Computer methods

%’?fg in applied
@E mechanics and
engineering

ELSEVIER Comput. Methods Appl. Mech. Engrg. 166 (1998) 85-97

A streamline—diffusion method for nonconforming finite element
approximations applied to convection—diffusion problems

V. John', G. Matthies®, F. Schieweck’, L. Tobiska*

Institute fiir Analysis und Numerik, Otio-von-Guericke-Universitit Magdeburg, PF 4120, D-29016 Magdeburg, Germany

Received 3 November 1997

Abstract

We consider a nonconforming streamline~diffusion finite element method for solving convection—diffusion problems. The theoretical and
numerical investigation for triangular and tetrahedral meshes recently given by John, Maubach and Tobiska has shown that the usual
application of the SDFEM gives not a sufficient stabilization. Additional parameter dependent jump terms have been proposed which
preserve the same order of convergence as in the conforming case. The error analysis has been essentially based on the existence of a
conforming finite element subspace of the nonconforming space. Thus, the analysis can be applied for example to the Crouzeix/Raviart
element but not to the nonconforming quadrilateral elements proposed by Rannacher and Turek. In this paper, parameter free new jump
terms are developed which allow to handle both the triangular and the quadrilateral case. Numerical experiments support the theoretical
predictions. © 1998 Elsevier Science S.A. All rights reserved.

1. Introduction

The streamline—diffusion finite element method (SDFEM) for the solution of convection—diffusion problems
has been successfully applied in the case of conforming finite element spaces. This method was proposed first by
Hughes and Brooks [6] and applied to several classes of problems. Starting with the fundamental work by
Nivert [13], it was mainly analyzed by Johnson and his co-workers [5,9,10]. Nowadays, the convergence
properties are well-understood in the conforming case [14,17,21,22,24]. However, in the nonconforming case
there are some new effects which will be studied in this paper.

For applications from computational fluid dynamics, finite element methods of nonconforming type are
attractive since they easily fulfil the discrete version of the BabuSka-Brezzi condition. Another advantage of
nonconforming finite elements is that the unknowns are associated with the element faces such that each degree
of freedom belongs to at most two elements. This results in a cheap local communication when the method is
parallelized on MIMD-machines (see e.g. {4,7,11,18)]).

In order to stabilize finite element discretizations in the case of moderate and higher Reynolds numbers,
several upwind methods (resulting in algebraic systems with M-matrices) have been developed and analyzed
[2,3,16,18-20]. However, the main drawback of upwind methods is the restricted order of the discretization
error. Therefore, the SDFEM which is known to combine good stability properties with high accuracy outside
interior or boundary layers seems to be a suitable alternative to upwind schemes. In [12], a nonconforming
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SDFEM for the solution of the stationary Navier—Stokes equations is studied but no special attention has been
paid to the dependency of the error constants on the Reynolds number. For the simplified model of a scalar
convection—diffusion problem, a first analysis of convergence properties for a class of nonconforming SDFEM,
in the following called NSDFEM, reflecting the dependency of the perturbation parameter is given in [8]. If the
standard SDFEM is applied, large oscillations can occur. The theoretical and numerical investigation has shown
that by adding jump terms to the discretization one can preserve the same O(h**''?) order of L*-convergence as
in the conforming case for piecewise polynomials of degree k. It is important to note that the error analysis
essentially uses the fact that there exists a conforming finite element subspace of the nonconforming
approximation space. Thus, the analysis in [8] cannot be applied to the nonconforming Q" quadrilateral
elements [15,18] where a suitable conforming subspace is not available. In order to overcome these difficulties,
we develop new jump terms which allow to handle mixed meshes consisting of triangles and quadrilaterals. With
such meshes, we have more flexibility to create locally refined meshes.

In this paper, we propose a modified nonconforming SDFEM discretization for the solution of the boundary
value problem

—eAu+b-Vut+cu=f in{) u=0 onl:=042. (1)

For this modified discretization, theoretical and numerical investigations demonstrate that the order of
convergence is identical to that of the corresponding conforming methods. The main advantage of the new
method is that in contrast to [8] no additional parameters in the jump terms have to be chosen. Moreover,
numerical experiments show for the new discretization resonable convergence rates of iterative solvers which is
not the case for the theoretically supported jump term parameters in [8].

The remainder of this paper is organized as follows. In Section 2, notations and the modified nonconforming
discretization of (1) are introduced. We also describe assumptions on the finite element spaces to be fulfilled.
These assumptions are satisfied in particular for the nonconforming Crouzeix/Raviart element and a
nonconforming quadrilateral element. In Section 3, the coerciveness of the bilinear form and the convergence
properties are studied. Finally, in Section 4 several numerical experiments are presented in order to support the
theoretical results.

2. Notations and preliminaries

For simplicity, we restrict our representation to the two-dimensional case but the results can also be
generalized to three dimensions. Let £2 C R* be a bounded domain with polygonal boundary I'. For the data of
problem (1) we assume that £ is a small positive parameter and that b = (b,, b,), ¢ and f are sufficiently smooth
functions satisfying the assumption

inf(()—ld' b( ))> >0 2
en clx 2 1V O(X /CO . ()

Using the space V:=H (')(.Q), the standard weak formulation of (1) reads
Find 4 €V such that for all v €V

&Vu, VW) +(b -Vu + cu, v) =(f,v), €))]

where (-, ) denotes the inner product in LZ(Q). Note that under the assumption (2) there exists a unique
solution of problem (3). Let T, be a regular decomposition of the domain {2 into elements K € T, which are
allowed to be (open) triangles or convex quadrilaterals. By h, we denote the diameter of the element K and by A
the maximum of all h, for K € T,. Furthermore, let /" denote the minimum length of the edges of K and oy "
and @, the minimum and maximum angle between neighbouring edges of K, respectively. For the
discretization of (3) we consider a family {7} of decompositions with #— 0 which is assumed to be shape

regular, i.e. there are constants C, and a, € (0, 77) independent of A such that
helhg"<C, and a,<of"<af“<m-a, VKET,. (4)

For a quadrilateral element K, we denote by v the maximum angle between two opposite edges of K and
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formally we set y, = O for triangular elements. In order to get a reasonable estimate for the interpolation error of
the nonconforming quadrilateral finite elements we assume

W = Cohy VKET, (3)

with a constant C, independent of h. Assumption (5) can be realized by the mesh generation process in the
following way. We start with a coarse mesh T° consisting of quadilaterals and triangles. Then, for a given mesh
T' we construct the next finer mesh 7'*' by subdividing a certain set of marked elements K € T' into finer
elements. For the refinement pattern of a quadrilateral element we assume that it is either subdivided into four
‘son-elements’ by connecting the midpoints of opposite edges or that it is subdivided into triangular
son-elements only. For the subdivision of a triangular element only triangular son-elements are allowed. At the
end of this refinement process we get for some finest level /. our final mesh T, := 7'~ With the above
assumption on the refinement pattern, it can be proven that (5) is satisfied [18]. The assumption (4) admits
locally adapted meshes with non-degenerating elements. However, anisotropic mesh refinement is excluded.

In order to explain the finite element space V, we need some further notations and definitions. In the
following, €(K) denotes the set of all edges of an element K €7, €:= U ;. &(K) the set of all edges of T,
€. ={E€&€:ECI} and &,:= &\& the set of the boundary and inner edges, respectively.

For a given piecewise continuous function ¢, the jump [|¢|], and the average A,¢ on a face E € & are
defined by

limo ox+itng) — lir{l0 ox—m,) fECT

llell:t:= :
—lirfl[] ox —tn;) ifECT
s . B .
5(}5110 e + ;) +II_I>T0 o(x mE)) ifEZT
Appx)i=

Vs _ .
E(rl—lal}—l() elx tn,)) ifECT

where n, is a normal unit vector on E and x € E. If E C I" we choose the orientation of . to be outward with
respect to {2 otherwise s, has an arbitrary but fixed orientation. For an element K € T,, we denote by n, the
unit normal vector on 9K oriented outward with respect to K. For the nonconforming finite element functions
v, €V,, the continuity condition of conforming finite elements at the edges E € & is weakened to

‘]E(U/,)::|E|AI‘LUUhI]Ed7=0 VEE&Vuy, €V, (6)

where |E| denotes the length of the edge E. Condition (6) says that the mean-value J,(v,) of the jumps of v, on
edge E is zero for all E € & Now, our finite element space V, can be defined as

v,:={v, €L’):v,|, EPK)VKET,, J(v,)=0VEE &}, (N
where P(K):= P,(K) if K is a triangle and P(K):= Q" (K) for a quadrilateral element K. Herein, P, (K) denotes

rot

the space of all linear functions on K and Q" (K) the space of the so-called ‘rotated bilinear’ functions (see
[15]) defined by

Q' (K):={§oFy':¢ Espan(l, £, %,, %] — £},

where F : K > K is the bilinear transformation between the reference element K = [—1, 1]2 and the element K.
The degrees of freedom (nodal values) of a function v, €V, are the mean-values N.(v,) at inner edges E € &,
defined by

N, :=|E|"" j vl dy for E€ &K),
E
where K is an (arbitrary) element having the edge E. Because of (6), the value N (v,) does not depend on the

choice of K. Thus, the nodal values N (v) are well defined for all v EV +V,. Note that from the conditions
Je,) =0V E € &, in the definition of V, we have the discrete boundary conditions N,(v,) =0V E € &,. Let
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¢ E € &,, be the finite element basis functions of V, with N.(¢,) =1 and N,.(¢;) =0V E' € E{E}. Then, we
define the interpolation operator /,:V —V, by

Lvi= 2, N,w¢, YUVEV. (8)

EE¥,

In the following, we denote for a subdomain w C {2 by (-,-), the inner product in L*(w) and by |||, and
||, the usual norm and semi norm in the Sobelev space H"(w), respectively.

Now, the new version of the NSDFEM reads:

Find u, €V, such that for all v, €V,

a,(u,,v,)=1,,) 9)
where the bilinear form a, and the linear form /, are given by

a,(u,,v,) = > (&(Vu,, VW,) +(b-Vu, + cu,,v,) +(—&Au, +b-Vu, +cu,, 5b-V,),)

kET,

+ 2 b-ny |“h] Agv, dy + E f'b ng |uh]1-{|vh] dy, (10)

EeE JE

L) = (fo)+ 2 8(fib Vo).

KeT,

The size of the positive control parameters §, will be discussed in the next section.

REMARK 1. In [8], different weak forms of the convection term b - Vi have been studied. The theoretical and
numerical investigations have shown that the approximation error for the convective form of the convection
term behaves better than for the skew symmetrized and the fully skew symmetrized form. Therefore, we restrict
our study to the convective form used in (3) and (10).

REMARK 2. The jump terms introduced in [8] have the form

S [ aliullgo. .

[ ]

[}
]
)

®
[
®
]

®
[ ]
®

4

Fig. 1. Coupling of degrees of freedoms, left without, right with jump terms.
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where the parameter o has to be chosen appropriately. In contrast, now we have two parts, the first one to
guarantee coerciveness of the bilinear form and the second one to ensure an e-uniform estimate of the
consistency error.

REMARK 3. The jump terms in the modified NSDFEM discretization lead to an increased number of couplings
between the local basis functions, see Fig. 1. Therefore, the number of non-zero entries in the system matrix
increases considerably by a factor of about 2.6 for triangular meshes and 3.28 for quadrilateral meshes. In
addition, the implementation of this discretization on a parallel computer becomes more difficult.

3. Error analysis

In this section, we will provide a discretization error estimate which shows the convergence of the modified
NSDFEM (9), (10) for A ~0 assuming an appropriate choice of the parameter J.
For the error analysis, we use the mesh-dependent norm on V +V,

o= 3 (ool + calblie + 30l + 3 [ ooy lloll av an
KET, Ee¢ VE

Due to the assumption of a shape regular family of triangulations, there exists a positive constant x independent
of K and the triangulation 7, such that the following local inverse inequalities hold

HAvh”O,Kgl‘th;l'Uhh,K Vv, EV,VKET,. (12)
We set

Conax = SUP|c()| .
xE€4L

For the control parameter 6, we assume

L [ ¢ hf(
0<5KSEmln 5. (13)
Cma’( 8#

Let us first consider the coerciveness of the bilinear form «, on V,.

LEMMA 4. Let 'V, be the finite element space defined by (7) and the control parameter 8, fulfil the assumption
(13). Then, the discrete bilinear form a, is coercive on V,, i.e.

|
ah(vh’vh)2§|th|”2 Vv, ev,. (14)

PROOF. Using the definition of a,, element wise integration by parts and

[l,walle =[lva 1A w, + Ao, [Iw,]]; (15)
we obtain
| 1 ﬁ
a,w.v):= 2 ol + > (c——z-V'b,vz) + > —f b-ng”dy
KET, " ker, K ker, 2 Jak

+ 2 8 [Ib 'VU“(2>,K + 2 O (— eAv + cv, b-W),
KeT,

KeT,

+ Eg{ Lb R % [[v*[], dy + Eg}g L]b “ngl[lv]]* dy .

Taking into consideration the definition of the jump, the third term and the first jump term cancel. Using (2), we
get
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4
a,w,v)=||pll|* + Sy(— eAv + cv, b -VW), .
KET,

For the remaining term, we start with

D S —eAv+cv, bW | < 2 8 J(— Bu, b Vo) |+ 2 Slicv, bWyl (16)

KeT, KET, KET,

Using the Cauchy-Schwarz-inequality, we get for the first term of (16):

E 5K|( —elv, b 'VU)K| = 2 85;/2”AU“0.1< 5;'(/2”[’ 'VUH(),K

KET, KerT,

2 2 1 2
= E £ 8 |[Avlf; « + 4 ET 8llb - Vollo x -

KET, KET,

In the same way, we obtain for the second term of (16):

2 lco.b Vorl= X 83 e, ol 8l Vollox

KET, KET,
) 1
= Z al(cfnax”vlk),K +Z 2 il ‘VUHS_K'
KET, KET,
Applying the inverse inequality (12) and the assumption (13), we get

_ 1
826K||AU||(2).K = 826](“’2 hK2|U|?,K = 2 glvlf.K

2
max

and 6,c;,,, < Co/2. Summarizing all estimates, we obtain

1 2
> 8(—eAv +cv, b W), S§|||v|||
KET,

which concludes the proof of (14). O

In order to prove our main result on the convergence of the proposed NSDFEM we need the following
approximation properties of the space V,. For the finite element interpolation operator I, defined by (8), the
estimates

lv — 1,0, x < Chi "lbll,x VvEHK), (17)

lo = o) cllor < ChY vl « YvEH'K), EE&EK) (18)

are satisfied for an arbitrary element K €7, and m € {0,1,2} provided that {7,} is shape regular and the
assumption (35) is fulfilled for the quadrilateral elements (see {8,18]). In the following, for an edge E € &, the
operator P, : L2(E ) — P,(E) denotes the LZ(E )-projection into the space Py(E) of the constant functions on E.
The estimate

lo = Polly, <Chy*P|,x YvEH'K), EE&EK) (19)

holds, where K €7, is an element having the edge E. For triangular elements, (19) is proven in [1]. To prove
(19) for a quadrilateral element, we divide it into two triangles and apply (19) to the triangle with the edge E.
The following theorem shows the convergence of the new NSDFEM (9), (10).

THEOREM 5. Let the assumption of Lemma 4 be fulfilled. Moreover, let the solution u of (3) belong to
H(l,(.(l) NH*(02) and u, be the solution of (9), (10). Then, the error estimate

e = Il < C<KE

€T,

(A 1+ hi)llulli.K) (20)

holds with an &-independent constant C. The parameter Ay is defined by



V. John et al. | Comput. Methods Appl. Mech. Engrg. 166 (1998) 85-97 91
No'=c+h2+8 +6g hy. 21
K K K kK "k

PROOF. The error is split into two parts by applying the triangle inequality
e = e, 1l = [1F 00 = w11+ e = L]l (22)

Put w, :=I,u — u,. From the coerciveness of the bilinear form a,, we get
1 2
B3 IWu = wllI” <a,(u—uw,) +au—u,w,)
ou
=a,(l,u—uw,)+ 2 £ Wi dy. (23)
ker, Jok 9Nk

We set w:=I,u — u. In order to estimate the first term of the right-hand side in (23), we consider each term of
a,(l,u — u, w,). For the first term, we get

=s¢ 2 ”VW”O.K"VWh"().K

KeT,

1/2
sCe”2< > hinuni.x) [, Il

KET,

£ 2 (Vw, Y, )

KET,

Using an element wise integration by parts, we obtain for the second term
b-W+ew,w,)e=0c~V-bww), —(b-Vw, w) + j b-n,ww,dy. (24)
aK

We sum over all cells X and get the term

T:=Z]

KeT, 79

Kb-n,(ww,, dy, (25)

which will be estimated together with the first jump term in (10). The remaining parts of (24) are handled as
usual

z (c=V-bww,),| =C E "W”()‘xnwh"n‘K

KET, KEeT,
172
sc( > h;uuui,K) Hiwlll
KET,
2 (b'th,W)K = 2 5;</2||b'VW;,"o,KﬁEmHW“o.K
KET, KeT,

Wh“l-

sC( > 6;’h2llulli,,<)”2

KET,
The streamline—diffusion term can be estimated in the following way

2 (—edw+b-Yw+ew, &b -Vw,) | <C 2 5;(/2(‘9“ AW“OJ{ + ”Vw“(),K + ||W“04K)‘s 2/2||b 'VWhHo,K

KET, KET,
=C z 5;/2(6' + hK + hi)“““z,x 5}(/2"b 'th“ak
KeT,
2 1/2
< C<K§T (&°8¢ + Behy + 5Kh}§)||ull§,x> lllw,ll

= C( 2 (e+ SK)hf(”“Hi,K> ”2H|W/,H| .

KET,

To get this, we used &8, < Ceh’ which is a part of assumption (13). Now, we estimate the second jump term
of (10)
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[ |]f”wh']£ d')’l = Cﬁg{"[lwnﬁlo,b llb - nE|”2[’WhHE’(),E
= C(}%{ "[lwt]plgb)l/z(ﬁgy >+ ”E|1/2[|Wh|]5|(2),5) v .

Using the definition of the jump and (18), we get

H[|W|]E|0.E < Chi;n”“”zw(m

where N(E) is the union of all cells K with E C 8K and A, is the length of the edge E. It follows:

S, [ o mel (il dy| < C( S W) bl

EFe¢

Now, we consider the term T in (25) and the first jump term in (10). Using (15), we obtain

E 2 b-ngww, dy + z J; b- ”£{|W|]EAEW;. dy

KET, EE&K)YVE

== 3 [ oendwllay+ [ benfivllam, o

Ee¥€

= 2 b- nEAEw”whl]E dy .

Ee#

This term can be estimated in the following way

-3 [ bemantmllor| <3 [ ben,

EE®

172

['WhI]E dy

=C 2 ’ ”AEWI()J{”'b : ”EIHZ[IW;,’]EIO.E]
172 2
sc(z el e) (2 o mel ool )

For each term in the first sum, we use
”AEWHO,E = Chizlz‘lunz,/v(m

which follows with the help of (18). Summarizing the estimates, we get

=3 [ oeneamlinll 2] <C( S Bl ) il

In order to bound the consistency error, we use (6)

—~ ou
dy=— > f — [l
Ké, K W r H & JE ¢ ang [Iwkl]E dy
du
= _HZY - ( - P Kn:)”whl]r dy .

Applying the projection estimate (19), we see that

2 Wh d'}” =C z 3hl(”““2 Kiwhll K

KeT,

sC Z ‘91/2hK||u||2,K€]/2|Wh‘1.K

Th
2 N\ 172
( E SkK"“lz ) |||Wh|||
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holds. Thus, the first term of (22) is estimated by

2 \1/2 2 1/2
“”5!() + C( Z hi ”“HZ,N(E)) > (26)
EE

|||Ih“ - ”h”l s C( Z AKth
Ker,

h

with A, defined in (21).The interpolation estimates show that

ol = 3 (el + el + ol ol + S [ Io-n il o

KeT,

<C 3 Rttt o)l € 2 kMl
HASKC

KEeT,

and, using €+ hy + 8, < A, we get for the second term of (22)

HIWIH2 sC 2 /\th(”u”;K +C z th“”“;Nus) :
KET, EEE

This gives in combination with (26) and the shape regularity of the triangulation the convergence estimate
(20). O

REMARK 6. For the choice 8, ~h, in (21), which gives A, ~h, in the case &£<h,, the error estimate (20)
yields

e = ulll < Ca*ul

Thus, the new NSDFEM has the same order of convergence in the ||| -|||-norm, and consequently in the
L*-norm, as the standard SDFEM for conforming P -triangular and Q,-quadrilateral elements, respectively,
[17].

4. Numerical Studies

Now, we want to investigate the numerical behaviour of the discretization schemes (9), (10) for some test
examples. The goals are first to verify the order of convergence proven in Theorem 5 and that the constant in the
error estimate (20) is independent of &, second to compare the results using triangular and quadrilateral elements
and third to demonstrate the effect on the stability of the discrete solution if the jump terms are omitted in the
discretization schemes.

In our test examples, problem (1) is solved using the domain {2 = (0,1)2. The error will be measured in the
L*-norm |||, , and the streamline—diffusion norm [v[|; on V +V, defined by

ol = (2 (el eollllg + ol W) )™
KET,
The order of convergence is computed using the errors on the two finest grids.
The grids are generated by uniform refinement of a given coarse grid (level 0). Here, we present results for
two kinds of coarse grids, a quadrilateral and a triangular one shown in Fig. 2.
In the following tables, the new discretization (9), (10) will be referred as ‘new-j’, the discretization with the

Fig. 2. Quadrilateral and triangular coarse grid (level 0).
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jump terms introduced [8] using oy =1 (see Remark 2) as ‘old-j’ and the standard NSDFEM discretization
without jump terms as ‘no-j’.

EXAMPLE 7: Smooth polynomial solution. We take b = (3,2), ¢ =2 and the right-hand side f is chosen such
that

u(x, y) = 100(1 —x) X y (1-2y)1—y)

is the solution of (1). The streamline—diffusion parameters are chosen to be 6, =h VKET,.

All discretizations using jump terms show the expected order of convergence of 1.5 in the streamline—
diffusion norm and second order convergence in the L’-norm, see Tables 1 and 2. The same order of
convergence can be observed for the standard NSDFEM without jump terms on the quadrilateral mesh whereas
a reduction occurs for & = 10" on the triangular mesh. Between the nonconforming streamline—diffusion-
method proposed in [8] (‘old-j’) and the new one defined in (9), (10) (‘new-j’), there are often only minor
differences. However, for the discretization (9), (10), no parameters in the jump terms have to be chosen.
Considering the same level, the results on the quadrilateral mesh are better than on the triangular mesh although
the quadrilateral elements need less degrees of freedom.

Tables 3 and 4 present results for a fixed mesh size 4 and different values of the diffusion parameter &. For all
discretizations with jump terms and the standard NSDFEM discretization on the quadrilateral meshes, the error
is independent of &. This confirms that the constant C in the error estimate (20) does not depend on &. The order
of convergence for the standard NSDFEM on triangular meshes has been studied in detail in [8].

EXAMPLE 8: Layers at the outflow part of the boundary. Let b = (2,3) and ¢ = 1. The right-hand side f and the
Dirichlet boundary condition are chosen such that

. '6‘)“‘X'2— 2 ox (2(r—l)> (3(\—1)> (2(x—1)+3(y—]))
. Vs y'—ytexp{ T exp &
Table 1
Example 7, error and order of convergence in the norm |||, ,,
e=10" £=10""
Level Grid no-j old-j new-j no-j old-j new-j
5 A 4702 -4 3110—4 3134 -4 2.887 -3 1211 -4 3.221 —
O 2902 -4 2931 -4 2.521 -4 3.046 — 4 10754 2587 -4
6 A 8.154 —5 7.574 -5 7.641 — 5 9611 -4 8.123 -5 8.102-5
O 7.090 -5 7.132-5 6.019 -5 7.874 -5 7916 -5 6.323 -5
7 A 1.710-5 1.852 -5 1.902 -5 3.139—-4 2.047 -5 2.032-5
O 1.639 -5 1.634 -5 1481 -5 1.991 -5 1.996 — 5 1.559 -5
order A 2.254 2.032 2.006 1.614 1.989 1.996
order ] 2122 2.126 2.022 1.984 1.987 2.020
Table 2
Example 7, error and order of convergence in the norm |- ||,
e=10"" e=10"
Level Grnid no-j old-j new-j no-j old-j new-j
5 v 23302 2428 -2 2428 -2 2463 -2 2427 -2 2427 -2
O 2.066 — 2 2.066 — 2 2.065 -2 2.065 -2 2.065 -2 2.064 -2
6 a 8.685 -3 8.690 -3 8.690 -3 8.792 - 3 8.682 -3 8.682 3
O 7.306 -3 7.306 3 7.304 -3 7299 -3 7.299 -3 7.296 - 3
7 v 3.090 -3 3.093-3 3.094 -3 3.120—3 3.087 -3 3.087 -3
0 2586 —3 2.586 -3 2585—-3 25803 2.580—-3 2579 -3
order A 1.491 1.490 1.490 1.494 1.492 1.492
order O 1.499 1.499 1.498 1.500 1.500
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Table 3
Example 7, error on level 7 for different & in the norm |[- |, ,

Triangular mesh Quadrilateral mesh
& no-j new-j no-j new-j
107* 1.710 - 5 1.902 -5 1.628 — 5 1.481 -5
10°° 1.500 — 4 20285 1.986 — 5 1.557~5
10°° 3.139-4 2.032-5 1.991 -5 1.559 -5
107" 3.191 -4 2032-5 1.991 -5 1.559 ~ 5
Table 4
Example 7, error on level 7 for different £ in the norm ||- ||,

Triangular mesh Quadrilateral mesh
& no-j new-j no-j new-j
107" 3.090-3 3.094-3 2.586—3 25853
107" 31173 3.087 -3 2.580 -3 25793
10" 3.120-3 3.087-3 2.580-3 2579 -3
107" 3.142-3 3.087 -3 2.580 -3 2.579 -3

is the solution of (1), see Fig. 3. The solution has boundary layers at the lines x =1 and y = 1. The absolute
value of the Dirichlet boundary condition becomes exponentially small for £— 0.

For the computations, the parameters & =10 * and 8, = 0.25h,¥ K € T, have been used. The thickness of
the boundary layers is smaller than # for all meshes. Thus, the interpolation error in the layer region reduces the
order of convergencein the global L*-norm to 0.5. The discretization methods with jump terms reach this order,
see Table 5. Streamline—diffusion methods are known to combine good stability with high accuracy outside the
layers. The latter can be seen in Table 6 where the local L*-error measured in 2 = 0, 0.75)2 is presented.

Using the standard NSDFEM without jump terms (‘no-j’) on a triangular mesh can lead to huge oscillations
inside the layers, see Fig. 4. In contrast, on a quadrilateral mesh the discretization ‘no-j’ remains stable, see
Table 5. Here, the use of a quadrilateral mesh shows advantages. However, a theoretical explanation of this
phenomenon is an open problem.

REMARK 9. The linear systems have been solved using CGS with ILU as preconditioner or a multigrid method
with ILU ﬂ-smoothing (see e.g. [23]). In the numerical tests we have observed rates of convergence which were
clearly below 1for the discretizations with jump terms and the standard discretization (‘no-j’) on quadrilateral
meshes (e.g. not worse than 0.6 for the multigrid method). In contrast, using the standard NSDFEM
discretization on a triangular mesh, the rate of convergence has been very close to 1 (e.g. 0.99 and worse in the
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Fig. 3. Exact solution and contour-lines of Example 8.
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Table 5
Example 8, Error and order of convergence in the norm | - |, ,

Triangular mesh Quadrilateral mesh
Level no-j new-j no-j new-j
4 1.729+ 0 7.129 -2 7.728 -2 7.758 -2
5 2461 +0 5.068 — 2 5.466 — 2 5.479 -2
6 3487+0 3593 -2 3.865 -2 3872 -2
7 4.898 +0 2544 -2 27332 2737 -2
order —0.4900 0.498 0.500 0.500
Table 6
Example 8, local L*-error and order of convergence in the norm |||, 5

Triangular mesh Quadrilateral mesh
Level no-j new-j no-j new-j
4 7.030-4 7995 -5 6.067 —5 5662 -5
5 43855 1.919 -5 1.514 -5 1.416 -5
6 1091 -5 4797 - 6 3784 - 6 3539-6
7 2683 -6 1.199 - 6 9.459 -7 8.848 — 7
order 2.023 2.000 2.000 2.000

1 0

Fig. 4. Example 8, solution on a triangular mesh without jump terms, level 5.

multigrid method) and the number of iterations has increased with the level of refinement. Thus, the use of jump
terms on triangular meshes improves both the accuracy of the discrete solution and the convergence properties
of the solvers.

REMARK 10. Computations using non-rectangular quadrilateral grids have shown similar results as in the
previous examples. The behaviour of the discretizations on mixed meshes consisting of triangles and
quadrilaterals (e.g. appearing in adaptive refinements of quadrilateral meshes with triangular closure) is similar
to that of pure triangular meshes. In particular, huge oscillations can appear in the standard NSDFEM which can
be removed by using the jump terms introduced in (10).
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