit, second order and A-stable scheme but it is not strongly A-stable. In numerical studies
for incompressible flows, the Crank–Nicolson scheme has shown a good relation of accuracy to
efficiency [13]. In particular, it was considerably more accurate than the backward Euler scheme
(�1=�4=1,�2=�3=0), see also [14].

Next, the system (12), (13) is linearized by a fixed point iteration: Given (u(0)
k , p(0)

k ), compute

u(n)
k +0.5�tn[−��u(n)

k +(u(n−1)
k ·∇)u(n)

k ]+�tk∇ p(n)
k = uk−1−0.5�tn[−��uk−1

+(uk−1 ·∇)uk−1] (14)

∇ ·u(n)
k = 0, n=1,2, . . . . (15)

The linear system (14), (15) (Oseen equations) is discretized in space with an inf–sup stable finite
element method. We will use the Q2 finite element for the velocity and the Pdisc

1 (discontinuous
linears) finite element for the pressure. This pair of finite element spaces has been proven to
be among the best performing ones for discretizing the incompressible Navier–Stokes equations
[14–17]. As laminar flows will be considered in the numerical studies, a stabilization of the spatial
discretization of the Navier–Stokes equations, [18], or the application of a turbulence model, [19],
is not necessary.

After having solved the Navier–Stokes equations in the discrete time tk , the velocity field is
computed which is used in the convective terms of the other equations of the coupled system.

3.2. The equations for the chemical reaction

The equations (8) and (10) for the chemical reaction are described by the same type of scalar
convection–diffusion–reaction equation. We will apply a similar strategy for their discretization.

For simplicity of presentation, we will describe the discretization for a linear convection–
diffusion–reaction equation of the form

�c
�t

−ε�c+u·∇c+rc = f in (0,T ]×�,

c = cD in (0,T ]×��D,

ε∇c ·n = 0 in (0,T ]×��N ,

c(0, ·) = c0 in �,

(16)

where ��D is the Dirichlet boundary, ��N the Neumann boundary, cD the prescribed boundary
values of c and c0 the initial concentration. The convection field and the reaction coefficient are
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considered to be time-dependent. Like for the Navier–Stokes equations, we will apply a Crank–
Nicolson scheme for the temporal discretization of (16)

ck+0.5�tk(−ε�ck+uk ·∇ck+rkck) = ck−1−0.5�tk(−ε�ck−1+uk−1 ·∇ck−1+rk−1ck−1)

+0.5�tk fk−1+0.5�tk fk . (17)

In the next step, (17) is transformed into a variational formulation. Let VD be the set of all
functions from the Sobolev space H1(�) which satisfy the Dirichlet boundary conditions on ��D
and V0 the space of all functions from H1(�) which vanish on ��D . A variational formulation of
(17) reads as follows: Find ck ∈VD such that

(ck,v)+0.5�tk[(ε∇ck,∇v)+(uk ·∇ck+rkck,v)]
=(ck−1,v)−0.5�tk[(ε∇ck−1,∇v)+(uk−1 ·∇ck−1+rk−1ck−1,v)]

+0.5�tk( fk−1,v)+0.5�tk( fk,v) (18)

for all v∈V0.
The Galerkin finite element formulation of (18) is obtained by replacing the infinite dimensional

spaces VD , V0 by finite element spaces. We will use the Q1 finite element. However, it is known
that this discretization is not stable for convection- or reaction-dominated problems, [20]. In the
precipitation process, the equations are strongly convection- and reaction-dominated. The use of the
Galerkin finite element method would lead to huge spurious oscillations in the computed solutions
which make them useless. The remedy consists in the application of a stabilized discretization.

Two approaches for stabilizing the reaction- and convection-dominated equations describing
the chemical reaction were already studied in [3]. The first approach was the streamline–upwind
Petrov–Galerkin (SUPG) method from [21]. This is currently the most popular way for stabilizing
such equations in the framework of finite element methods. The use of this method resulted in
considerable spurious oscillations in the computed concentrations. The size of these oscillations led
to difficulties in obtaining stable simulations. We had to apply some cut-off techniques for negative
and positive oscillations. But there were even cases where, despite the cut-off, these oscillations
caused a blow-up of the simulations, see [3] for details. The second approach for stabilization
considered in [3] was a Samarskij upwind scheme [20, 22]. This method led to a large smearing of
the concentrations, which caused the growth of non-physically large particles and finally a blow-up
of the simulation.

Inspired by the bad experiences with the SUPG method and the upwind method, comprehen-
sive numerical studies of stabilized finite element methods for scalar time-dependent convection–
diffusion–reaction equations were performed in [7, 8]. These studies included besides the SUPG
method a number of spurious oscillations at layers diminishing (SOLD) schemes [23, 24], a local
projection stabilization (LPS) scheme [25] and two finite element method–flux-corrected trans-
port (FEM–FCT) schemes [26–28]. All studies in [7, 8] led to the consistent conclusion that the
FEM–FCT schemes are far better than the other approaches. In particular, a variant of the linear
FEM–FCT schemes from [26] showed a very good relation of accuracy and efficiency. This scheme
will be used for the simulation of the equations describing the chemical reaction. For completeness
of presentation, a short description of this scheme will be provided.

FEM–FCT schemes have been developed for transport equations, i.e. equations of the form (16)
with ε=r = f =0. An extension to convection–diffusion–reaction equations can be found in [8].
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These schemes work on the algebraic level and they modify the system matrix and the right-hand
side vector.

Starting point of the linear FEM–FCT scheme used in the simulations presented in Section 4
is the Crank–Nicolson scheme coupled with the Galerkin finite element method, which can be
written in matrix–vector form

(MC +0.5�tk A)uk =(MC −0.5�tk A)uk−1+0.5�tk f k−1
+0.5�tk f k, (19)

where MC is the consistent mass matrix. The matrix A is the sum of diffusion, convection
and reaction. The notations uk, f k etc. stand for the vectors of the unknown coefficients of the
finite element method. It is well known that the solution of (19) generally shows huge spurious
oscillations.

FEM–FCT schemes start by defining the matrices

L = A+D,

D = (dij), dij=−max{0,aij,aji}=min{0,−aij,−aji} for i �= j,

dii=−
N∑

j=1, j �=i
dij,

ML = diag(mi ), mi =
N∑
j=1

mij,

where N is the number of degrees of freedom. The row and column sums of D are zero. The matrix
L does not posses positive off–diagonal entries and the diagonal matrix ML is called lumped mass
matrix. Instead of (19), the equation

(ML +0.5�tk L)uk =(ML −0.5�tk L)uk−1+0.5�tk f k−1
+0.5�tk f k (20)

is considered. This is the algebraic representation of a stable low-order scheme. The solution
of (20) does not show spurious oscillations, however, layers will be smeared because the operator
on the left-hand side is too diffusive.

In the next step, a FEM–FCT scheme modifies the right-hand side of (20) such that the diffusion
is removed where it is not needed and spurious oscillations are still suppressed

(ML +0.5�tk L)uk =(ML −0.5�tk L)uk−1+0.5�tk f k−1
+0.5�tk f k+ f ∗(uk,uk−1). (21)

The ansatz for the vector f ∗(uk,uk−1) uses the residual vector of (20) and (19)

r = (ML +0.5�tk L−(MC +0.5�tk A))uk−(ML −0.5�tk L−(MC −0.5�tk A))uk−1

= (ML −MC )(uk−uk−1)+�tk D(0.5uk+0.5uk−1).

The residual vector has to be weighted appropriately. To this end, it is decomposed into fluxes rij,
i, j =1, . . . ,N , in the following way

r i =
N∑
j=1

rij =
N∑
j=1

[mij(uk,i −uk, j )−mij(uk−1,i −uk−1, j )−�tk0.5dij(uk,i −uk, j )

−�tk0.5dij(uk−1,i −uk−1, j )],
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i=1, . . . ,N . The fluxes can be written in the form

rij=mij(uk,i−uk−1,i )−mij(uk, j−uk−1, j )−0.5�tkdij(uk,i+uk−1,i )+0.5�tkdij(uk, j+uk−1, j ). (22)

The ansatz for the correction vector is now given by

f ∗
i
(uk,uk−1)=

N∑
j=1

�ijrij, i=1, . . . ,N ,

with the weights �ij∈[0,1]. In the methods proposed in [27, 28], f ∗(uk,uk−1) is a non-linear
term.

Linear FEM–FCT schemes were presented recently in [26]. The idea of the scheme used in the
simulations from Section 4 consists in replacing uk in (22) by an approximation which can be
computed with an explicit scheme. To this end, define the intermediate value

uk−1/2 := uk+uk−1

2
.

Inserting this value into (22) gives

rij=2mij(uk−1/2,i −uk−1,i )−2mij(uk−1/2, j −uk−1, j )−�tkdij(uk−1/2,i −uk−1/2, j ). (23)

An approximation of uk−1/2 can be obtained by using the forward Euler scheme in the discrete
time tk−1 with the time step �tk/2, leading to

ũ=uk−1− �tk
2

M−1
L (Luk−1− f

k−1
). (24)

Inserting this approximation into (23) gives the fluxes in the linear FEM–FCT scheme

rij=�tk[mij(vk−1/2,i −vk−1/2, j )−dij(ũi − ũ j )]
with

vk−1/2,i =(M−1
L ( f

k−1
−Luk−1))i , ũi =uk−1,i +

�tk
2

vk−1/2,i .

For computing the weights, Zalesak’s algorithm [29] is used. We refer to [8, 27] for presentations
of this algorithm. Some details on the implementation of FEM–FCT schemes can be found also
in [8].

As the auxiliary solution ũ in (24) is computed with an explicit scheme, the stability of this
step requires the fulfillment of a CFL condition. This condition is [26, 27]

�tk<2min
i

mi

lii
. (25)

It was fulfilled in all simulations presented in Section 4.
The coupled non-linear system (8) for the concentrations cA and cB in tk is solved iteratively

with a fixed-point iteration, where one iteration consists of two sub-steps:

1. Solve the FEM–FCT discretization of (8) for cA,k with the currently available approximation
of cB,k .
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2. Solve the FEM–FCT discretization of (8) for cB,k with the approximation of cA,k computed
in the first sub-step.

In the first iteration in the discrete time tk , the currently available approximation of cB,k is cB,k−1.
Note that in this iterative procedure, only the reaction coefficient rk is updated. In particular, the
right-hand side of (18) does not change. The iteration is stopped if the residual of the coupled
system is sufficiently small, where this criterion is checked only after having performed both
sub-steps of the fixed-point iteration.

After having computed the concentrations cA and cB , the next step in our solution algorithm
consists in computing cC by solving (10). In order to facilitate the computation of cC , the last two
terms on the left-hand side of (10) are treated explicitly in time with respect to cC , leading after
the temporal discretization to the linear equation

cC,k+0.5�tk

(
− DC

u∞l∞
�cC,k+uk ·∇cC,k

)
= cC,k−1−0.5�tk

(
− DC

u∞l∞
�cC,k−1+uk−1 ·∇cC,k−1

)

+0.5�tk

[
�chem(cA,k−1cB,k−1+cA,kcB,k)

−�nuc(max{0, (cC,k−2−1)5}
+max{0, (cC,k−1−1)5})

−
(
cC,k−2− csatC,∞

cC,∞

)∫ 1

dp,min

d2p fk−2d(dp)

−
(
cC,k−1−

csatC,∞
cC,∞

)∫ 1

dp,min

d2p fk−1d(dp)

]
. (26)

This is a linear convection–diffusion–reaction equation in tk (the reactive term originates from the
discretization in time) which has to be solved. For the spatial discretization, and stabilization of
this equation as well, the linear FEM–FCT scheme will be applied. After having solved (26), all
concentrations at time tk are computed.

The transport equation (11) modeling the PSD is given in a higher dimensional domain than
the other equations. Thus, the solution of (11) can be expected to be much more expensive
than the solution of the rest of the equations. The main goal of this paper consists in studying
different approaches for discretizing (11) and exploring the impact of using expensive, higher order
discretizations and inexpensive, low-order methods on the accuracy and the computing times.

The first approach which will be studied is the linear FEM–FCT scheme described above. As
FEM–FCT schemes were originally designed for transport equations, they can be readily applied
for solving (11). After having assembled the matrices and the arrays arising in the Q1 Galerkin
finite element discretization of (11), the same procedure as given above was used to apply the linear
FEM–FCT scheme to these matrices and arrays. With this scheme, a rather accurate solution can
be expected. However, this scheme is quite expensive for several reasons. First, assembling finite
element matrices in higher dimensions requires quadrature rules with sufficiently many quadrature
points. The application of such rules in three and higher dimensions is quite time-consuming
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[16]. Second, the flux-correction procedure becomes more expensive for an increasing number of
degrees of freedom and for an increasing connectivity of the matrix entries. Both situations arise
in higher dimensions. And last, a linear system of equations has to be solved in each discrete
time. For the reason of efficiency, it is worthwhile to consider less expensive (and generally less
accurate) approaches as alternatives and to compare the computed results.

Two less-expensive approaches will be studied for the discretization of the transport equation
for the PSD (11), a forward and a backward Euler finite difference upwind method, [30]. In the
forward Euler scheme, the already computed fields uhk and chC,k will be used, leading to

f hk = f hk−1−�tk

(
uhk ·∇ f hk−1+ kGcC,∞l∞

u∞dp,∞

(
chC,k− csatC,∞

cC,∞

)
� f hk−1

�dp

)
. (27)

The convective terms on the right-hand side are discretized by an upwind scheme. Consider, for
instance, the node (x,dp,i ). Then, the upwind scheme approximates the convective term with
respect to the internal coordinate in (x,dp,i ) by

(
Gh

k

� f hk−1

�dp

)
(x,dp,i )≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Gh

k (x)
f hk−1(x,dp,i )− f hk−1(x,dp,i−1)

dp,i −dp,i−1
if Gh

k (x)�0,

Gh
k (x)

f hk−1(x,dp,i+1)− f hk−1(x,dp,i )

dp,i+1−dp,i
if Gh

k (x)<0,

(28)

where

Gh
k (x)=

kGcC,∞l∞
u∞dp,∞

(
chC,k(x)−

csatC,∞
cC,∞

)
,

and (x,dp,i−1), (x,dp,i+1) are the neighbor nodes of (x,dp,i ) with respect to this coordinate. It
can be immediately seen from (27) that the computation of f hk using the forward Euler upwind
finite difference (FWE–UPW–FDM) approach does not require the solution of a linear system of
equations.

The backward Euler temporal discretization of (11) is given by

f hk +�tk

(
uhk ·∇ f hk + kGcC,∞l∞

u∞dp,∞

(
chC,k− csatC,∞

cC,∞

)
� f hk
�dp

)
= f hk−1. (29)

The discretization of the convective terms in (29) is done with an upwind approach similar to (28),
replacing f hk−1 by f hk and leading to off-diagonal entries in the system matrix. The backward Euler
scheme requires the solution of a linear system of equations in each discrete time. This approach
will be called BWE–UPW–FDM in the following.

The numerical tests in Section 4 study the flow in a cavity. This squared flow domain is especially
suitable for the application of finite difference methods. The FEM–FCT method for solving the
PSD equation was applied with the Q1 finite element on an anisotropic hexahedral grid. The
matrix ML in (21) was computed in a preprocessing step as this matrix does not change during
the simulation. In each step of the simulation, the matrix A has to be assembled, from which L in
(21) is derived. The term with the highest polynomial degree in the FEM–FCT method applied to
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the PSD equation is the transport term in spatial direction. The finite element velocity is a two-
dimensional Q2 function (polynomial of degree 2 in x and degree 2 in y) and the spatial gradient of
the finite element PSD function is a bilinear function. Hence, the product is a polynomial of degree
3 in both of the spatial variables. We applied a Gaussian quadrature rule with two quadrature points
in each direction (eight quadrature points in the 3D mesh cell) which is exact for polynomials of
degree 3 in each coordinate. The numerical studies will show that this approach is rather expensive
in comparison with BWE–UPW–FDM (29). In addition, the algorithm for computing the flux
limiters has to be performed at each discrete time, which is also time-consuming.

The memory requirements are also quite different in the three approaches for discretizing the
PSD equation. Whereas in the FWE–UPW–FDM the additional memory is negligible, one has to
store a higher dimensional system matrix in the implicit methods. The FEM–FCT matrix has a
stronger connectivity, i.e. more matrix entries, than the BWE–UPW–FDM matrix. To speed up
the assembling of the matrix in the FEM–FCT method, we stored at the initial time information
of some search operations. The speed up was considerable but also the arising memory overhead
increased notably.

4. NUMERICAL SIMULATIONS OF PRECIPITATION PROCESSES

4.1. Setup of the simulations

The population balance system was simulated in the cavity �=(0,1)2, see Figure 1. The size of
the inlets is 1

32 and the size of the outlet 1
16 . The center of the outlet is situated at (0.5,0). The

center of the left inlet is situated at (0, 3164 ) and the center of the right one at (1,
31
64 ). A configuration

of this type is sometimes called T-mixer. Different positions of the inlets have been studied in [3].
For the Navier–Stokes equations (6), (7), parabolic inflow profiles with an integral mean value

of 1 (maximal value of 1.5) were applied. Outflow boundary conditions were used at the outlet.
The concentrations of the reactants A at the left inlet and B at the right inlet were set to 1 for all

Figure 1. Cavity with inlets and outlets.
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times

cA = 1 on [0,T ]×[0]×[ 1532 , 1
2 ],

cB = 1 on [0,T ]×[1]×[ 1532 , 1
2 ].

Neumann boundary conditions were used on all other parts of the boundary. For the substance C ,
Neumann boundary conditions were applied on the whole boundary. The boundary condition of
the PSD with respect to the internal coordinate was

f (t, x1, x2,dp,min) = Bnuc(cC )

f∞G(cC )
if G(cC (t, x1, x2))>0,

f (t, x1, x2,dp,min) = 0 if G(cC (t, x1, x2))=0,

f (t, x1, x2,dp,max) = 0 if G(cC (t, x1, x2))<0,

with Bnuc(cC )=knucc5C,∞max{0, (cC −1)5}. With respect to the spatial coordinates, the PSD was
set to be zero at the closure of the fluid flow inlets (see [20])

f (t, x1, x2,dp) = 0 on [0,T ]×[0]×[ 1532 , 1
2 ]×(dp,min,dp,max],

f (t, x1, x2,dp) = 0 on [0,T ]×[1]×[ 1532 , 1
2 ]×(dp,min,dp,max].

Besides the opposite inflows, the mixing of the reactants A and B was stimulated by the
movement of the upper wall with the velocity udrive=(u1,drive/u∞,0)T. The values u1,drive=
10−3m/s and u∞ ∈{10−3,10−2}m/s were used in the simulations presented below.

The initial velocity fields were fully developed flows, computed in a preprocessing step. Initially,
the concentrations were zero in �. The inflow of the reactants started at t=0. There were no
particles in the flow at t=0 such that the initial condition of the PSD was also zero.

In the numerical simulations, the calcium carbonate precipitation

CaCl2+Na2CO3−→CaCO3↓+2NaCl

has been considered. The physical and chemical parameters of this process are given by [31–34]:
• �=10−6m2/s
• �=1kg/m3

• kG =10−7m4/(kmols)
• knuc=1024(1/(m3s))/(kmol/m3)5

• kR =10−2m3/(kmols)
• csatC,∞ =1.37 10−4 kmol/m3

• C2=7.2 10−9m
• CG =45.98kmol/m3

• Cnuc=15.33kmol/m3

• DA=DB =DC =1.5 10−9m2/s
• d̃p,0=10−9m
• d̃p,max=10−4m
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Table I. Information on the number of degrees of freedom.

Function d.o.f.

Velocity 33 282
Pressure 12 288
Each concentration 4 225
PSD with L=32 139 425
PSD with L=48 207 025
PSD with L=64 274 625

The following reference quantities have been used to derive the dimensionless equations:

• l∞ =1m
• u∞ =10−3m/s or u∞ =10−2m/s
• t∞ =103 s for u∞ =10−3m/s or t∞ =102 s for u∞ =10−2m/s,
• c∞ =1kmol/m3

• cC,∞ =0.183502kmol/m3

• dp,∞ =10−4m
• f∞ =2.17486 1014 1/m4 for u∞ =10−3m/s, f∞ =2.17486 1015 1/m4 for u∞ =10−2m/s.

The choice of d̃p,max is based on the experiences from [3]. The Reynolds number of the flow with
u∞ =10−3 is Re=1000 and the flow with u∞ =10−2 has Re=10000. The reactive term in (8)
has a large factor: kRl∞c∞/u∞. Considering (8) for one of the reactants, the local Damköhler
number was of order 104 for u∞ =10−3 and of order 103 for u∞ =10−2 in regions where the
concentration of the other reactant was close to one.

The time-stepping schemes were applied with equidistant time steps. The velocity field and the
concentrations were computed on grids consisting of 64×64 squares. Information on the numbers
of degrees of freedom are provided in Table I. With respect to the internal coordinate, we used
grids with L∈{32,48,64} layers. The numerical studies of [3] showed that in particular small
particles will appear such that the grid for the PSD has to be refined toward dp,min. For this reason,
we used anisotropic grids on which the grid points were distributed accordingly to the formula

dp,i =1+(1−dp,min)
tanh(2.75(i/L−1))

tanh(2.75)
, i=0, . . . , L . (30)

The numbers of degrees of freedom on these grids are given in Table I. For all considered numbers
of layers, the PSD equation is by far the largest individual equation in the coupled population
balance system.

Owing to solving some equations approximately by iterative schemes, small negative concentra-
tions and PSD values can occur. They were cut-off for the reason of the stability of the simulations.

The linearized Navier–Stokes equations (14), (15) were solved by a flexible GMRES method [35]
with a coupled multigrid preconditioner [16]. The linearized equations for the chemical reaction
were solved with the direct solver UMFPACK, [36]. For the linear equations in 3D arising in the
backward Euler discretization and the FEM–FCT method, we used as solver the GMRES method
with an SSOR preconditioner. We could observe that in general only a very few iterations were
necessary to solve the PSD equation with this approach. The computations were performed with
the code MooNMD [37].
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In the evaluation of the process, the PSD at the center of the outflow (0.5,0) was considered.
For the representation of the PSD in this point, the volume fraction q3 defined by

q3(̃t, d̃p) :=
d̃ 3
p f̃ (̃t,0.5l∞,0, d̃p)∫ d̃p,max

d̃p,0
d̃ 3
p f̃ (̃t,0.5l∞,0, d̃p)d(d̃p)

was used. The cumulative volume fraction is given by

Q3(̃t, d̃p) :=
∫ d̃

d̃p,0
q3(̃t, d̃p)d(d̃p).

With Q3(̃t, d̃p), the median of the volume fraction d̃p,50(̃t) is defined to be the particle size for
which Q3(̃t, d̃p) takes the value 0.5:

d̃p,50(̃t) :={d̃p :Q3(̃t, d̃p)=0.5}. (31)

All simulations were performed in the dimensionless time interval [0,200] with precomputed
fully developed velocity fields as initial condition for the Navier–Stokes equations. The velocity
fields were obtained by solving the Navier–Stokes equations in a time interval of 100 (non-
dimensionalized) seconds, starting with a zero initial condition. Besides the median of the volume
fraction at the center of the outlet, we consider time-averages of this quantity. Time-averaged values
are often of great importance in applications. The time-averages presented below were computed
in the interval [100, 200].

4.2. Studies with u∞ =10−3—structured flow field

The case u∞ =10−3 leads to a population balance system where the structures of the flow field
and of the concentrations showed only small changes in time. Typical forms of the flow field and
the distributions of the concentrations are presented in Figure 2. A typical evolution of the median
of the volume fraction is shown in Figure 3. The structure of the flow field is governed by the
dominating influence of the movement of the upper wall. It can be seen that the first particles reach
the outlet at around 10 000 s and at the beginning of the precipitation process some peaks occur
in d̃p,50(̃t). But after a while, a periodic behavior of d̃p,50(̃t) starts where the length of the period
and the amplitude of the oscillations depend on the scheme used for solving the PSD equation.

The averaged medians of the volume fraction are presented in Table II. It can be seen that the
time step of the simulations has a great influence on the results. The results for �t=0.005 (�t̃=5s)
are rather different to the finer time steps, in particular for the first order Euler schemes FWE–
UPW–FDM and BWE–UPW–FDM. This indicates that the results are too inaccurate and the time
step �t=0.005 is too large. Refining the internal coordinate leads also to considerable changes
in the time-averaged medians of the volume fraction at the center of the outlet. With respect to
this quantity, all schemes for discretizing the PSD give results of the same order of magnitude for
sufficiently small time steps. A convergence of the results cannot yet be observed, the asymptotic
limit does not seem to be reached.

Typical evolutions of the median of the volume fraction are presented in Figure 3. All schemes
finally show an oscillatory behavior. The oscillations obtained with the first order Euler/upwind
finite difference schemes are smaller than with the Crank–Nicolson FEM–FCT scheme. We think
that the reason is the larger diffusivity of the former schemes.
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Figure 2. Typical simulation for the case u∞ =10−3; here FEM–FCT with �t=0.00125, (�t̃=1.25s),
L=64 at t̃=100000s; left to right: velocity, concentration of CaCl2, Na2CO3 and dissolved CaCO3.

Figure 3. Typical evolution of the median of the volume fraction at the center of the outlet for the case
u∞ =10−3; left: FEM–FCT with �t=0.00125, (�t̃=1.25s), L=64; right: all discretizations of the PSD

equation with �t=0.00125, (�t̃=1.25s), L=64.

Table II. Studies with u∞ =10−3: averaged median of the volume fraction.

�t=0.005 �t=0.0025 �t=0.00125
L Disc. PSD equ. �t̃=5s �t̃=2.5s �t̃=1.25s

FWE–UPW–FDM 4.096e−6 6.855e−6 6.365e−6
32 BWE–UPW–FDM 5.363e−6 7.061e−6 6.624e−6

FEM–FCT 5.559e−6 5.611e−6 6.022e−6

FWE–UPW–FDM 3.391e−6 5.743e−6 5.296e−6
48 BWE–UPW–FDM 4.446e−6 5.983e−6 5.520e−6

FEM–FCT 4.618e−6 4.974e−6 5.467e−6

FWE–UPW–FDM 3.055e−6 5.235e−6 4.809e−6
64 BWE–UPW–FDM 4.030e−6 5.487e−6 5.020e−6

FEM–FCT 4.246e−6 4.672e−6 5.196e−6
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Table III. Studies with u∞ =10−3: averaged computing time per time step in seconds.

�t=0.005 �t=0.0025 �t=0.00125
L Disc. PSD equ. �t̃=5s �t̃=2.5s �t̃=1.25s

FWE–UPW–FDM 4.55 2.89 1.25
32 BWE–UPW–FDM 5.51 3.90 2.36

FEM–FCT 6.87 5.12 3.43

FWE–UPW–FDM 4.53 2.97 1.25
48 BWE–UPW–FDM 6.74 5.20 2.99

FEM–FCT 8.17 6.35 4.64

FWE–UPW–FDM 4.67 2.92 1.24
64 BWE–UPW–FDM 7.86 5.63 3.70

FEM–FCT 9.33 7.47 5.73

The averaged computing times per time step are presented in Table III. Using the FWE–UPW–
FDM scheme for discretizing the PSD equation results in a negligible overhead to the simulation
of the flow and the chemical reaction. The computing times for this approach are essentially the
computing times for solving the flow equations and reaction equations of the population balance
system. The computing times for both implicit approaches increase with the number of layers for
the internal coordinate. In the BWE–UPW–FDM, the overhead comes essentially from solving the
linear PSD equation. In the FEM–FCT scheme, in addition the assembling of the matrices is rather
expensive and the flux correction has to be computed. The implicit approaches give somewhat
better results with respect to the median of the volume fraction for the largest time step �t=0.005.
However, the differences to the results of FWE–UPW–FDM decrease for smaller time steps.

In this example, all discretizations of the PSD equation gave for sufficiently small time steps
qualitatively similar results. The explicit approach was by far the fastest method.

4.3. Studies with u∞ =10−2—highly time-dependent flow field

These studies consider a highly time-dependent problem with changing structures, see Figure 4 for
an illustration. The influence of the movement of the upper wall is rather small and the structure of
the flow field is dominated by the inflows from the opposite inlets. We had to apply some damping
in the coupled multigrid preconditioner for solving the linearized and discretized Navier–Stokes
equations in order to perform stable simulations for �t=0.000625 (�t̃=0.0625s). The time step
�t=0.005 (�t̃=0.5) is too large for the application of the FEM–FCT scheme in the simulation
of the chemical reaction because the CFL condition (25) was violated.

Results obtained with the different schemes for solving the population balance equation are
presented in Tables IV, V and in Figure 5. The average particles are larger than in the simulation
with u∞ =10−3. With the highly time-dependent flow field, the average residence time of the
particles seems to be longer. In addition, dissolved CaCO3 is in much more regions of the flow
domain available, not only at the layer between the right inlet and the outlet.

It can be seen that the results with both Euler schemes and the upwind finite difference method
are very similar. In contrast to the simulations with u∞ =10−3, the results obtained with the
Crank–Nicolson FEM–FCT scheme for solving the population balance equation are dramatically
different, see Figure 5. We like to emphasize that the flow field is the same in all simulations as
there is no back coupling to the Navier–Stokes equations in our model. In all simulations with
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Figure 4. Simulation for the case u∞ =10−2; FWE–UPW–FDM with �t=0.00125
(�t̃=0.125), L=64, at t̃=10000,15000,20000s; top to bottom velocity, concentration of

CaCl2, Na2CO3 and dissolved CaCO3.

the FEM–FCT scheme, the first particles arrive later at the outlet than in the simulations with the
other schemes. We think that the strong smearing in the first order Euler schemes with the first
order upwind stabilization is responsible for this observation. The simulations with the FEM–FCT
scheme predict comparatively large particles.
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Table IV. Studies with u∞ =10−2: averaged median of the volume fraction.

�t=0.0025 �t=0.00125 �t=0.000625
L Disc. PSD equ. �t̃=0.25s �t̃=0.125s �t̃=0.0625s

FWE–UPW–FDM 1.328e−5 8.418e−6 9.032e−6
32 BWE–UPW–FDM 1.368e−5 8.485e−6 9.064e−6

FEM–FCT 3.294e−5 2.401e−5 2.833e−5

FWE–UPW–FDM 1.151e−5 6.919e−6 7.355e−6
48 BWE–UPW–FDM 1.203e−5 6.975e−6 7.386e−6

FEM–FCT 2.539e−5 1.613e−5 2.108e−5

FWE–UPW–FDM 1.125e−5 6.227e−6 6.591e−6
64 BWE–UPW–FDM 1.207e−5 6.281e−6 6.621e−6

FEM–FCT 1.947e−5 1.358e−5 1.850e−5

Table V. Studies with u∞ =10−2: averaged computing time per time step in seconds.

�t=0.0025 �t=0.00125 �t=0.000625
L Disc. PSD equ. �t̃=0.25s �t̃=0.125s �t̃=0.0625s

FWE–UPW–FDM 3.66 1.64 2.08
32 BWE–UPW–FDM 4.57 2.40 2.79

FEM–FCT 5.95 3.93 4.15

FWE–UPW–FDM 3.57 1.63 2.12
48 BWE–UPW–FDM 4.96 2.77 3.10

FEM–FCT 6.97 5.13 5.14

FWE–UPW–FDM 3.68 1.64 2.20
64 BWE–UPW–FDM 5.11 3.11 3.37

FEM–FCT 8.19 6.21 6.12

The curves obtained with this scheme are qualitatively different from the curves obtained with
the other schemes. The same statement holds for the time-averaged medians of the volume fraction,
see Table IV. There is the question of which solution can be considered to be more accurate. As
an analytical representation of the solution of the population balance system is not known and
experimental data are not available, the accuracy of the methods will be studied at a model problem
with prescribed solution in Section 5.

With respect to the computing times, Table V, the situation is essentially the same as for u=10−3.
The larger times per time step for �t=0.000625 in comparison with �t=0.00125 are caused by
the damping in the coupled multigrid preconditioner. Comparing in particular the Euler schemes,
one obtains essentially the same results in considerably less time with the forward Euler scheme.

5. A COUPLED SYSTEM OF A CONVECTION–DIFFUSION–EQUATION IN 2D AND A
TRANSPORT EQUATION IN 3D WITH PRESCRIBED SOLUTION

It could be observed in Section 4.3 that qualitatively much different results were obtained in the
presence of a highly time-dependent flow field with, on the one hand, the finite difference upwind
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Figure 5. Evolution of the median of the volume fraction at the center of the outlet for the case u∞ =10−2;
from top left to bottom right: L=32, �t=0.0025 (�t̃=0.25s); L=64, �t=0.0025 (�t̃=0.25s); L=64,

�t=0.00125 (�t̃=0.125s); L=64, �t=0.000625 (�t̃=0.0625s).

approaches for discretizing the PSD equation (11) and, on the other hand, die linear FEM–FCT
scheme. It is known form scalar linear problems that the FEM–FCT scheme is an accurate method
[7, 8]. However, it is not apparent that the situation is the same for a coupled non-linear problem
with equations defined in domains with different dimensions.

To study this case in some detail, we consider the system

�c
�t

−ε�c+b·∇c+�max{0, (c−1)5}+(c−c0)
∫ 1

dp,0
z2 f (z)dz = Fc in (0,T )×�, (32)

� f

�t
+b·∇ f +Gc

� f

�z
= Ff in (0,T )

×�×(dp,0,1), (33)
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Table VI. Coupled problem with prescribed solution, �t=0.001, errors at T =1.

FWE FCT FWE FCT FWE FCT FWE FCT

� 0.05 0.05 1 1
N � 1 20 1 20

‖c−ch‖0 1.13e−2 7.18e−3 1.05e−2 6.88e−3 4.67e−2 1.67e−2 3.17e−2 1.32e−2
32 |c−ch |1 2.01e−1 1.97e−1 1.99e−1 1.92e−1 3.72e−1 2.88e−1 2.88e−1 2.59e−1

‖ f − fh‖l2 8.62 1.97 5.77 2.00 124.88 7.24 77.52 4.83

‖c−ch‖0 4.42e−3 2.18e−3 4.02e−3 2.10e−3 2.27e−2 4.51e−3 1.48e−2 3.66e−3
64 |c−ch |1 9.85e−2 9.54e−2 9.77e−2 9.27e−2 1.82e−1 1.30e−1 1.38e−1 1.19e−1

‖ f − fh‖l2 5.33 5.78e−1 3.87 5.76e−1 69.12 1.91 42.27 1.31

‖c−ch‖0 2.33e−3 9.97e−4 2.13e−3 9.80e−4 1.16e−2 1.56e−3 7.59e−3 1.36e−3
128 |c−ch |1 5.82e−2 5.23e−2 5.80e−2 5.07e−2 9.64e−2 6.69e−2 7.44e−2 6.22e−2

‖ f − fh‖l2 3.60 1.79e−1 2.86 1.78e−1 37.04 5.34e−1 22.71 3.78e−1

which has the same structure as (10), (11). The parameters in (32), (33) were set to be of the same
orders of magnitude as in the simulations of Section 4.3

ε=10−7, �=5 ·10−4, c0=10−3, G=0.02, dp,0=10−5.

As divergence-free convection fields

b=�sin(��t)

(
2(2y−1)(1−(2x−1)2)

−2(2x−1)(1−(2y−1)2)

)
,

with the parameters � and � were used. The parameter � controls the variation of the size of the
convection field and the parameter � the oscillations within this size. Simulations were performed
in �=(0,1)2 and in the time interval (0,1). In order to assess the accuracy of the discretizations,
the right-hand sides Fc and Ff , the initial and the boundary conditions were set such that

c = 0.6t sin(�t/2)(sin(2�x)sin(2�y)+1),

f = 1000sin(�t/2)(2−d3p−dp)(sin(�x)sin(�y)+1)

is the prescribed solution of (32), (33).
The same numerical approaches as described in Section 3 were used to discretize (32), (33).

As FWE–UPW–FDM and BWE–UPW–FDM led always to very similar results, we restrict our
investigations here to FWE–UPW–FDM. Simulations were performed on N×N grids for �, N ∈
{32,64,128}, and N×N×N grids for �×(dp,0,1), were the grid points for the internal coordinate
were distributed accordingly to (30). Also different sizes of the time step were investigated. It
turned out that the errors of the solutions were dominated by the spatial error. For this reason, only
the results for the time step �t=0.001 are presented in Table VI. The errors at the final time T =1
of the concentration in L2(�) and in the H1(�) semi norm are given. As also a finite difference
method was applied for simulating the PSD, the error of the PSD is given in the discrete l2 norm,

‖ f ‖l2 =((1/(N+1)3)
∑(N+1)3

i=1 f 2i )1/2.
It can be observed in Table VI that all errors decrease if the grids are refined. To our best

knowledge, there is no error analysis available for the linear FEM–FCT scheme even in the
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case of a scalar linear equation. In addition, the considered problem is coupled, non-linear and
an anisotropic grid was used in one direction. Thus, there are no expectations of the orders of
convergence based on results from mathematical analysis. But the orders in Table VI seem to
be reasonable. Concerning FWE–UPW–FDM, if the grid was refined once and the time step was
halved, we could observe that all errors decreased by around the factor two, the error ‖c−ch‖0
often even more.

It can be clearly seen from Table VI that the results obtained with FEM–FCT are always
more accurate. In addition, the observed orders of convergence are higher for this scheme. The
differences of the errors, compared with FWE–UPW–FDM, are much larger if the variation of the
size of the convection field is large, i.e. for �=1. In this case, the effect of the inaccurate PSD
computed with FWE–UPW–FDM on the error of the concentration becomes clearly visible, in
particular on ‖c−ch‖0. Many oscillations of the convection field, �=20, within the size given by
the parameter �, have only a comparatively small effect on the errors.

The results obtained in this example correspond quite well with the observations in the simu-
lations of the population balance system. Large variations in the size of the convection field, as
in Section 4.3, lead to rather different results for the upwind finite difference schemes and the
FEM–FCT method. The upwind finite difference schemes were much more inaccurate. This inac-
curacy influences the solution of the equation for the concentration cC and eventually, qualitatively
different results are obtained in comparison with the FEM–FCT scheme for the PSD equation.
The appearance of many oscillations in a flow field, as was also the situation in Section 4.2, has
a much smaller effect on the accuracy of the methods than changes of the size of the flow field.

6. SUMMARY AND CONCLUSIONS

The paper presented simulations of precipitation processes that are modeled with a coupled popula-
tion balance system. The emphasis of the numerical studies was on different schemes for solving the
higher dimensional population balance equation. Concerning the background flow, two situations
were considered: a structured flow field with small changes in time and a highly time-dependent
flow field. These situations led to rather different conclusions:

• Structured flow field with small changes in time. The results with respect to the median of
the volume fraction were qualitatively the same for all considered schemes for solving the
population balance equation. As the forward Euler/upwind finite difference method was by
far the fastest scheme, its use might be recommended in this situation.

• Highly time-dependent flow field. The results obtained with the first order Euler/upwind finite
difference schemes are qualitatively different to the results of the Crank–Nicolson FEM–FCT
scheme. Based on numerical studies of a coupled model problem, the results obtained with
the FEM–FCT scheme can be considered to be more accurate. We think that in the case of
a highly time-dependent flow field the losses in accuracy with the low-order schemes are
not acceptable. In summary, the FEM–FCT scheme should be recommended in the case of
highly time-dependent flow fields, particularly if the flow fields become turbulent as often in
applications.

Our implementation of the finite difference schemes used the property that the flow domain is
rectangular. On arbitrary domains, these schemes will lose certainly some efficiency whereas the
FEM–FCT scheme is not affected by the shape of the flow domain.
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Future studies will include the extension of the simulations to 3D flows and 4D population
balance equations. An important issue will be the speed-up of the matrix assembling for the
FEM–FCT scheme of the population balance equation. These studies will explore, for instance,
the application of using different quadrature rules for the spatial and internal coordinates in the
assembling of this matrix. In addition, a non-linear FEM–FCT scheme for the equations for the
reaction and the PSD equation will be studied.

Another open problem which has to be studied consists in finding an indicator that gives a
guidance for the decision concerning which type of method for discretizing the PSD equation
should be used.
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