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Abstract. We consider the question of “numerical errors” in large eddy simulation. It is often
claimed that straightforward discretization and solution using centered methods of models for large
eddy motion can simulate the motion of turbulent flows with complexity independent of the Reynolds
number and dependence only on the resolution “δ” of the eddies sought. This report considers this
question analytically: Is it possible to prove error estimates for discretizations of actually used large
eddy models whose error constants depend only on δ but not Re? We consider the most common,
simplest, and most mathematically tractable model and the most mathematically clear discretization.
In two cases, we prove such an error estimate and try to explain why our technique of proof fails in
the most general case. Our analysis aims to assume as little time regularity on the true solution as
possible.

Key words. large eddy simulation, Navier–Stokes equations, turbulence, finite element methods

AMS subject classifications. 76F65, 65M60

PII. S0036142900375554

1. Introduction. The laminar or turbulent flow of an incompressible fluid is
modeled by solutions (u, p) of the incompressible Navier–Stokes equations:

ut + u · ∇u+∇p−Re−1∆u = f in Ω× (0, T ],
∇ · u = 0 in Ω× [0, T ],
u(x, 0) = u0(x) in Ω,

u = 0 on Γ× [0, T ],∫
Ω

p dx = 0 in (0, T ].

(1.1)

Here Ω ⊂ R
d(d = 2, 3) is a bounded, simply connected domain with polygonal bound-

ary Γ, u : Ω× [0, T ]→ R
d is the fluid velocity, p : Ω× (0, T ]→ R is the fluid pressure,

f(x, t) is the (known) body force, u0(x) is the initial flow field, and Re is the Reynolds
number. Unfortunately, when Re is large the resulting turbulent flow is typically so
complex that so-called direct numerical simulation of (u, p) is not practically feasible.

One conjecture of Leray is that “turbulence” in nature is associated with a
breakdown of uniqueness of weak solutions to (1.1). It is known that, for exam-
ple, weak solutions to (1.1) are unique for d = 3 and for very small time intervals,
e.g., 0 ≤ t ≤ O(Re−3), and, more importantly, over O(1) time intervals 0 ≤ t ≤ T if

∫ T

0

‖∇u‖4
L2(Ω)dt <∞.
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There are numerous generalizations of this basic result [13, 28]. With this in mind,
solutions u to (1.1) with ‖∇u‖L2(Ω) ∈ L4(0, T ) are frequently described as “lami-
nar.” Thus, the Lp-regularity in time which can be reasonably assumed is of critical
importance.

There are numerous approaches to the simulation of turbulent flows in practical
settings. One of the most promising current approaches is large eddy simulation
(LES) in which approximations to local spatial averages of u are calculated. A spatial
length scale δ is selected. The large eddies are considered to be those of size greater
than or equal to O(δ) and the small eddies are considered to be those of size less
than O(δ). The large eddies are approximated directly while the effects of the small
eddies on the large eddies are modeled. In computational turbulence studies using
LES it is often reported that the resulting computational complexity is independent
of the Reynolds number (but dependent on the resolution sought, δ). There has been
little or no analytical support for this observation, however. The goal of this report
is to begin numerical analysis in support of this claim.

To be more specific, a smooth, nonnegative function g(x) with g(0) = 1 and∫
Rd g dx = 1 is selected and the mollifer gδ(x) is defined in the usual way:

gδ(x) = δ
−dg(x/δ).

One common example is a Gaussian, g(x) = (6/π)d/2 exp(−6xjxj), where the sum-
mation convention is used. The spatial averaging/filtering operation is now defined
by convolution:

u(x, t) = gδ ∗ u(x, t), p = gδ ∗ p, f = gδ ∗ f, etc.

In LES, approximations to (u, p) are sought rather than to (u, p). The usual procedure
is to first filter the Navier–Stokes equations:

ut +∇ · (u u) +∇p−Re−1∆u = f +∇ · T in Ω,
∇ · u = 0 in Ω,

where the “Reynolds stress tensor” T is

T = T(u, u) = u u− u u.

Closure is addressed by a modeling step in which T is written in terms of u. The
resulting (closed) space filtered Navier–Stokes equations are solved numerically. In
this procedure, there are three essential issues:

1. The “modeling error” committed in approximating T.
2. The “numerical error” in solving the resulting system.
3. Correct boundary conditions for the flow averages.
In this report, we study the numerical error analytically. Since there are many

models in LES (see, e.g., [25, 14, 23, 9, 2, 31, 35, 34]) and few analytical studies, we
take herein the simplest model commonly in use, presented, for example, in Ferziger
and Peric [9, section 9.3].

To describe the model, let D(u) be the deformation tensor associated with the
indicated velocity field by

D(u) =
1

2
(∇u+∇ut) = 1

2
(ui,xj + uj,xi).
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The Reynolds stresses are thought of as a turbulent diffusion process based upon the
Boussinesq assumption or eddy viscosity hypothesis that “turbulent fluctuations are
dissipative in the mean,” [25, 11, 32, 34]. We will accordingly consider a model of
the form

∇ · T ∼ ∇ · (νturb(u, δ) D(u)),

where νturb
.
= νturb(u, δ) is the so-called turbulent viscosity or eddy viscosity. This

turbulent viscosity’s determination can be very complex, involving even solutions of
accompanying systems of nonlinear partial differential equations. In the simplest
case, the turbulent viscosity depends on the mean flow u through the magnitude
of the deformation of u, νturb = νturb(D(u)), with a functional dependence. Under
the Boussinesq assumption, ∇ · T should act like a physical viscosity. Following the
reasoning of Ladyzhenskaya [29], thermodynamic considerations imply that the Taylor
series of νturb(D) should be dominated by odd degree terms. The simplest case is of
linear dependence upon |D|:

νturb = νturb(|D(u)|) = a0(δ) + a1(δ)|D(u)|,(1.2)

where |D(u)| denotes the Frobenius norm of D(u). For specificity and for accord with
the most commonly used Smagorinsky [37] model, we take the bulk turbulent viscosity
a0(δ) ≥ 0 and a1(δ) = Csδ

2. Other scalings are possible [30] though less tested, as
are many other subgridscale models [25, 35]. Here Cs is typically either chosen to
be around 0.1 or taken to be a function Cs = Cs(x, t) and extrapolated as in the
“dynamic subgridscale model” of Germano et al. [15].

With the model (1.2), the resulting system of equations for the approximations
(w, q) to (u, p) is

wt +∇ · (w w) +∇q −Re−1∆w −∇ · (νturbD(w)) = f in Ω× (0, T ],
∇ · w = 0 in Ω× [0, T ],
w(x, 0) = w0(x) in Ω,∫
Ω

q dx = 0 in [0, T ].

(1.3)

Boundary conditions must be supplied for the large eddies. It is physically clear that
large eddies do not adhere to solid walls. (For example, tornadoes and hurricanes
move while touching the earth and lose energy as they move.) Therefore, in [14, 26]
(see also [34] for the use of similar boundary conditions in a conventional turbulence
model), it was proposed that the large eddies should satisfy a no-penetration condition
and a slip with friction condition on ∂Ω:

w · n̂ = 0 on Γ,
w · τ̂ = 0 on Γ0, meas (Γ0) > 0,

βw · τ̂ + �t · τ̂ = 0 on Γ \ Γ0,
(1.4)

where �t is the Cauchy stress vector on Γ (for background information, see Serrin [36]),
β = β(δ,Re) is the friction coefficient (calculated explicitly in [26]), n̂ is the outward
unit normal, and τ̂ is an orthonormal system of tangent vectors on each face of Γ.
The friction coefficient β can be calculated once a specific filter is chosen [26]. It has
the property [26] that no slip conditions are recovered as δ → 0:

β(Re, δ)→ ∞ as δ → 0.
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A Dirichlet boundary condition w = winflow on Γ0 is appropriate if Γ0 is an inflow
boundary upon which u can be calculated by extending the known, inflow velocity
field upstream. We take winflow = 0 for simplicity.

The Cauchy stress vector �t includes the action of both the viscous stresses and
Reynolds stresses and is given by

�t(w) := n̂ · [−qI+ 2Re−1
D(w) + a0(δ)D(w) + Csδ

2|D(w)|D(w)].
Standard properties of convolution operators imply that the flow averages (u, p)

are C∞(Ω) in space, have bounded kinetic energy∫
Ω

|u|2dx ≤
∫

Ω

|u|2dx ≤ C(Ω, f, u0),

have no solution scales smaller than O(δ), and converge to u as δ → 0 [24]. On the
other hand, it is not obvious, nor has it been proven yet, that solutions (w, q) to the
large eddy model approximating (u, p) share any of these properties! Nevertheless, the
spatial regularity of solutions (w, q) we shall consider to be a modeling issue (beyond
the scope of this report studying numerical errors in LES). The time regularity of
solutions (w, q) is still an important consideration. For example, we shall show that
solutions of this model satisfy ∫ T

0

‖∇w‖3
L3dt <∞

uniformly in Re. One goal is thus to assume no greater time regularity than this. The
fundamental error analysis of Heywood and Rannacher [22] for the Navier–Stokes
equations is based, in part, on a laminar-type assumption ∇u ∈ L∞(0, T ;L2(Ω)).
Weakening this to an assumption of the form ∇u ∈ L3(0, T ;L3(Ω)) (as we seek to do
herein) is nontrivial.

2. Preliminaries. This section sets the notation used in the report, describes
the function spaces employed, and collects several useful inequalities. The notation
used is standard for the most part. The Lp(Ω) norms, for p �= 2, are explicitly denoted
as ‖f‖Lp . Sobolev spaces W k,p(Ω) are defined in the usual way [1]. The associated
norm is denoted by ‖ · ‖k,p. If the domain in question is not Ω (e.g., Ω× (0, T )), then
it will be explicitly indicated. If p = 2, these norms will be written ‖ · ‖k for the
W k,2(Ω) norm and ‖ · ‖k,Γ for the W k,2(Γ) norm and ‖ · ‖ and ‖ · ‖Γ, respectively, for
the L2(Ω) and L2(Γ) norms. We suppose the polygonal boundary Γ is composed of
faces Γ0,Γ1, . . . ,ΓJ , where (with some abuse of notation) Γ0 consists of the face(s)
upon which v = 0 is strongly imposed.

The spaces associated with the boundary conditions (1.4) are

X := {v : v ∈ (
W 1,3(Ω)

)d
, v = 0 on Γ0 and v · n̂ = 0 on Γj , j = 1, . . . , J},

Q := L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

The boundary condition in X is defined to hold in the sense of the trace theorem on
each Γj , and n̂ is the outward unit normal to Γ. The L

2(Ω) and L2(Γ) inner products
are denoted by (·, ·) and (·, ·)Γ, respectively.

If v ∈ X, D(v) denotes the usual deformation tensor, defined in the introduction.
The unit vector τ̂ denotes an orthonormal system of tangent vectors on Γ. Whenever
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τ̂ occurs, it will be understood that the term is to be summed over the two tangent
vectors if d = 3; for example,

‖v · τ̂‖2
Γj
if d = 3 means (‖v · τ̂1‖2

Γj
+ ‖v · τ̂2‖2

Γj
).

Lemma 2.1 (inf-sup condition). Let X̃ := {v : v ∈ (
W 1,2(Ω)

)d
, v = 0 on Γ0 and

v · n̂ = 0 on Γj , j = 1, . . . , J}. The velocity-pressure spaces (X̃,Q) satisfy the inf-sup
condition

inf
λ∈Q

sup
v∈X̃

(λ,∇ · v)
‖λ‖

[
‖D(v)‖2 +

∑J
j=1 ‖v · τ̂‖2

1/2,Γj

]1/2
≥ C > 0.(2.1)

Proof. Since ‖∇v‖ ≥ ‖D(v)‖, the trace theorem [20] shows that (2.1) is implied
by the usual inf-sup condition

inf
λ∈Q

sup
v∈X̃∩H1

0 (Ω)d

(λ,∇ · v)
‖λ‖ ‖∇v‖ ≥ C > 0.

Lemma 2.1 implies that the space of weakly divergence free functions V ,

V := {v ∈ X̃ : (λ,∇ · v) = 0 for all λ ∈ Q},

is a well defined, nontrivial, closed subspace of X̃.
Remark 2.1. Since Γ is not C1, discontinuities in τ̂ and n̂j have forced modifica-

tions in the norms to piecewise definition. For example, v · τ̂ /∈ H1/2(Γ) for v ∈ H1(Ω)
but v · τ̂ ∈ H1/2(Γj), j = 0, . . . , J .

The conforming finite element method for this problem begins by selecting finite
element spaces Xh ⊂ X and Qh ⊂ Q, where h denotes as usual a representative mesh
width for (Xh, Qh), satisfying the usual approximation theoretic conditions required
of finite element spaces. The condition that Xh ⊂ X imposes the restriction that
vh · n̂|Γj

= 0 for all vh ∈ Xh. For intricate boundaries, this could possibly be onerous

so it is interesting to consider imposing vh ·n̂|Γ = 0 with penalty or Lagrange multiplier
methods, following, e.g., the work in [31]. Nevertheless, there is already considerable
computational experience with imposing this condition in finite element methods (see,
e.g., [19, 8]), so we shall not focus on the interesting detail of the treatment of corners.
Without these additional regularizations in the numerical method, it is useful in the
analysis to assume that (Xh, Qh) satisfies the discrete analogue of (2.1),

inf
λh∈Qh

sup
vh∈Xh

(λh,∇ · vh)
‖λh‖

[
‖D(vh)‖2 +

∑J
j=1 ‖vh · τ̂‖2

1/2,Γj

]1/2
≥ C > 0,(2.2)

where C > 0 is independent of h. The next lemma shows, in essence, that if the
computational mesh follows the boundary and if the velocity space, restricted to no
slip boundary conditions, and the pressure space satisfy the usual inf-sup condition,
then (2.2) holds.

Lemma 2.2 (discrete inf-sup condition). If (Xh, Qh) satisfies

inf
λh∈Qh

sup
vh∈Xh∩H1

0 (Ω)d

(λh,∇ · vh)
‖λh‖ ‖∇vh‖ ≥ C1 > 0,
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then (2.2) holds.
Proof. By trace theorem [20] and the Poincaré–Friedrichs inequality, for any

λh �= 0, vh(�= 0) ∈ Xh,

(λh,∇ · vh)
‖λh‖

[
‖D(vh)‖2 +

∑J
j=1 ‖vh · τ̂‖2

1/2,Γj

]1/2
≥ C (λ

h,∇ · vh)
‖λh‖ ‖vh‖1

≥ C (λ
h,∇ · vh)

‖λh‖ ‖∇vh‖ .

Thus, (2.2) will be assumed throughout this report. Under (2.2), the space of
discretely divergence free functions

V h := {vh ∈ Xh : (λh,∇ · vh) = 0 for all λh ∈ Qh}
is a nontrivial closed subspace of Xh [16, 21].

We shall frequently use Young’s inequality in the form

ab ≤ ε

q
aq +

ε−q′/q

q′
bq

′
, 1 < q, q′ <∞, 1

q
+
1

q′
= 1.

The generalization of Hölder’s inequality∫
Ω

|u| |v| |w|dx ≤ ‖u‖Lp‖v‖Lq‖w‖Lr ,
1

p
+
1

q
+
1

r
= 1, 1 ≤ p, q, r ≤ ∞,

is also useful. We shall frequently use the Sobolev embedding theorem, often, but not
always, in the form that in three dimensions W 1,3(Ω) ↪→ Lp(Ω) for 1 ≤ p <∞.

The nonlinear form in the subgridscale term, for v, w ∈ (W 1,3(Ω))d

(|D(w)|D(w),D(v)),
is of p-Laplacian type (with p = 3). Thus, it is strongly monotone and locally Lip-
schitz continuous in the sense made precise in the following well-known lemma; see,
e.g., [30, 7].

Lemma 2.3 (strong monotonicity and local Lipschitz-continuity). There are con-
stants C and C such that for all u1, u2, v ∈ (W 1,3(Ω))d and d = 2 or 3, with
r = max{‖D(u1)‖L3 , ‖D(u2)‖L3},

(|D(u1)|D(u1)− |D(u2)|D(u2),D(u1 − u2)) ≥ C‖D(u1 − u2)‖3
L3 ,

(|D(u1)|D(u1)− |D(u2)|D(u2),D(v)) ≤ Cr‖D(u1 − u2)‖L3‖D(v)‖L3 .

Korn’s inequalities relate Lp norms of the deformation tensor D(v) to those same
norms of the gradient for 1 < p < ∞ (see Galdi, Heywood, and Rannacher [13],
Gobert [17, 18], Temam [39], or Fichera [10]) and fail if p = 1.

Theorem 2.4 (Korn’s inequalities). There is a C > 0 such that for 1 < p <∞
‖v‖pW 1,p ≤ C(Ω)[‖v‖pLp + ‖D(v)‖pLp ]

for all v ∈ (W 1,p(Ω))d.
Further, if γ(v) is a seminorm on Lp(Ω) which is a norm on the constants, then

‖∇v‖Lp ≤ C(Ω)[γ(v) + ‖D(v)‖Lp ]

holds for 1 < p <∞ and for all v ∈ (W 1,p(Ω))d.
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As a consequence of Korn’s inequality it follows that, taking γ(v) = ‖v‖Lp(Γ0), if
meas(Γ0) > 0, then

‖∇v‖pLp ≤ ‖v‖p1,p ≤ CK‖D(v)‖pLp

for all v ∈ {v ∈W 1,p(Ω)d : v|Γ0
= 0}.

We will often use Poincaré’s inequality, which holds since v ·n̂ = 0 on Γ (Galdi [12,
p. 56]),

‖v‖ ≤ C(Ω)‖∇v‖ for all v ∈ X.
We shall use the Gagliardo–Nirenberg inequality in W 1,p(Ω)∩X. This inequality

[1, 33, 13, 6] states that, provided Γ satisfies a weak regularity condition (holding in
particular for polygonal domains) and meas(Γ0) > 0 for all v ∈ W 1,p(Ω) ∩ X, 1 ≤
q, s ≤ ∞,

‖v‖Lq ≤ C‖∇v‖aLp‖v‖1−a
Ls for all v ∈ (

W 1,p(Ω)
)d ∩X,

where, for Ω ⊂ R
3 (improvable if Ω ⊂ R

2), p ≥ 3, q ≥ s, 0 ≤ a < 1, and

a =

(
1

s
− 1
q

)(
1

3
− 1
p
+
1

s

)−1

.

In particular, note that taking q = 6, p = 3, and s = 2 gives

‖v‖L6(Ω) ≤ C‖∇v‖2/3
L3(Ω)‖v‖1/3.(2.3)

The following combination of this and Korn’s inequality will be useful in section 4.
Lemma 2.5. Let meas(Γ0) > 0 and Ω ⊂ R

d, d = 2, 3. Then,

‖v‖L6 ≤ C‖v‖1/3‖D(v)‖2/3
L3 , C = C(Ω).

Proof. This follows immediately from (2.3) and Korn’s inequality.
The following dual norms are defined in an equivalent but slightly nonstandard

way: for 1
q +

1
q′ = 1, 1 < q, q

′ <∞,

‖f‖∗ := sup
v∈X

(f, v)

‖D(v)‖ ,

‖f‖W−1,3/2 := sup
v∈X

(f, v)

‖D(v)‖L3

,

‖f‖W−1,q′ (Ω×(0,t)) := sup
v∈Lq(0,T ;X)

∫ t

0
(f, v)dt′

(
∫ t

0
‖D(v)‖qLqdt′)1/q

.

Note that ‖D(·)‖L3 defines a norm in X as a consequence of Poincaré’s and Korn’s
inequality.

3. The finite element formulation. This section develops the finite element
method for the LES model. The stability of the model is also studied. In particular,
we show w and wh ∈ L∞(0, T ;L2(Ω)) ∩ L3(0, T ;H1(Ω)) uniformly in Re. Lastly, the
error in an equilibrium projection is considered.

The variational formulation is derived in the usual way by multiplication of (1.3)
by (v, q) ∈ (X,Q) and applying the divergence theorem. The boundary integral terms
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require careful treatment (following, e.g., [31]) on account of the slip with friction
condition on Γ. Let α ≥ 0 be a constant. The formulation which results is to find
w : [0, T ]→ X, q : (0, T ]→ Q satisfying

(wt, v) + β(δ,Re)

J∑
j=1

(w · τ̂ , v · τ̂)Γj
+
(
(2Re−1 + a0(δ) + Csδ

2|D(w)|)D(w),D(v))
+ (w · ∇w, v)− (q,∇ · v) + α(∇ · w,∇ · v) = (f, v) for all v ∈ X,(3.1)

(λ,∇ · w) = 0 for all λ ∈ Q,
and w(x, 0) = u0(x) ∈ X. For compactness, define the nonlinear and trilinear form:

a(u,w, v) := α(∇ · w,∇ · v) +
J∑

j=1

β(w · τ̂ , v · τ̂)Γj

+ ((2Re−1 + a0(δ) + Csδ
2|D(u)|)D(w),D(v)),

b(u,w, v) :=
1

2
(u · ∇w, v)− 1

2
(u · ∇v, w).

It is a simple index calculation to check that for v ∈ X,w ∈ V (since such
functions have zero normal components on Γ) (w · ∇w, v) = b(w,w, v). Thus, the
variational formulation can be rewritten as follows: find (w, q) : [0, T ] → (X,Q)
satisfying w(x, 0) = u0(x) and

(wt, v) + a(w,w, v) + b(w,w, v) + (λ,∇ · w)− (q,∇ · v) = (f, v)(3.2)

for all (v, λ) ∈ (X,Q).
Using Lemma 2.3, it is easy to prove that the LES model (1.3), (1.4) satisfies the

analogue of Leray’s inequality for the Navier–Stokes equations.
Lemma 3.1 (Leray’s inequality for the LES model). A solution of (3.2) satisfies

1

2
‖w(t)‖2 +

∫ t

0


 J∑
j=1

β‖w · τ̂‖2
Γj
+ (2Re−1 + a0(δ))‖D(w)‖2 + CCsδ

2‖D(w)‖3
L3


dt′

≤ 1

2
‖w(0)‖2 +

∫ t

0

(f, w)dt′.

Proof. Set v = w, λ = q in (3.2) and use Lemma 2.3.
Remark 3.1.
1. Because of the slip with friction boundary conditions (1.4), it is important to

choose the formulation of the viscous terms, as in (3.1), (3.2), involving the deforma-
tion tensor.

2. Leray’s inequality immediately implies stability in various norms (which we
will develop) and is the key, first step in proving existence of weak solutions to (1.3),
(1.4). This last question is fully investigated (under different boundary conditions) in
remarkable papers by Ladyzhenskaya [27], Parés [34], and Du and Gunzburger [7].

Lemma 3.2. Let (w, q) be the solution of (1.3). Then, there is a constant C
independent of Re such that for almost all t ∈ (0, T ) with 0 < T <∞

‖wt‖W−1,3/2 ≤ C (‖w‖2
L3 + ‖q‖L3/2 + (2Re−1 + a0(δ))‖D(w)‖L3/2

+ Csδ
2‖D(w)‖2

L3 + ‖f‖W−1,3/2

)
,
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‖wt‖3/2

L3/2(0,T ;W−1,3/2)
≤ C

(
‖w‖3

L3(0,T ;L3) + ‖q‖3/2

L3/2(0,T ;L3/2)

+ (2Re−1 + a0(δ))‖D(w)‖3/2

L3/2(0,T ;L3/2)

+ Csδ
2‖D(w)‖3

L3(0,T ;L3) + ‖f‖3/2

L3/2(0,T ;W−1,3/2)

)
.

Proof. From the momentum equation in (1.3) it follows that for almost all t ∈
(0, T ) (alternately, dividing (3.1) by ‖v‖W 1,3 and taking the supremum over v)

‖wt‖W−1,3/2 ≤ ‖∇ · (ww)‖W−1,3/2 + ‖∇q‖W−1,3/2 + Csδ
2‖∇ · (|D(w)|D(w))‖W−1,3/2

+ (2Re−1 + a0(δ))‖∇ · D(w)‖W−1,3/2 + ‖f‖W−1,3/2 .

The definition of the norm, integration by parts, using v · n = 0 on Γ for v ∈ X,
Hölder’s inequality, and Korn’s inequality give, e.g.,

‖∇q‖W−1,3/2 = sup
v∈X

∫
Ω

−q(∇ · v)dx
‖D(v)‖L3

≤ sup
v∈X

‖q‖L3/2‖∇ · v‖L3

‖D(v)‖L3

≤ C‖q‖L3/2 .

The other terms are estimated in the same way also using ‖ww‖L3/2 = ‖w‖2
L3 and

‖|D(w)|D(w)‖L3/2 = ‖D(w)‖2
L3 .

The second inequality follows raising both sides to the power 3/2 and integrating
in time.

The continuous-in-time finite element method for (1.3) uses the variational for-
mulation (3.2) as follows. First, velocity-pressure finite element spaces Xh ⊂ X ∩
(W 1,3(Ω))d, Qh ⊂ Q satisfying (2.2), and the parameter α ≥ 0 are selected.

The finite element approximations to (w, q) are maps (wh, qh) : [0, T ]→ (Xh, Qh)
satisfying

(wh
t , v

h) + a(wh, wh, vh) + b(wh, wh, vh) + (λh,∇ · wh)− (qh,∇ · vh) = (f, vh)(3.3)

for all (vh, λh) ∈ (Xh, Qh) where wh(x, 0) ∈ Xh is an approximation to w(x, 0) = u0.
It is straightforward to verify that Leray’s inequality holds for wh as well as w.
Lemma 3.3 (Leray’s inequality for wh). For α ≥ 0, any solution of (3.3) satisfies

1

2
‖wh(t)‖2 +

∫ t

0

[
β

J∑
j=1

‖wh · τ̂‖2
Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ C Csδ
2‖D(wh)‖3

L3

]
dt′ ≤ 1

2
‖wh(0)‖2 +

∫ t

0

(f, wh)dt′.

Using various inequalities in the right-hand side, stability bounds for wh follow
from Lemma 3.3.

Proposition 3.4 (stability of wh). The solution wh of (3.3) satisfies

1

2
‖wh(t)‖2 +

∫ t

0

[
J∑

j=1

β‖wh · τ̂‖2
Γj
+ (Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ CCsδ
2‖D(wh)‖3

L3

]
dt′ ≤ 1

2
‖wh(0)‖2 +

Re

4

∫ t

0

‖f‖2
∗dt

′,(3.4)
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1

2
‖wh(t)‖2 +

∫ t

0

[
J∑

j=1

β‖wh · τ̂‖2
Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+
2

3
CCsδ

2‖D(wh)‖3
L3

]
dt′ ≤ 1

2
‖wh(0)‖2

+
2

3
(CCs)

−1/2δ−1‖f‖3/2

W−1,3/2(Ω×(0,t))
,(3.5)

‖wh(t)‖2 + 2

∫ t

0

et−t′
[

J∑
j=1

β‖wh · τ̂‖2
Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ CCsδ
2‖D(wh)‖3

L3

]
dt′ ≤ et‖wh(0)‖2 +

∫ t

0

et−t′‖f‖2dt′.(3.6)

Proof. Inequality (3.4) follows by applying Young’s inequality to Lemma 3.3. The
bound (3.5) follows from the definition of the dual norm and ab ≤ ε

3a
3 + 2

3ε
−1/2b3/2

applied in the same manner.
For (3.6), set vh = wh and λh = qh in (3.3), use Lemma 2.3, and apply Young’s

inequality on the right-hand side. This gives

d

dt
‖wh‖2 − ‖wh‖2 + 2

[
J∑

j=1

β‖wh · τ̂‖2
Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ CCsδ
2‖D(wh)‖3

L3

]
≤ ‖f‖2.

Inequality (3.6) now follows by using an integrating factor.
In the analysis of the error in the approximation of the time dependent problem,

it is useful to have a clear description of the error in the Stokes projection under slip
with friction boundary conditions [31]. It is also necessary that any dependence on
Re, δ, and β be made explicit.

Under the discrete inf-sup condition, the Stokes projection Π : (X,Q)→ (Xh, Qh)
is defined as follows. Let Π(w, q) = (w̃, q̃), where (w̃, q̃) satisfies

α(∇ · (w − w̃),∇ · vh) + (2Re−1 + a0(δ))(D(w − w̃),D(vh))

+

J∑
j=1

β((w − w̃) · τ̂ , vh · τ̂)Γj − (q − q̃,∇ · vh) = 0 for all vh ∈ Xh,

(∇ · (w − w̃), λh) = 0 for all λh ∈ Qh.

This is equivalent to the following formulation provided w ∈ V and vh ∈ V h. Given
(w, q), find w̃ ∈ V h satisfying

α(∇ · (w − w̃),∇ · vh) + (2Re−1 + a0(δ))(D(w − w̃),D(vh))

+
J∑

j=1

β((w − w̃) · τ̂ , vh · τ̂)Γj − (q − λh,∇ · vh) = 0

for all vh ∈ V h and λh ∈ Qh. Under the discrete inf-sup condition, it is well known
that (w̃, q̃) is a quasi-optimal approximation of (w, q). The dependence of the stability
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and error constants upon Re and β = β(Re, δ) is important to the error analysis. That
dependence is described in the next lemma and proposition.

Lemma 3.5 (stability of the projection w̃). Let w ∈ V be given. Then if α > 0,
w̃ satisfies

α‖∇ · w̃‖2 + (2Re−1 + a0(δ))‖D(w̃)‖2 +

J∑
j=1

β‖w̃ · τ̂‖2
Γj

≤ α−1‖q‖2 + (2Re−1 + a0(δ))‖D(w)‖2 +

J∑
j=1

β‖w · τ̂‖2
Γj
.

If α = 0, then

1

2
(2Re−1 + a0(δ))‖D(w̃)‖2 +

J∑
j=1

β‖w̃ · τ̂‖2
Γj

≤ 2(2Re−1 + a0(δ))
−1‖q‖2 + (2Re−1 + a0(δ))‖D(w)‖2 +

J∑
j=1

β‖w · τ̂‖2
Γj
.

Proof. Set vh = w̃ ∈ V h in the second formulation of the Stokes projection. This
immediately gives

α‖∇ · w̃‖2 + (2Re−1 + a0(δ))‖D(w̃)‖2 +

J∑
j=1

β‖w̃ · τ̂‖2
Γj

= (2Re−1 + a0(δ))(D(w),D(w̃)) +

J∑
j=1

β(w · τ̂ , w̃ · τ̂)Γj + (q − λh,∇ · w̃)

≤ 1

2
(2Re−1 + a0(δ))[‖D(w)‖2 + ‖D(w̃)‖2] +

J∑
j=1

β

2
[‖w · τ̂‖2

Γj
+ ‖w̃ · τ̂‖2

Γj
]

+
α

2
‖∇ · w̃‖2 +

1

2α
‖q‖2,

from which the first result follows. If α = 0, the term (q,∇ · w̃) is bounded by noting
that ∇ · w̃ = trace (D(w̃)) so that

(q,∇ · w̃) ≤ ‖q‖ ‖D(w̃)‖ ≤ 1

4
(2Re−1 + a0(δ))‖D(w̃)‖2 + (2Re−1 + a0(δ))

−1‖q‖2.

Proposition 3.6. Suppose the discrete inf-sup condition (2.2) holds. Then,
(w̃, q̃) exists uniquely in (Xh, Qh) and satisfies

α‖∇ · (w − w̃)‖2 + (2Re−1 + a0(δ))‖D(w − w̃)‖2 +

J∑
j=1

β‖(w − w̃) · τ̂‖2
Γj

≤ C inf
vh∈Xh,λh∈Qh

{
(2Re−1 + a0(δ))‖D(w − vh)‖2

+

J∑
j=1

β‖(w − vh) · τ̂‖2
Γj
+min{α−1, (2Re−1 + a0(δ))

−1}‖q − λh‖2

}
.
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Proof. The proof follows standard arguments, carefully tracking the dependence
of the constants upon Re and β.

Note that the use of least squares penalization of incompressibility allows an error
estimate for the Stokes projection whose constants are essentially independent of the
Reynolds number in a suitably weighted norm.

4. The convergence theorem. Let us first note that for standard piecewise
polynomial finite element spaces it is known that the L2-projection of a function in
Lp, p ≥ 2, is in Lp itself and the L2-projection operator is stable in Lp, p ≥ 2 [5].

Let e = w−wh and let w̃ denote a stable approximation of w in V h∩ (W 1,3(Ω))d,
for example, the L2-projection under the conditions of [5]. This stability in W 1,p

follows for many piecewise polynomial finite element spaces using [5].
The error is decomposed as e = (w − w̃)− (wh − w̃) = η − φh, where η = w − w̃

and φh = wh − w̃ ∈ V h. An error equation is obtained by subtracting (3.2) from
(3.3) and using the fact that w ∈ V . This gives, for any vh ∈ V h ∩ (W 1,3(Ω))d and
λh ∈ Qh,

(et, v
h) + a(w,w, vh)− a(wh, wh, vh)(4.1)

+ b(w,w, vh)− b(wh, wh, vh)− (q − λh,∇ · vh) = 0.
This is rewritten, adding and subtracting terms and setting vh = φh, as follows:

(φht , φ
h) + a(wh, wh, φh)− a(w̃, w̃, φh) = (ηt, φh)(4.2)

+ a(w,w, φh)− a(w̃, w̃, φh) + b(w,w, φh)− b(wh, wh, φh)− (q − λh,∇ · φh).
The monotonicity lemma (Lemma 2.3) implies that

a(wh, wh, φh)− a(w̃, w̃, φh)

≥ CCsδ
2‖D(φh)‖3

L3 + α‖∇ · φh‖2 + (2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β‖φh · τ̂‖2
Γj
,

and with r := max{‖D(w)‖L3 , ‖D(w̃)‖L3}
a(w,w, φh)− a(w̃, w̃, φh)

≤ (2Re−1 + a0(δ))‖D(φh)‖ ‖D(η)‖+
J∑

j=1

β‖φh · τ̂‖Γj
‖η · τ̂‖Γj

+ CsCδ
2r‖D(η)‖L3‖D(φh)‖L3 + α‖∇ · η‖ ‖∇ · φh‖.

Remark 4.1. If w̃ is taken to be the Stokes projection of (w, q) into V h, then,
e.g., the term “Re−1‖D(φh)‖ ‖D(η)‖” on this last right-hand side does not occur.

Inserting these two bounds in (4.2) and using the Cauchy–Schwarz and Young’s
inequalities gives

1

2

d

dt
‖φh‖2 + CCsδ

2‖D(φh)‖3
L3 + α‖∇ · φh‖2

+ (2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β‖φh · τ̂‖2
Γj

≤ |b(w,w, φh)− b(wh, wh, φh)|+ ε1
3
δ2‖D(φh)‖3

L3 +
2

3
ε
−1/2
1 δ−1‖ηt‖3/2

W−1,3/2
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+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 1

2
(2Re−1 + a0(δ))‖D(η)‖2

+

J∑
j=1

(
β

2
‖φh · τ̂‖2

Γj
+
β

2
‖η · τ̂‖2

Γj

)
+
ε1
3
δ2‖D(φh)‖3

L3

+
2

3
ε
−1/2
1 δ2C

3/2
C3/2

s r3/2‖D(η)‖3/2
L3 +

α

2
‖∇ · φh‖2 +

1

α
‖q − λh‖2 + α‖∇ · η‖2.

Picking ε1 = CCs and collecting terms gives

1

2

d

dt
‖φh‖2 +

1

3
CCsδ

2‖D(φh)‖3
L3 +

α

2
‖∇ · φh‖2

+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2

Γj

≤ |b(w,w, φh)− b(wh, wh, φh)|+ 2
3
(CCs)

−1/2δ−1‖ηt‖3/2

W−1,3/2(4.3)

+
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2

Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2

L3 + α
−1‖q − λh‖2 + α‖∇ · η‖2.

This is the basic differential inequality for the error. Three cases will be considered,
revolving around the treatment of the first term on the right-hand side of (4.3).

Remark 4.2. If α = 0, an estimate which is uniform in Re can still be obtained by
using Korn’s inequality and Young’s inequality on the term (q−λh,∇·φh) as follows:

(q − λh,∇ · φh) ≤ ‖q − λh‖L3/2‖∇ · φ‖L3 ≤ C‖D(φh)‖L3‖q − λh‖L3/2

≤ 1

3
CCsδ

2‖D(φh)‖3
L3 + Cδ−1‖q − λh‖3/2

L3/2 .

However, an estimate of the nonlinear convective term which is uniform in Re fails in
the case α = 0; see Remark 4.7.

Consider the convection terms

b(w,w, φh)− b(wh, wh, φh) = b(w, η − φh, φh) + b(η − φh, wh, φh).(4.4)

The terms containing η shall be bounded first. Consider b(w, η, φh) and b(η, wh, φh).
Using the inequalities in section 2 appropriately gives

|b(w, η, φh)| =
∣∣∣∣12 [(w · ∇η, φh)− (w · ∇φh, η)]

∣∣∣∣
≤ 1

2

[‖φh‖ ‖∇η‖Ls′ ‖w‖Ls + ‖∇φh‖L3‖w‖Lq‖η‖Lq′
]
,

where 1
2 +

1
s′ +

1
s = 1 and

1
3 +

1
q +

1
q′ = 1. Picking s

′ = 3, s = 6, q = 2, and q′ = 6 gives

|b(w, η, φh)| ≤ 1

2

[‖φh‖ ‖∇η‖L3‖w‖L6 + ‖∇φh‖L3‖w‖ ‖η‖L6

]
≤ 1

4
‖φh‖2‖w‖2

L6 +
1

4
‖∇η‖2

L3 +
ε3
6
‖D(φh)‖3

L3 +
C

3
ε
−1/2
3 ‖w‖3/2‖η‖3/2

L6 .(4.5)
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The term b(η, wh, φh) is similarly bounded as follows:

|b(η, wh, φh)| =
∣∣∣∣12 [(η · ∇wh, φh)− (η · ∇φh, wh)]

∣∣∣∣
≤ 1

2
‖∇wh‖L3‖η‖L6‖φh‖+ 1

2
‖∇φh‖L3‖η‖L6‖wh‖

≤ 1

4
‖∇wh‖2

L3‖φh‖2 +
1

4
‖η‖2

L6 +
ε3
6
‖D(φh)‖3

L3 +
C

3
ε
−1/2
3 ‖η‖3/2

L6 ‖wh‖3/2.(4.6)

Korn’s inequality and the stability bounds (3.5) and (3.6) immediately imply that
D(wh) ∈ L3(0, T ;L3) uniformly in Re so that ‖∇wh‖2

L3 ∈ L1(0, T ), uniformly in Re.
The Sobolev imbedding theorem and Korn’s inequality also imply ‖w‖2

L6 ∈ L1(0, T )
uniformly in Re. Thus, these bounds suffice for a later application of Gronwall’s
inequality.

The first term containing only φh, b(w, φh, φh), is zero due to skew symmetry.
Thus, there only remains the term b(φh, wh, φh). Estimating the term b(φh, wh, φh)
is the essential, core difficulty in obtaining an error bound which is uniform in Re.
There are only a few natural ways to bound this using Hölder’s inequality and the
Sobolev embedding theorem. There are two cases in which the analysis is successful:

(i) a0(δ) �= 0 and ∇w ∈ L3(0, T ;L3(Ω)),
(ii) a0(δ) = 0 and ∇w very regular, ∇w ∈ L2(0, T ;L∞(Ω)).

There is one important case in which the analysis fails:
(iii) a0(δ) = 0 and ∇w ∈ L3(0, T ;L3(Ω)).

To highlight subsequent analysis and, hopefully, spur further study, we shall first
present the case (iii) and explain the failure of the analysis.

Remark 4.3. On the condition a0(δ) > 0 in part (i), if a1(δ) > 0 and a0(δ) ≥
0, then it is known that the difference between two weak solutions of (1.3) can be
bounded (nonuniformly in Re) by the change in the problem data [7, 29, 34]. These
bounds imply uniqueness over O(1) time intervals. On the other hand, if a1(δ) ≡ 0
and a0(δ) > 0, weak solutions are then only known to be unique over very small time
intervals 0 ≤ t ≤ T ∗(δ), where (loosely speaking) T ∗(δ) ∼ (a0(δ) +Re−1)3.

4.1. The case ∇w ∈ L3(0, T ;L3(Ω)) and a0(δ) = 0. If we assume only
that ∇w ∈ L3(0, T ;L3(Ω)), there is no need to add and subtract terms since a priori
bounds on ‖∇wh‖L3(0,T ;L3) have been proven which are uniform in Re. Thus, we can
use Hölder’s inequality to write

|b(φh, wh, φh)| =
∣∣∣∣12(φh · ∇wh, φh)− 1

2
(φh · ∇φh, wh)

∣∣∣∣
≤ 1

2
‖∇wh‖L3‖φh‖Ls‖φh‖Ls′ +

1

2
‖∇φh‖L3‖φh‖ ‖wh‖L6 ,

where 1
3 +

1
s′ +

1
s = 1 and 1 ≤ s′, s ≤ ∞. Thus, picking s′ = 2, s = 6, using the

embedding W 1,3(Ω)→ L6(Ω) and Poincaré’s inequality gives

|b(φh, wh, φh)| ≤ C(Ω)

2
‖∇wh‖L3‖φh‖ ‖φh‖1,3 +

C(Ω)

2
‖∇φh‖L3‖φh‖ ‖wh‖1,3

≤ ε

6
‖φh‖3

1,3 + Cε
−1/2‖∇wh‖3/2

L3 ‖φh‖3/2 +
ε

6
‖D(φh)‖3

L3 .(4.7)

Remark 4.4. Using Lemma 2.5 instead of the embedding of W 1,3 → L6 changes
the critical exponent on ‖φh‖ “3/2” to 12/7 in the first term of (4.7) but not the final
conclusion.
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Combining (4.5), (4.6), (4.7) with ε3 = ε gives an initial bound on the convection
term’s difference:

|b(w,w, φh)− b(wh, wh, φh)|

≤
[
1

4
‖∇η‖2

L3 +
1

4
‖η‖2

L6 + Cε−1/2
(
‖w‖3/2 + ‖wh‖3/2

)
‖η‖3/2

L6

]

+
2ε

3
‖∇φh‖3

L3 + Cε−1/2‖∇wh‖3/2
L3 ‖φh‖3/2 +

[
1

4
‖w‖2

L6 +
1

4
‖∇wh‖2

L3

]
‖φh‖2.(4.8)

Inserting (4.8) into (4.3), applying Korn’s inequality, and collecting terms gives

1

2

d

dt
‖φh‖2 +

(
1

3
CCsδ

2 − 2ε
3

)
‖D(φh)‖3

L3 +
α

2
‖∇ · φh‖2

+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2

Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2

W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2

Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2

L3 + α
−1‖q − λh‖2 + α‖∇ · η‖2 +

1

4
‖∇η‖2

L3

+ Cε−1/2‖w‖3/2‖η‖3/2
L6 +

1

4
‖η‖2

L6 + Cε−1/2‖η‖3/2
L6 ‖wh‖3/2

]

+ Cε−1/2‖∇wh‖3/2
L3 ‖φh‖3/2 +

[
1

4
‖w‖2

L6 +
1

4
‖∇wh‖2

L3

]
‖φh‖2.

Thus, pick ε such that

2ε

3
=
1

6
CCsδ

2,

i.e., ε = O(δ2). This gives

1

2

d

dt
‖φh‖2 +

1

6
CCsδ

2‖D(φh)‖3
L3 +

α

2
‖∇ · φh‖2 +Re−1‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2

Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2

W−1,3/2 +Re
−1‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2

Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2

L3 + α
−1‖q − λh‖2 + α‖∇ · η‖2 +

1

4
‖∇η‖2

L3

+
C

δ

(
‖w‖3/2 + ‖wh‖3/2

)
‖η‖3/2

L6 +
1

4
‖η‖2

L6

]

+
[
Cδ−1‖∇wh‖3/2

L3

]
‖φh‖3/2 +

[
1

4
‖w‖2

L6 +
1

4
‖∇wh‖2

L3

]
‖φh‖2.

Consider the bracketed terms on this right-hand side. The first is approximation
theoretic; the second is an L1 function multiplying ‖φh(t)‖3/2; the third is an L1
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function multiplying ‖φh(t)‖2. Let y(t) := ‖φh(t)‖2. This inequality may then be
written as

d

dt
y(t) + (nonnegative terms) ≤ C(t)hγ + a(t)y(t) + b(t)δ−1y3/4(t),

where a(t), b(t) ∈ L1(0, T ).
The final step would normally be to apply Gronwall’s inequality to deduce y(t) =

1
2‖φh(t)‖2 to be bounded by its initial values and approximation theoretic terms.

Unfortunately, the term y3/4 is not Lipschitz, so the argument fails at this last step.
Tracing the inequalities backward, the problem term arises from the steps used to

bound b(φh, wh, φh) to obtain Re independence. The error analysis in the successful
cases (i) and (ii) centers therefore on alternate bounds for this term. We shall first
consider case (i).

Remark 4.5. If the estimate in (4.7) is improved as noted in Remark 4.3, the
term y(t)3/4 is changed to y(t)6/7 but the final conclusion still holds.

4.2. The case ∇w ∈ L3(0, T ;L3(Ω)) and a0(δ) > 0. The main result of
this section is the following theorem.

Theorem 4.1. Assume α > 0 and a0(δ) > 0. Let

a(t) =
1

4
‖w‖2

L6 +
1

4
‖∇wh‖2

L3 +
C

a0(δ)
‖∇wh‖2

L3 + Ca0(δ)
−1/2α−3/2‖D(wh)‖3

L3 .

Then, there is a C1 = C1(δ), independent of Re and h, such that

‖a(t)‖L1(0,T ) ≤ C1(δ).

Further, there is a C2 = C2(δ), independent of Re and h, such that

C

δ

(
‖w‖3/2 + ‖wh‖3/2

)
≤ C2(δ).

Then, the error w − wh satisfies for T > 0

‖w − wh‖2
L∞(0,T ;L2) + δ

2‖D(w − wh)‖3
L3(0,T ;L3) + α‖∇ · (w − wh)‖2

L2(0,T ;L2)

+
(
Re−1 + Ca0(δ)

) ‖D(w − wh)‖2
L2(0,T ;L2) +

J∑
j=1

β‖(w − wh) · τ̂‖2
L2(0,T ;L2(Γj))

≤ C exp(C1(δ))‖(w − wh)(x, 0)‖2 + C inf
w̃∈V h∩(W 1,3(Ω))d,λh∈Qh

F(w − w̃, q − λh, δ)

with

F(w − w̃, r − qh, δ)
= ‖w − w̃‖2

L∞(0,T ;L2) + δ
2‖D(w − w̃)‖3

L3(0,T ;L3)

+ exp(C1(δ))

[
‖(w − w̃)(x, 0)‖2 + δ−1‖(w − w̃)t‖3/2

L3/2(0,T ;W−1,3/2)

+ (2Re−1 + a0(δ))‖D(w − w̃)‖2
L2(0,T ;L2) +

J∑
j=1

β‖(w − w̃) · τ̂‖2
L2(0,T ;L2(Γj))

+ C(δ)‖D(w − w̃)‖3/2
L3(0,T ;L3) + α

−1‖q − λh‖2
L2(0,T ;L2) + α‖∇ · (w − w̃)‖2

L2(0,T ;L2)

+ ‖∇(w − w̃)‖2
L2(0,T ;L3) + ‖w − w̃‖2

L2(0,T ;L6) + C2(δ)‖w − w̃‖3/2

L3/2(0,T ;L6)

]
.
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Proof. This analysis follows the previous discussion closely except for the treat-
ment of the b(φh, wh, φh) term and the final application of Gronwall’s inequality.

Consider, therefore, b(φh, wh, φh). Integration by parts and using the fact that
φh · n̂ = 0 on Γ give

b(φh, wh, φh) =
1

2
(φh · ∇wh, φh)− 1

2
(φh · ∇φh, wh)

= (φh · ∇wh, φh) +
1

2
(∇ · φh, φh · wh)(4.9)

≤ ‖∇wh‖L3‖φh‖2
L3 +

1

2
|(∇ · φh, φh · wh)|.

Using the embedding H1/2 ↪→ L3 in d = 2, 3 and Young’s inequality give

∣∣b(φh, wh, φh)
∣∣ ≤ ε1

2
‖D(φh)‖2 +

C

2ε1
‖∇wh‖2

L3‖φh‖2 +
1

2
|(∇ · φh, φh · wh)|.(4.10)

Consider now the last term on the above right-hand side. By Hölder’s inequality, we
obtain

|(∇ · φh, φh · wh)| ≤ ‖∇ · φh‖ ‖φh‖Lr′ ‖wh‖Ls ,

where 1
r′ +

1
s =

1
2 . Thus,

|(∇ · φh, wh · φh)| ≤ α

4
‖∇ · φh‖2 + α−1‖φh‖2

Lr′ ‖wh‖2
Ls .(4.11)

The Sobolev embedding theorem implies that for any s, 1 ≤ s < ∞ in two or three
dimensions, W 1,3(Ω) ↪→ Ls(Ω). Thus,

‖wh‖2
Ls ≤ C(s,Ω) ‖wh‖2

W 1,3(Ω) ≤ C(s,Ω)‖D(wh)‖2
L3 .

This implies that for any r′ > 2

|(∇ · φh, wh · φh)| ≤ α

4
‖∇ · φh‖2 + C(r′,Ω)α−1‖φh‖2

Lr′ ‖D(wh)‖2
L3 .

Consider the last term on the above right-hand side. The Sobolev embedding theorem
also implies

‖φh‖Lr′ ≤ C(r′,Ω)‖φh‖W t,2(Ω) for t ≥ 3

2
− 3

r′
.

(The final result is not improved by applying here instead the Gagliardo–Nirenberg
inequality.) As r′ → 2, t → 0 in this inequality. Thus, picking r′ = r′(t) > 2 close
enough to 2 implies that, using an embedding inequality and Korn’s inequality,

‖φh‖2
Lr′ ≤ C(t,Ω)‖φh‖2

t ≤ C(t,Ω)‖φh‖2(1−t) ‖D(φh)‖2t

for any t > 0. Thus, for these values of r′ and s

1

α
‖φh‖2

Lr′ ‖wh‖2
Ls ≤ C

α
‖D(φh)‖2t‖φh‖2(1−t)‖D(wh)‖2

L3

for any t > 0. For conjugate exponents q = 3 and q′ = 3
2 in Young’s inequality, we

then have

1

α
‖φh‖2

Lr′ ‖wh‖2
Ls ≤ ε

3
‖D(φh)‖6t + ε−1/2α−3/2C‖φh‖3(1−t)‖D(wh)‖3

L3 .
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Picking t = 1
3 > 0 gives for these values of r

′ and s

1

α
‖φh‖2

Lr′ ‖wh‖2
Ls ≤ ε

3
‖D(φh)‖2 + C(r′, s, t,Ω)ε−1/2α−3/2‖φh‖2‖D(wh)‖3

L3 .

Using this bound, (4.10) and (4.11) finally give

|b(φh, wh, φh)| ≤ ε1
2
‖D(φh)‖2 +

C

2ε1
‖∇wh‖2

L3‖φh‖2

+
α

8
‖∇ · φh‖2 +

ε2
6
‖D(φh)‖2 + Cε

−1/2
2 α−3/2‖D(wh)‖3

L3‖φh‖2.

Remark 4.6. It appears on first consideration that this last term (∇ ·φh, wh ·φh)
can be agreeably bounded more directly and easily by

|(∇ · φh, wh · φh)| ≤ C‖∇ · φh‖ ‖∇wh‖ ‖φh‖1/2 ‖∇φh‖1/2

≤ C‖∇φh‖3/2‖φh‖1/2‖∇wh‖ ≤ ε‖∇φh‖2 + C(ε)‖∇wh‖4‖φh‖2.

This bound, while certainly true, is not sufficient because of the condition that in-
evitably arises from using it that wh or w ∈ L4(0, T ;H1(Ω)). The extra work in
the bound we use reduces the time regularity requirements arising from this term
to wh ∈ L3(0, T ;W 1,3(Ω)) (which is bounded uniformly in Re by problem data in
section 3).

Substituting this bound for b(φh, wh, φh) in the derivation of the upper estimate
(4.8) for the difference of the convection terms gives

|b(w,w, φh)− b(wh, wh, φh)|
≤

[
1

4
‖∇η‖2

L3 +
C

3
ε
−1/2
3 ‖w‖3/2‖η‖3/2

L6 +
1

4
‖η‖2

L6 +
C

3
ε
−1/2
3 ‖η‖3/2

L6 ‖wh‖3/2

]

+
[ε3
3
‖D(φh)‖3

L3 +
ε1
2
‖D(φh)‖2 +

α

8
‖∇ · φh‖2 +

ε2
6
‖D(φh)‖2

]
(4.12)

+

[
1

4
‖w‖2

L6 +
1

4
‖∇wh‖2

L3 +
C

2ε1
‖∇wh‖2

L3 + Cε
−1/2
2 α−3/2‖D(wh)‖3

L3

]
‖φh‖2.

To proceed further, (4.12) is inserted in the right-hand side of (4.3). This yields
the differential inequality

1

2

d

dt
‖φh‖2 +

(
1

3
CCsδ

2 − ε3
3

)
‖D(φh)‖3

L3 +
3

8
α‖∇ · φh‖2

+

(
1

2
(2Re−1 + a0(δ))− ε1

2
− ε2
6

)
‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2

Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2

W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2

Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2

L3 + α
−1‖q − λh‖2 + α‖∇ · η‖2 +

1

4
‖∇η‖2

L3(4.13)

+
C

3
ε
−1/2
3

(
‖w‖3/2 + ‖wh‖3/2

)
‖η‖3/2

L6 +
1

4
‖η‖2

L6

]

+

[
1

4
‖w‖2

L6 +
1

4
‖∇wh‖2

L3 +
C

ε1
‖∇wh‖2

L3 + Cε
−1/2
2 α−3/2‖D(wh)‖3

L3

]
‖φh‖2.
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Pick ε3 = CCCsδ
2, C < 1/3, ε1 = a0(δ)/3, and ε2 = a0(δ). These choices sim-

plify (4.13) to

1

2

d

dt
‖φh‖2 + CCCsδ

2‖D(φh)‖3
L3 +

3

8
α‖∇ · φh‖2

+

(
Re−1 +

a0(δ)

6

)
|D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2

Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2

W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2

Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2

L3 + α
−1‖q − λh‖2 + α‖∇ · η‖2(4.14)

+
1

4
‖∇η‖2

L3 +
C

δ
(‖w‖3/2 + ‖wh‖3/2)‖η‖3/2

L6 +
1

4
‖η‖2

L6

]

+

[
1

4
‖w‖2

L6 +
1

4
‖∇wh‖2

L3 +
C

a0(δ)
‖∇wh‖2

L3 +
C

a0(δ)1/2α3/2
‖D(wh)‖3

L3

]
‖φh‖2.

Before applying Gronwall’s inequality, let us first verify that it will indeed give us
an error bound that is uniform in the Reynolds number by considering the coefficients
on the right-hand side of (4.14).

First, note that r ≤ C‖D(w)‖L3 . By the stability estimates ‖w‖ ∈ L∞(0, T ) and
‖wh‖ ∈ L∞(0, T ) uniformly in Re. Thus,

C

δ
‖w‖3/2‖η‖3/2

L6 +
C

δ
‖η‖3/2

L6 ‖wh‖3/2 ≤ C

δ
(‖w‖3/2 + ‖wh‖3/2)‖η‖3/2

L6 ≤ C2(δ)‖η‖3/2
L6 .

Consider the (critical) bracketed coefficient of the last term on the right-hand side.
We must show this coefficient is in L1(0, T ) uniformly in Re. Indeed, by the stability
estimates and the Sobolev imbedding ‖w‖L6 , ‖D(wh)‖L3 , ‖D(w)‖L3 ∈ L3(0, T ) uni-
formly in Re. Since T <∞, L3(0, T ) ⊂ L2(0, T ), and thus the first factor of the last
term is in L1(0, T ) uniformly in Re.

Hiding all constants in generic C’s, Gronwall’s lemma now implies for almost all
t ∈ [0, T ] that
‖φh(x, t)‖2 + δ2‖D(φh)‖3

L3(0,t;L3) + α‖∇ · φh‖2
L2(0,t;L2)

+
(
Re−1 + Ca0(δ)

) ‖D(φh)‖2
L2(0,t;L2) +

J∑
j=1

β‖φh · τ̂‖2
L2(0,t;L2(Γj))

≤ C exp (‖a(t)‖L1(0,t)

) ‖φh(x, 0)‖2

+ C exp
(‖a(t)‖L1(0,t)

)[
δ−1‖ηt‖3/2

L3/2(0,T ;W−1,3/2)
+ (2Re−1 + a0(δ))‖D(η)‖2

L2(0,t;L2)

+

J∑
j=1

β‖η · τ̂‖2
L2(0,t;L2(Γj))

+ δ2
∫ t

0

‖D(w)‖3/2
L3 ‖D(η)‖3/2

L3 dt
′

+ α−1‖q − λh‖2
L2(0,t;L2) + α‖∇ · η‖2

L2(0,t;L2) + ‖∇η‖2
L2(0,t;L3) + ‖η‖2

L2(0,t;L6)

+

∫ t

0

1

δ
(‖w‖3/2 + ‖wh‖3/2)‖η‖3/2

L6 dt
′
]
.
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Note that by the Cauchy–Schwarz inequality in L2(0, t), t ∈ [0, T ], and the stability
estimates∫ t

0

‖D(w)‖3/2
L3 ‖D(η)‖3/2

L3 dt
′ ≤ ‖D(w)‖3/2

L3(0,t;L3)‖D(η)‖3/2
L3(0,t;L3) ≤ C(δ)‖D(η)‖3/2

L3(0,t;L3).

Now, the essential supremum of t ∈ [0, T ] is applied on both sides of the inequality.
As w−wh = η−φh, the triangle inequality completes the proof of Theorem 4.1.

Remark 4.7. On the condition α > 0, the least squares control of ∇·u seems to be
essential to get an estimate uniform in Re. Consider (4.9) in the proof of Theorem 4.1.
There are two important nonlinear terms in the error equation corresponding loosely
to convection and reaction. The reaction term is controlled by the subgrid model.
The convection term can be converted into a reaction-like term. It is controllable
provided that ∇ · φh is controllable, which α > 0 accomplishes.

Another promising approach is to use a variational formulation, such as SUPG
developed by Brooks and Hughes [3], which will control the convection term directly.
We note that both SUPG and least squares control of ∇ · u are consistent: they work
on the error and do not change the solution.

4.3. The case ∇w ∈ L2(0, T ;L∞(Ω)) and a0(δ) ≥ 0. We now consider the
case of smoother w, i.e.,

w ∈ L2(0, T ;W 1,∞(Ω)) uniformly in Re,

allowing for the case a0(δ) ≡ 0. This case is primarily of interest because many
tests involve “academic” flow fields given in closed form (as in section 5). These
are typically smooth and bounded. In this case Theorem 4.2 gives an error estimate
with constants independent of Re (but depending on δ and α). It is noteworthy in
this estimate that multiplicative constants depend on δ but the rate constant in the
(inevitable) exponential term takes the form

exp(C3(w)), C3 = C3(‖w‖L2(0,T ;W 1,∞(Ω))),

with no explicit dependence on δ.
Theorem 4.2. Suppose a0(δ) ≥ 0, α > 0, and w ∈ L2(0, T ;W 1,∞(Ω)) uniformly

in Re. Let

a(t) :=
3

4
+ ‖∇w‖L∞ +

(
1

4
+
1

4α

)
‖w‖2

L∞ +
1

2
‖∇w‖2

L∞ ;

then there is a C3 = C3(w) such that

‖a(t)‖L1(0,T ) ≤ C3(w).

Let C4 = C4(δ) be such that

‖D(wh)‖L3(0,T ;L3) ≤ C4(δ).

Then, the error w − wh satisfies

‖w − wh‖2
L∞(0,T ;L2) + δ

2‖D(w − wh)‖3
L3(0,T ;L3) + α‖∇ · (w − wh)‖2

L2(0,T ;L2)

+
(
Re−1 + Ca0(δ)

) ‖D(w − wh)‖2
L2(0,T ;L2) +

J∑
j=1

β‖(w − wh) · τ̂‖2
L2(0,T ;L2(Γj))

≤ C exp(C3(w))‖(w − wh)(x, 0)‖2 + C inf
w̃∈V h∩(W 1,3(Ω))d,λh∈Qh

F(w − w̃, q − λh, δ)
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with

F(w − w̃, r − qh, δ)
= ‖w − w̃‖2

L∞(0,T ;L2) + δ
2‖D(w − w̃)‖3

L3(0,T ;L3)

+ exp(C3(w))

[
‖(w − w̃)(x, 0)‖2 + δ−1‖(w − w̃)t‖3/2

L3/2(0,T ;W−1,3/2)

+ (2Re−1 + a0(δ))‖D(w − w̃)‖2
L2(0,T ;L2) +

J∑
j=1

β‖(w − w̃) · τ̂‖2
L2(0,T ;L2(Γj))

+ C(δ)‖D(w − w̃)‖3/2
L3(0,T ;L3) + α

−1‖q − λh‖2
L2(0,T ;L2)

+

(
1

4
+ α

)
‖∇ · (w − w̃)‖2

L2(0,T ;L2) + ‖w − w̃‖2
L2(0,T ;L2)

+ C4(δ)
(
‖D(w − w̃)‖2

L18/5(0,T ;L3) + ‖w − w̃‖2
L6(0,T ;L6)

)]
.

Proof. In this case, the difference in the nonlinear terms is decomposed a bit
differently as

|b(w,w, φh)− b(wh, wh, φh)| = |b(η − φh, w, φh) + b(wh, η − φh, φh)|
= |b(η, w, φh)− b(φh, w, φh) + b(wh, η, φh)|.(4.15)

Consider the individual terms on the right-hand side of (4.15):

|b(η, w, φh)| =
∣∣∣∣12(η · ∇w, φh)− 12(η · ∇φh, w)

∣∣∣∣
=

∣∣∣∣(η · ∇w, φh) + 12(∇ · η, φh · w)
∣∣∣∣

≤ 1

2
‖η‖2 +

1

2
‖∇w‖2

L∞‖φh‖2 +
1

4
‖∇ · η‖2 +

1

4
‖w‖2

L∞‖φh‖2,

|b(φh, w, φh)| =
∣∣∣∣(φh · ∇w, φh) + 1

2
(∇ · φh, w · φh)

∣∣∣∣
≤ ‖∇w‖L∞‖φh‖2 +

α

4
‖∇ · φh‖2 +

1

4α
‖w‖2

L∞‖φh‖2,

|b(wh, η, φh)| =
∣∣∣∣(wh · ∇η, φh) + 1

2
(∇ · wh, η · φh)

∣∣∣∣
≤ ‖wh‖L6‖∇η‖L3‖φh‖+ 1

2
‖∇ · wh‖L3‖η‖L6‖φh‖

≤ C (‖wh‖2
L6‖∇η‖2

L3 + ‖D(wh)‖2
L3‖η‖2

L6

)
+
3

4
‖φh‖2.

Combining these three estimates gives

|b(w,w, φh)− b(wh, wh, φh)|
≤ 1

2
‖η‖2 +

1

4
‖∇ · η‖2 + C‖wh‖2

L6‖∇η‖2
L3 + C‖D(wh)‖2

L3‖η‖2
L6 +

α

4
‖∇ · φh‖2

+

(
3

4
+
1

2
‖∇w‖2

L∞ +
1

4
‖w‖2

L∞ + ‖∇w‖L∞ +
1

4α
‖w‖2

L∞

)
‖φh‖2.(4.16)
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The term ‖wh‖L6 is bounded using the Gagliardo–Nirenberg inequality (Lemma 2.5)

‖wh‖2
L6 ≤ C‖wh‖2/3‖D(wh)‖4/3

L3 .

Since ‖wh‖ is bounded uniformly in ν and h by (3.5) or (3.6), it follows that
‖wh‖2

L6 ≤ C‖D(wh)‖4/3
L3 .

This bound, together with (4.16), is now inserted in the right-hand side of (4.3) giving

1

2

d

dt
‖φh‖2 +

1

3
CCsδ

2‖D(φh)‖3
L3 +

α

2
‖∇ · φh‖2

+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2

Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2

W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2

Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2

L3 + α
−1‖q − λh‖2 + α‖∇ · η‖2 +

1

2
‖η‖2

+
1

4
‖∇ · η‖2 + C‖D(wh)‖4/3

L3 ‖∇η‖2
L3 + C‖D(wh)‖2

L3‖η‖2
L6

]
+

[
α

4
‖∇ · φh‖2

]

+

(
3

4
+ ‖∇w‖L∞ +

(
1

4
+
1

4α

)
‖w‖2

L∞ +
1

2
‖∇w‖2

L∞

)
‖φh‖2.

To apply Gronwall’s inequality we need

3

4
+ ‖∇w‖L∞ +

(
1

4
+
1

4α

)
‖w‖2

L∞ +
1

2
‖∇w‖2

L∞ ∈ L1(0, T ),

in other words w ∈ L2(0, T ;W 1,∞(Ω)). The term on the right-hand side of this in-
equality containing r3/2 is treated as in the proof of Theorem 4.1. In the final result of
Gronwall’s lemma, we must also verify that the resulting terms containing ‖D(wh)‖L3

are bounded uniformly in Re. To this end, apply Hölder’s inequality∫ T

0

‖D(wh)‖4/3
L3 ‖D(η)‖2

L3dt ≤ ‖D(wh)‖4/3

L4q/3(0,T ;L3)
‖D(η)‖2

L2q′ (0,T ;L3)
,

where 1
q +

1
q′ = 1. From the stability estimates, we clearly must take q such that

4q/3 ≤ 3. Accordingly, take q = 9
4 , q

′ = 9
5 . This gives∫ T

0

‖D(wh)‖4/3
L3 ‖D(η)‖2

L3dt ≤ C‖D(wh)‖4/3
L3(0,T ;L3)‖D(η)‖2

L18/5(0,T ;L3)

≤ CC4(δ)‖D(η)‖2
L18/5(0,T ;L3).

Similarly, for q and q′ conjugate exponents take q = 3
2 , q

′ = 3,∫ T

0

‖D(wh)‖2
L3‖η‖2

L6dt ≤ ‖D(wh)‖2
L2q(0,T ;L3)‖η‖2

L2q′ (0,T ;L6)

≤ ‖D(wh)‖2
L3(0,T ;L3)‖η‖2

L6(0,T ;L6) ≤ C4(δ)‖η‖2
L6(0,T ;L6).

The stated error estimate now follows from Gronwall’s inequality and the triangle
inequality as in the proof of Theorem 4.1.
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5. A numerical example. To give a numerical illustration several decisions
must be made, mainly whether to work on an “academic” flow problem with a known
exact solution or to work on a more realistic flow problem containing the accompany-
ing uncertainties. Since our aim is to illustrate a convergence theorem, we have chosen
the former. (To assess a model or study the limitations of an algorithm, we would
naturally have chosen the latter.) Accordingly, we have selected the vortex decay
problem of Chorin [4], used also by others, e.g., Tafti [38]. The domain is Ω = (0, 1)2

and we choose

w1 = − cos(nπx) sin(nπy) exp(−2n2π2t/τ),
w2 = sin(nπx) cos(nπy) exp(−2n2π2t/τ),
q = − 1

4 (cos(2nπx) + cos(2nπy)) exp(−4n2π2t/τ).
(5.1)

For the relaxation time τ = Re this is a solution of the Navier–Stokes equation
consisting of an array of opposite signed vortices which decay as t → ∞. The right-
hand side f , initial condition, and nonhomogeneous Dirichlet boundary conditions are
chosen so that (w1, w2, q) is the closed form solution of (1.3).

Since we are studying convergence as h → 0 for δ fixed and Re varying we have
accordingly chosen a 4× 4 array of the vortices (so n = 4) and

τ = 1000,
final time T = 8,
eddy scale δ = 0.1,

Smagorinski constant Cs = 0.05,
a0(δ) = 0.

It is significant that δ = 0.1 ≤ 1
4 =

1
n so that the vortices are larger than O(δ) and

hence should be “visible” to the model.
The fractional—step θ—scheme with an equal distant time step ∆tn = 0.001 is

used as discretization in time. The time discretization error should be kept small
by using this very small time step. In space, the Q2/P

disc
1 and the Q3/P

disc
2 finite

element discretizations are applied; see Table 1 for the number of degrees of freedom
for different mesh sizes. The unit square was divided into an h×h mesh with h = 1/2
on level 0. Both the Smagorinsky subgridscale model and the convection term are
treated implicitly. The viscous term is treated not as (∇wh,∇vh) but as using the
deformation tensor formulation, (D(wh),D(vh)), as analyzed herein. The least squares
constant α is chosen to be zero and we used the convective form of the nonlinear
convection term. The nonlinear system in each time step is solved up to a Euclidean
norm of the residual vector less than 10−10.

The numbers of degrees of freedom in space are certainly not extremely large.
However, their importance is only relative to the Reynolds number, ranging from 102

Table 1
Mesh widths and degrees of freedom in space.

Q2/Pdisc
1 Q3/Pdisc

2
Mesh width Velocity Pressure Total Velocity Pressure Total

1/4 - - - 338 96 434
1/8 578 192 770 1 250 384 1 634
1/16 2 178 768 2 946 4 802 1 536 6 338
1/32 8 450 3 072 11 522 18 818 6 144 24 962
1/64 33 282 12 288 45 570 - - -
1/128 132 098 49 152 181 250 - - -



1018 V. JOHN AND W. J. LAYTON

Table 2
Q2/Pdisc

1 finite element discretization, ‖e‖L∞(0,T ;L2).

Re \ h 1/8 1/16 1/32 1/64 1/128
102 2.20176e-2 2.76780e-3 3.47796e-4 4.35185e-5 5.43988e-6
103 3.19389e-2 3.50372e-3 4.81015e-4 4.86864e-5 5.50381e-6
104 5.97051e-2 7.01100e-3 1.00294e-3 1.39466e-4 1.44707e-5
105 7.67057e-2 7.73782e-3 1.09801e-3 1.62252e-4 1.92555e-5
106 7.86394e-2 7.81755e-3 1.10830e-3 1.64891e-4 1.98666e-5
107 7.88349e-2 7.82560e-3 1.10934e-3 1.65161e-4 1.99290e-5
108 7.88545e-2 7.82641e-3 1.10945e-3 1.65188e-4 1.99373e-5
109 7.88564e-2 7.82649e-3 1.10946e-3 1.65190e-4 1.99379e-5
1010 7.88566e-2 7.82650e-3 1.10946e-3 1.65191e-4 1.99380e-5

Table 3
Q3/Pdisc

2 finite element discretization, ‖e‖L∞(0,T,L2).

Re \ h 1/4 1/8 1/16 1/32
102 3.09237e-2 2.14568e-3 1.39746e-4 8.96881e-6
103 7.61050e-2 2.53153e-3 1.40003e-4 8.85819e-6
104 1.09160e-1 2.79077e-3 1.43102e-4 8.81959e-6
105 1.13716e-1 2.82963e-3 1.43815e-4 8.81915e-6
106 1.14186e-1 2.83371e-3 1.43896e-4 8.81835e-6
107 1.14234e-1 2.83412e-3 1.43904e-4 8.81929e-6
108 1.14238e-1 2.83416e-3 1.43905e-4 8.81853e-6
109 1.14239e-1 2.83417e-3 1.43905e-4 8.81961e-6
1010 1.14239e-1 2.83417e-3 1.43905e-4 8.81754e-6

to 1010, and the resolution sought, δ = 0.1. Again, LES is focused on situations in
which the number of degrees of freedom is small relative to Re. Thus, the chosen
values of h and Re seem appropriate.

Tables 2 and 3 present the L∞(0, T ;L2) norm of the error for both discretizations
in space. Note that the behavior is exactly as anticipated by the theory: the error in
this norm is clearly independent of Re.

Tables 4 and 5 present the errors in L2(0, T ;H1). These errors are not predicted
to be in general uniform in Re. But in the particular example which we have chosen,
one can observe uniformity in Re.

6. Conclusions. Reynolds number dependence in finite element error analysis
arises in three basic places: multiplicative error constants (Re), time scale constants
(exp(C(Re)T )), and time regularity assumptions on the true solution (needed even to
prove continuous dependence on the initial data) which might fail for turbulent flows.
In the error analysis of a large eddy model all three sources must be addressed. The
idea of our error analysis herein for the Smagorinsky model has been that the greater
spatial regularity of the large eddies must be used to compensate for the reduced time
regularity of the underlying turbulent flow. The execution of this idea is necessarily
technical since it entails using, in so far as possible, L3 bounds (the natural norm
arising from the model) for the nonlinear error terms. For different models, this same
idea can be possibly applied; its execution will vary with the particular features of
the model.

The error equation contains nonlinear terms resembling both convection and reac-
tion. Our analysis suggests that uniformity in Re can be accomplished by the control
of both effects. The second is controlled by the subgrid model while the first seems
to need a correctly adapted numerical method; see Remark 4.7.
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Table 4
Q2/Pdisc

1 finite element discretization, ‖D(e)‖L2(0,T,L2).

Re \ h 1/8 1/16 1/32 1/64 1/128
102 1.24827 3.13720e-1 7.84736e-2 1.96114e-2 4.90234e-3
103 1.56935 3.60470e-1 8.42787e-2 2.00913e-2 4.93406e-3
104 2.35100 4.66554e-1 1.05387e-1 2.34301e-2 5.28506e-3
105 2.68127 4.98844e-1 1.14609e-1 2.61063e-2 5.79700e-3
106 2.72037 5.02793e-1 1.15920e-1 2.66473e-2 5.96091e-3
107 2.72434 5.03197e-1 1.16058e-1 2.67093e-2 5.98435e-3
108 2.72474 5.03237e-1 1.16072e-1 2.67156e-2 5.98686e-3
109 2.72478 5.03241e-1 1.16073e-1 2.67162e-2 5.98711e-3
1010 2.72478 5.03242e-1 1.16073e-1 2.67163e-2 5.98714e-3

Table 5
Q3/Pdisc

2 finite element discretization, ‖D(e)‖L2(0,T,L2).

Re \ h 1/4 1/8 1/16 1/32
102 1.15300 1.65587e-1 2.07562e-2 2.60050e-3
103 2.87920 1.93565e-1 2.15627e-2 2.62325e-3
104 4.79996 2.24195e-1 2.27512e-2 2.67749e-3
105 5.07949 2.31037e-1 2.31277e-2 2.71302e-3
106 5.10843 2.31820e-1 2.31768e-2 2.72525e-3
107 5.11134 2.31899e-1 2.31819e-2 2.72679e-3
108 5.11163 2.31907e-1 2.31824e-2 2.72674e-3
109 5.11166 2.31908e-1 2.31825e-2 2.72698e-3
1010 5.11166 2.31908e-1 2.31825e-2 2.72759e-3

We note that replacing multipliers like exp(C(Re)T ) in the error estimate by
exp(C(δ)T ) establishes that a LES will be valid over a much longer time interval than
a DNS, although still not over 0 < t ≤ ∞. It would certainly be interesting to know
which flow statistics could be accurately approximated over 0 < t ≤ ∞, but this
requires a different analysis.
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