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Abstract

The paper presents a finite element error analysis for a projection-based variational multiscale (VMS) method for the incom-
pressible Navier–Stokes equations. In the VMS method, the influence of the unresolved scales onto the resolved small scales is
modeled by a Smagorinsky-type turbulent viscosity.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Incompressible flows are modeled by the incompressible Navier–Stokes equations which read in dimensionless
form

ut − 2ν∇ · D(u) + (u · ∇)u + ∇p = f in (0, T ] × Ω,

∇ · u = 0 in [0, T ] × Ω,

u = 0 in [0, T ] × ∂Ω,

u(0,x) = u0 in Ω,∫
Ω

p dx = 0 in (0, T ]. (1.1)

Here, u is the fluid velocity, D(u) = (∇u + (∇u)T )/2 is the velocity deformation tensor (symmetric part of the
gradient), p is the pressure, f is an external force, ν is the kinematic viscosity, u0 is the initial velocity field, Ω ⊂ R
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(d = 2 or d = 3) is a bounded, connected domain with polygonal boundary ∂Ω , and [0, T ] is a finite time interval.
Given a characteristic length scale L and velocity scale U , the Reynolds number is defined by Re = UL/ν.

We are interested in the simulation of turbulent flows which are characterized by a large Reynolds number. For
physical reasons (vortex stretching), the case d = 3 is of main interest for such flows [36]. From the physical point of
view, turbulent flows are characterized by a huge range of scales, reaching from very small ones (O(Re−9/4)) to large
ones (O(|Ω|)). A standard discretization of (1.1), like the Galerkin finite element method (FEM), seeks to simulate all
persistent scales. However, in particular in three dimensions, even with the present day range of computer memory it
is not possible to use meshes which are able to resolve the smallest scales. Consequently, it is not feasible to simulate
them.

A natural idea consists in trying to simulate only the behavior of large scales accurately. There are essentially two
approaches in this direction, which differ in some important features. The first one is the classical Large Eddy Simula-
tion (LES). In classical LES, the large scales are defined by an average in space (convolution with a filter function) and
the influence of the nonresolved small scales onto all large scales is described by a turbulence model. Numerical analy-
sis results for classical LES models are available, see [3,20,22,29]. However, the classical LES approach possesses
some drawbacks like commutation errors [2,4,8,40]. In addition, the question of appropriate boundary conditions for
the large scales is not solved, see [35].

An alternative approach for the simulation of the large scales are Variational Multiscale (VMS) methods, based
on general ideas from [15,17]. The first application of these ideas to turbulent flow problems can be found in [16].
In VMS methods, the large scales are defined by projections into appropriate function spaces. There are classes of
VMS methods which rely on a three-scale decomposition of the flow field into large, resolved small and unresolved
scales [7]. In contrast to the traditional LES, the influence of the unresolved small scales is described by a model
which acts directly only on the resolved small scales (and not on all resolved scales). VMS methods have been proven
superior to traditional LES methods in a number of numerical studies, see for instance [11,18,19,25,31,37].

There are different realizations of VMS methods within the framework of FEM, see [27]. We will consider in this
paper a so-called projection-based VMS method which possesses the following parameters:

– a velocity and a pressure finite element space (Xh,Qh) for all resolved scales,
– a large scale velocity finite element space V H ,
– a turbulence model νT (turbulence viscosity) describing the direct influence of the unresolved scales onto the

resolved small scales.

This method has some similarities but also a number of differences to the projection-based VMS method for which a
finite element error analysis was presented in [26]. The two main differences are the definition of the large scales by
L2-projection (instead of elliptic projection in [26]) and the consideration of a nonconstant (even nonlinear) turbulent
viscosity νT in the present paper.

In the present paper, the turbulent viscosity νT depends on the computed solution. This way, one obtains an addi-
tional nonlinear term in the equations. Since almost all numerical simulations with VMS methods use Smagorinsky-
type models for νT , for instance [11,18,19,25,28,31,37], we will study a model of this type also here. It is important to
make the turbulent viscosity νT concrete since one has to deduce regularity assumptions on the solution of the Navier–
Stokes equations such that the arising nonlinear term in the VMS method is well defined for conforming FEM. It turns
out that with the Smagorinsky model, different regularity assumptions have to be used than with νT being a constant.

In Section 2, the projection-based VMS method is introduced and known analytical results which are used in the
error analysis are provided in Section 3. The finite element error analysis is presented in Section 4. Finally, Section 5
contains a numerical illustration which shows the convergence of the projection-based VMS method as the mesh
width decreases and the stability of the method as the viscosity becomes small.

2. A projection-based finite element variational multiscale (FEVMS) method

Standard notations are used for Lebesgue spaces Lp(Ω) and Sobolev spaces Wm,p(Ω), p ∈ [1,∞], m ∈ R. The
corresponding norms are denoted by ‖ · ‖Lp and ‖ · ‖Wm,p , respectively. Some norms will be defined in slightly
nonstandard ways, see below. The (L2(Ω))d inner product is denoted by (·,·). The same symbol is used for the dual
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pairing. Let X be a normed space with functions defined in Ω , then Lp(0, t;X) is the space of all functions defined
on (0, t) × Ω for which the norm

‖u‖Lp(0,t;X) =
( t∫

0

‖u‖p
X dτ

)1/p

, p ∈ [1,∞),

is finite. For p = ∞, the usual modification is used in the definition of this space. The symbol C will be used as
a generic positive constant and may have different values at different places, but it is always independent of the
viscosity ν and the characteristic size of finite element meshes.

Let

X := W
1,2
0 (Ω) := {

v: v ∈ (
W 1,2(Ω)

)d
,v = 0 on ∂Ω

}
,

Q := L2
0(Ω) :=

{
q ∈ L2(Ω):

∫
Ω

q dx = 0

}
.

We consider the following variational formulation of the Navier–Stokes equations (1.1): find u : [0, T ] → X,
p : (0, T ] → Q satisfying

(ut ,v) + (
2νD(u),D(v)

) + bs(u,u,v) − (p,∇ · v) = (f,v),

(q,∇ · u) = 0, (2.1)

for all (v, q) ∈ (X,Q). Here,

bs(u,v,w) = 1

2

(
(u · ∇)v,w

) − 1

2

(
(u · ∇)w,v

)
is the skew-symmetric trilinear form of the convective term. Obviously, integration by parts shows bs(u,v,w) =
−bs(u,w,v) for all u,v,w ∈ X and consequently

bs(u,v,v) = 0 ∀u,v ∈ X. (2.2)

Let

V = {
v ∈ X: (∇ · v, q) = 0, ∀q ∈ Q

}
,

then (2.1) can be reformulated in the space of weakly divergence-free functions: find u : [0, T ] → V satisfying

(ut ,v) + (
2νD(u),D(v)

) + bs(u,u,v) = (f,v) (2.3)

for all v ∈ V .
The existence of a solution of (2.3) is known, but not its uniqueness in the case of a three-dimensional domain Ω ,

e.g. see [10,39]. However, for the finite element error analysis, we have to increase the regularity assumptions on the
solution of (2.3), see (4.1). The higher regularity assumptions will imply the uniqueness of the solution.

As explained in the introduction, a standard Galerkin finite element discretization of (2.3) is not feasible in the
case of turbulent flows. We will consider a FEVMS method. Let T h be an admissible triangulation of Ω in the usual
sense, [6], with the mesh cell parameter h > 0 (maximum of the diameters of the mesh cells) and let a three scale
decomposition of the flow field be given by

v = vh + ṽh + v̂ for all v ∈ X,

q = qh + q̃h + q̂ for all q ∈ Q,

where appropriate finite element spaces for vh, ṽh, qh, q̃h have to be defined. There are several ways for the definition
of these spaces [27]. In a so-called bubble FEVMS method, standard finite element spaces (with respect to the dis-
cretization of the Navier–Stokes equations) are used for the large scales (vh, qh). The resolved small scales (ṽh, q̃h)

are approximated by localized finite element functions, so-called bubble functions. A projection-based FEVMS ap-
proach uses standard velocity-pressure finite element spaces (Xh,Qh) for all resolved scales (vh + ṽh, qh + q̃h) and an
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additional space V H to define the large scales. Lastly, one can exploit the hierarchy of basis functions in hierarchical
finite element methods for defining large and resolved small scales [21].

This paper considers a continuous-in-time projection-based FEVMS method with conforming and inf–sup stable
finite element spaces for the resolved scales, i.e. Xh ⊂ X, Qh ⊂ Q and

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖L2‖∇vh‖L2
� β > 0, (2.4)

where β is independent of h. Because of the appearance of a nonlinear viscous term of Smagorinsky-type in the
FEVMS method, we have to require even Xh ⊂ (W

1,3
0 (Ω))d , see below. Under the inf–sup condition (2.4), the space

of discretely divergence-free functions

V h := {
vh ∈ Xh:

(∇ · vh, qh
) = 0, ∀qh ∈ Qh

}
is not empty and the Galerkin finite element method of (2.3) can be written as follows: find uh : [0, T ] → V h such
that (

uh
t ,vh

) + (
2νD

(
uh

)
,D

(
vh

)) + bs

(
uh,uh,vh

) = (
f,vh

)
(2.5)

for all vh ∈ V h. A projection-based FEVMS method introduces on the left-hand side of (2.5) an additional viscous
term which acts directly only on the resolved small scales: find uh = uh + ũh : [0, T ] → V h such that(

uh
t ,vh

) + (
2νD

(
uh

)
,D

(
vh

)) + bs

(
uh,uh,vh

) + (
νT

(
D

(
ũh

))
D

(
ũh

)
,D

(
ṽh

)) = (
f,vh

)
(2.6)

for all vh = vh + ṽh ∈ V h. We consider in this paper a turbulent viscosity of Smagorinsky-type

νT

(
D

(
ũh

)) =
{

CSδ2|D(ũh)| if CSδ2|D(ũh)| � ν0(h) � 0,

ν0(h) else,
(2.7)

where ν0(h) is a user-defined parameter with ν0(h) → 0 for h → 0, CS > 0, δ > 0 is a quantity which is connected
to the resolution of the finite element spaces involved in the VMS method (mesh size h of the fine scales or H of the
large scales, see below) and | · | being the Frobenius norm of a tensor. The large scale part uh ∈ V H of the velocity uh

is defined by an L2-projection into the large scale space V H

0 = (
uh − uh,vH

) =: ((I − PH )uh,vH
)

for all vH ∈ V H ⊂ L2(Ω).
Consequently, the resolved small scale part of the velocity is given by

ũh = uh − uh = (I − PH )uh.

Remark 2.1. In practice, the Smagorinsky model is used with ν0(h) = 0. With this choice, it is possible that there are
points x ∈ Ω where this model vanishes, namely if D(ũh(x)) = O. That means, there are no small scales in a region of
the flow. Clearly, in this region, the flow is not turbulent and the use of a turbulence model is not necessary. However,
from the analytical point of view, if there is no uniform positive bound form below for the additional viscosity, one
cannot obtain different estimates than for the Navier–Stokes equations since the proof uses only global estimates.
In the finite element error estimate, the assumption ν0(h) > 0 will be used for estimating the trilinear term of the
Navier–Stokes equations, in particular see estimates (4.18) and (4.19).

3. Preliminaries

This section collects results which will be used in the finite element error analysis.
The Smagorinsky LES model, which possesses the additional nonlinear viscous term (νT (D(u))D(u),D(v)), where

νT (D(u)) is given in (2.7) with ν0(h) = 0, on the left-hand side of the variational formulation (2.3) is well understood.
The natural space to study this model is (W

1,3
0 (Ω))d . Ladyzhenskaya [32] proved the existence and uniqueness of

a weak solution of the Smagorinsky model. Finite element error estimates can be found in [29], see also [22]. It turns
out that estimates independent of the Reynolds number can be derived either under the assumption ν0(h) > 0 or under
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the assumptions of a higher regularity of the solution and that the corresponding norm of the solution is independent
of the Reynolds number. The second approach would also be possible for the VMS method (2.6), but the necessary
assumptions are not likely to be fulfilled for real turbulent flow fields.

The most important analytical tools in the analysis of the Smagorinsky model are a strong monotonicity of the
nonlinear viscous term: there is a constant C > 0 such that for all u,v ∈ (W 1,3(Ω))d , d ∈ {2,3},(∣∣D(u)

∣∣D(u) − ∣∣D(v)
∣∣D(v),D(u − v)

)
� C

∥∥D(u − v)
∥∥3

L3 , (3.1)

and the local Lipschitz continuity: there is a C > 0 such that for all u,v,w ∈ (W 1,3(Ω))d , d ∈ {2,3},(∣∣D(u)
∣∣D(u) − ∣∣D(v)

∣∣D(v),D(w)
)
� CCL

∥∥D(u − v)
∥∥

L3

∥∥D(w)
∥∥

L3 , (3.2)

where CL = max{‖D(u)‖L3,‖D(v)‖L3}. These estimates are also a key in the subsequent analysis.
In the analysis, a precise characterization of the large scale space V H is necessary. The finite element spaces

(V h,Qh) contain all resolved scales. The large scale space V H ⊂ (W 1,3(Ω))d may be a finite element space defined
on the same grid as V h, but with functions having a lower piecewise polynomial degree, or on a coarser grid. However,
V H 
⊂ V h since no boundary conditions are included into the definition of V H . Let QH be a coarse pressure finite
element space such that (V H ,QH ) fulfills an inf–sup condition of form (2.4). The large scales uh = PH u of the
velocity and the large scales ph = PH p of the pressure are defined by the L2-projection into V H , and QH respectively;
PH : (V ,Q) → (V H ,QH )(

u − PH u,vH
) = 0 ∀vH ∈ V H ,(

p − PH p,qH
) = 0 ∀qH ∈ QH .

We assume that the finite element spaces V h,V H rely on quasiuniform triangulations of Ω such that standard
inverse estimates for the finite element functions hold. The inverse estimate for V H gives∥∥D

(
PH φh

)∥∥
L2 � CH−1

∥∥PH φh
∥∥

L2 = CH−1
∥∥φh

∥∥
L2, (3.3)

where H is the mesh parameter connected with V H .
The finite element error analysis will need the L2-stability of the projection for functions from V h, which follows

directly from the definition of the L2-projection:∥∥PH φh
∥∥

L2 � C
∥∥φh

∥∥
L2 ∀φh ∈ V h. (3.4)

From (3.3) and (3.4) it follows that∥∥D
(
PH φh

)∥∥
L2 � CH−1

∥∥φh
∥∥

L2 ∀φh ∈ V h. (3.5)

Remark 3.1. In [25–27], a different approach for the separation of scales is used. The additional large scale space for
the velocity is defined as a tensor-valued space LH = D(V H ), LH ⊂ {L ∈ (L2(Ω))d×d , L = L

T }, with (V H ,QH )

fulfilling an inf–sup condition of the form (2.4). In this case, the large scales of the velocity are defined by an elliptic
projection into V H :(

D(u − PH u),D
(
vH

)) = 0 ∀vH ∈ V H ,

(u − PH u,1) = 0.

The difficulty in the analysis of this approach consists in obtaining an estimate similar to (3.5). In [26], the L2-stability
for the elliptic projection was assumed, but a rigorous mathematical proof or a counterexample seems to be an open
question. Note that the natural stability ‖D(PH u)‖ � ‖D(u)‖ of the elliptic projection was not exploited in [26].

Next, an inequality is introduced which relates (Lp(Ω))d -norms of the gradients of finite element functions to the
(L2(Ω))d -norm of the gradients. There exists a constant C = C(p) such that for 2 � p < ∞, d ∈ {2,3},∥∥∇vh

∥∥
Lp � Ch

d
2 (

2−p
p

)
∥∥∇vh

∥∥
L2 (3.6)

for all vh ∈ Xh [33].
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Using similar arguments as in [33], it can be also shown that there exists a constant C = C(p) such that for
2 � p < ∞, d ∈ {2,3},∥∥vh

∥∥
Lp � Ch

d
2 (

2−p
p

)
∥∥vh

∥∥
L2 (3.7)

for all vh ∈ Xh.
In the error analysis, the term ‖D(vh)‖L3 has to be estimated from above. The triangle inequality gives∥∥D

(
vh

)∥∥
L3 �

∥∥D
(
ṽh

)∥∥
L3 + ∥∥D

(
vh

)∥∥
L3 , vh = PH vh. (3.8)

Applying (3.6), the inverse estimate ‖∇vh‖L2 � CH−1‖vh‖L2 in V H and the L2-stability (3.4) leads to∥∥D
(
vh

)∥∥
L3 �

∥∥∇vh
∥∥

L3 � CH−d/6
∥∥∇vh

∥∥
L2 � CH−(d+6)/6

∥∥vh
∥∥

L2 � CH−(d+6)/6
∥∥vh

∥∥
L2 . (3.9)

Combining (3.8) and (3.9) gives∥∥D
(
vh

)∥∥
L3 �

∥∥D
(
ṽh

)∥∥
L3 + CH−(d+6)/6

∥∥vh
∥∥

L2 . (3.10)

Finally, standard inequalities which will be used are summarized for the convenience of the reader:

– Young’s inequality: for a, b > 0,

ab � ε

p
ap + ε−q/p

q
bq, 1 < p,q < ∞,

1

p
+ 1

q
= 1, ε > 0,

– Poincaré’s inequality: for all v ∈ (W
1,2
0 (Ω))d holds

‖v‖L2 � C‖∇v‖L2,

– Korn’s inequality: for all v ∈ (W
1,p

0 (Ω))d , p ∈ (1,∞), holds

‖∇v‖Lp � C
∥∥D(v)

∥∥
Lp .

Thanks to Korn’s inequality, we can define a norm in (W−1,3/2(Ω))d which is equivalent to the usual one

‖f‖W−1,3/2 := sup
v∈(W

1,3
0 )d

|(f,v)|
‖D(v)‖L3

. (3.11)

Note that neither Poincaré’s, nor Korn’s inequality can be applied to the large scale velocities v̄h and the resolved
small scales velocities ṽh since these functions do not, in general, possess homogeneous Dirichlet boundary condi-
tions.

4. Finite element error analysis

In this section, we state and prove the main result of this paper. At the beginning, a priori error estimates (stability
results) are given for the solutions of (2.3) and (2.6), respectively.

Lemma 4.1. Let u with ∇u ∈ L2(0, T ;L2) and ut ∈ L2(0, T ;H−1) be a solution of (2.3) and let the regularity
assumptions f ∈ L2(0, T ;H−1), u0 ∈ (L2(Ω))d on data be fulfilled. Then, it satisfies the stability estimate

1

2

∥∥u(t)
∥∥2

L2 + ν
∥∥D(u)

∥∥2
L2(0,t;L2)

� 1

2

∥∥u(0)
∥∥2

L2 + C

ν
‖f‖2

L2(0,t;H−1)

for all t ∈ [0, T ].

Proof. The proof follows from setting v = u in (2.3), using (2.2), estimating the dual pairing in the usual way and
applying Poincaré’s, Korn’s and Young’s inequality. �

Now, a stability estimate for the solution of the FEVMS method (2.6) is given whose constants on the right-hand
side do not depend on ν−1.
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Lemma 4.2. Let uh ∈ V h be a solution of (2.6) with ut ∈ L2(0, T ;W−1,3/2) and ν0(h) � 0 and let the regularity
assumption f ∈ L2(0, T ;W−1,3/2) be fulfilled. Then the stability bound∥∥uh(t)

∥∥2
L2 + 4ν

∥∥D
(
uh

)∥∥2
L2(0,t;L2)

+ ν0(h)
∥∥D

(
ũh

)∥∥2
L2(0,t;L2)

+ CT

2
δ2

∥∥D
(
ũh

)∥∥3
L3(0,t;L3)

� C exp(t)
[∥∥uh(0)

∥∥2
L2 + H−(d+6)/3‖f‖2

L2(0,T ;W−1,3/2)
+ δ−1‖f‖3/2

L3/2(0,T ;W−1,3/2)

]
holds for CT ,C > 0 and all t ∈ [0, T ].

Proof. Setting vh = uh in (2.6), using the skew-symmetry of the trilinear term and the definition (3.11) of the
(W−1,3/2(Ω))d -norm gives

d

dt

∥∥uh
∥∥2

L2 + 4ν
∥∥D

(
uh

)∥∥2
L2 + 2

(
νT

(
D

(
ũh

))
D

(
ũh

)
,D

(
ũh

))
� 2‖f‖W−1,3/2

∥∥D
(
uh

)∥∥
L3 .

The estimate of the nonlinear viscous term uses (3.1) with v = 0, the nonnegativity of the integrand and that the
arithmetic mean of two numbers is less or equal than the larger one

2
(
νT

(
D

(
ũh

))
D

(
ũh

)
,D

(
ũh

)) = 2
(
max

{
ν0(h),CSδ2

∣∣D(
ũh

)∣∣}D
(
ũh

)
,D

(
ũh

))
= 2

∫
Ω

max
{
ν0(h),CSδ2

∣∣D(
ũh

)∣∣}∣∣D(
ũh

)∣∣2
dx

�
((

ν0(h) + CSδ2
∣∣D(

ũh
)∣∣)D(

ũh
)
,D

(
ũh

))
� ν0(h)

∥∥D
(
ũh

)∥∥2
L2 + CT δ2

∥∥D
(
ũh

)∥∥3
L3

with CT = C, CS > 0. Inserting this estimate, applying estimate (3.10), Young’s inequality and hiding the term
CT

2 δ2‖D(ũh)‖3
L3 on the left-hand side gives

d

dt

∥∥uh
∥∥2

L2 + 4ν
∥∥D

(
uh

)∥∥2
L2 + ν0(h)

∥∥D
(
ũh

)∥∥2
L2 + CT

2
δ2

∥∥D
(
ũh

)∥∥3
L3

� C
[
H−(d+6)/3‖f‖2

W−1,3/2 + δ−1‖f‖3/2
W−1,3/2

] + ∥∥uh
∥∥2

L2 .

The statement of the lemma is now obtain by applying Gronwall’s inequality. �
Remark 4.1. The corresponding estimate for the Smagorinsky LES model [29, (3.5)] does not possess the exponential
factor. In addition, since the term ‖f‖2

W−1,3/2 does not appear in the stability estimate for the Smagorinsky model, the

regularity f ∈ L3/2(0, T ;W−1,3/2) is sufficient. Hence, the stability bound for the FEVMS method with Smagorinsky-
type turbulent viscosity is in fact weaker than for the Smagorinsky LES model. This is natural since the turbulent
viscosity acts directly on all resolved scales in the Smagorinsky LES model and only on the resolved small scales in
the FEVMS method.

Now, the regularity assumptions for the finite element error analysis are stated:

∇u ∈ (
L3(0, T ;L3))d×d

, ut , f ∈ (
L2(0, T ;W−1,3/2))d

, p ∈ L2(0, T ;L3/2). (4.1)

From the stability estimate, Lemma 4.2, it follows that

uh ∈ (
L∞(

0, T ;L2))d
, D

(
uh

) ∈ (
L2(0, T ;L2))d×d

, D
(
ũh

) ∈ (
L3(0, T ;L3))d×d

. (4.2)

For the error analysis we require

D
(
uh

) ∈ (
L3(0, T ;L3))d×d

, (4.3)

from which it follows that

D
(
ūh

) = D
(
uh

) − D
(
ũh

) ∈ (
L3(0, T ;L3))d×d

. (4.4)

For the large scale part of the solution of (2.3) we require
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D(ū) ∈ (
L3(0, T ;L3))d×d

, (4.5)

and consequently

D(ũ) ∈ (
L3(0, T ;L3))d×d

. (4.6)

Concerning ∇u, (4.1) is the natural regularity assumption for the Smagorinsky LES model. From this assumption
it follows in particular that even the weak solution of the Navier–Stokes equations in three dimensions is unique
since from the Sobolev imbedding theorem W 1,3(Ω) ↪→ L9(Ω) it follows that Serrin’s condition [38] is fulfilled. The
assumptions on ut and f are somewhat stronger than for the Smagorinsky LES model. The reasons are estimates of
the form (3.10) which estimate the L3(Ω) norm of derivatives of the large scales by the L2(Ω) norm of the function
and the subsequent application of Young’s inequality with p = q = 2.

The next step in the analysis consists in deriving an error equation. Let e = u − uh and subtract the FEVMS
equation (2.6) from the continuous equation (2.1) for all test functions vh ∈ V h ⊂ X. This gives, using in addition that
the functions from V h are discretely divergence-free(

et ,vh
) + (

2νD(e),D
(
vh

)) + bs

(
u,u,vh

) − bs

(
uh,uh,vh

) − (
νT

(
D

(
ũh

))
D

(
ũh

)
,D

(
ṽh

))
− (

p − qh,∇ · vh
) = 0 (4.7)

for all (vh, qh) ∈ V h × Qh.
Now, the error is decomposed into an interpolation part and a discrete part by e = η − φh where η = u − uh

I and
φh = uh − uh

I . Herein, uh
I ∈ V h is an approximation of u fulfilling certain interpolation estimates. From the linearity

of the projection and the differentiation follows φh = uh − uh
I , D(φh) = D(uh) − D(uh

I ) and the same properties for
the resolved small scales. Since V h ⊂ (W 1,3(Ω))d , we have η, φh ∈ (W 1,3(Ω))d . With respect to time regularity, we
require the same properties for η and φh as for u. In particular, the error analysis will need

D(η),D(η̃) ∈ (
L3(0, T ;L3))d×d

, ηt ∈ (
L2(0, T ;W−1,3/2))d

. (4.8)

The error equation (4.7) can be reformulated by using this decomposition and choosing vh = φh ∈ V h

1

2

d

dt
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∥∥2
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(
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h))
= (

ηt ,φ
h
) + (
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(
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(
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)
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(
ũh
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))
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(
ũh

I

)
,D

(
φ̃

h))
(4.9)

for all qh ∈ Qh.
From the definition (2.7) of the turbulent viscosity follow the estimates(

νT

(
D

(
ũh

))
D

(
ũh

)
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(
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h)) − (
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))
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)
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(
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h)) � ν0(h)
∥∥D

(
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h)∥∥2
L2,

with C1 > 0 and where, for the first estimate, (3.1) has been used. Using again that the arithmetic mean of two numbers
is less or equal than the larger number, one gets
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d

dt
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(
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)∣∣
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(
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I

))
D

(
ũh

I

)
,D

(
φ̃

h))∣∣ (4.10)

for all qh ∈ Qh.
The first term on the right-hand side of (4.10) is estimated with the same technique as the right-hand side in the

stability estimate, see proof of Lemma 4.2. One obtains

∣∣(ηt ,φ
h
)∣∣ � C

(
H−(d+6)/3‖ηt‖2

W−1,3/2 + δ−1‖ηt‖3/2
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) + C1δ
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h)∥∥3
L3 + 1∥∥φh
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L2 . (4.11)
6 4
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The estimate of the second term in (4.10) uses just the Cauchy–Schwarz inequality and Young’s inequality∣∣(2νD(η),D
(
φh

))∣∣ � ν
∥∥D(η)

∥∥2
L2 + ν

∥∥D
(
φh

)∥∥2
L2 . (4.12)

The pressure term in (4.10) will be estimated using Hölder’s inequality, the estimate of the norm of the divergence
by the same norm of the deformation tensor and (3.10) to yield∣∣(p − qh,∇ · φh

)∣∣ �
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L2 . (4.13)

The nonlinear viscous term on the right-hand side of (4.10) is estimated by using the triangle inequality, the local
Lipschitz continuity (3.2), the Cauchy–Schwarz inequality and Young’s inequality∣∣(νT

(
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ũh
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∥∥2

L3

∥∥D
(
φ̃

h)∥∥
L3

� 4ν0(h)
∥∥D(η̃)

∥∥2
L2 + CC̃

3/2
L δ2

∥∥D(η̃)
∥∥3/2

L3 + 4ν0(h)
∥∥D(ũ)
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L3 (4.14)

with C̃L = max{‖D(ũh
I )‖L3,D(ũ)‖L3}. Note that the estimate is also valid for ν0(h) = 0. Estimate (4.14) also shows

that the nonlinear viscous term of the Smagorinsky model can be estimated without obtaining constants depending on
the Reynolds number.

The critical estimate is the estimate of the nonlinear convective terms. One starts by splitting this term as follows

bs

(
u,u,φh

) − bs

(
uh,uh,φh

) = bs

(
u,η,φh

) + bs

(
η,uh,φh

) − bs

(
φh,uh,φh

)
.

The first two terms are estimated the same way by using Hölder’s inequality, Korn’s inequality, (3.10) and Young’s
inequality. One obtains

bs

(
u,η,φh

)
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and
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)
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∥∥3/2
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Integration by parts and Hölder’s inequality give
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)
. (4.17)

For estimating the first term in (4.17), the imbedding W 1/2,2(Ω) ↪→ L3(Ω) and the interpolation estimate of
W 1/2,2(Ω) between L2(Ω) and W 1,2(Ω) are used, see [1]∥∥φh

∥∥2
L3

∥∥∇uh
∥∥
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Applying in addition Poincaré’s inequality, Korn’s inequality, the triangle inequality, the inverse finite element in-
equality for the space V H , the L2-stability (3.4) and Young’s inequality gives∥∥φh
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For estimating the second term in (4.17), φh is split into the large scale and the resolved small scale part. Applying
Hölder’s inequality, the estimate of the norm of the divergence by the same norm of the deformation tensor and (3.9)
gives
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with 1/s + 1/t = 1/2. In virtue of the Sobolev imbedding theorem W 1,3(Ω) ↪→ Lt(Ω), with t ∈ [1,∞] if d = 2, and
t ∈ [1,∞) if d = 3, we set s = 2 for d = 2, and s = 2 + εs with εs > 0, for d = 3. With (3.7), one obtains∥∥φh
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with ε = 0 if d = 2 and ε > 0 if d = 3. Young’s inequality gives
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Remark 4.2. The error estimate for the Smagorinsky LES model in [29] does not possess a term with the factor h−ε .
Instead, the discrete Smagorinsky model has an additional stabilization term α(∇ · uh,∇ · vh) (grad–div stabiliza-
tion [5]) with α > 0 and this term is used to estimate (∇ · φh,φh · uh). Of course, the introduction of a grad–div
stabilization into (2.6) would allow to perform a similar estimate. The absence of the grad–div stabilization results
apparently in constants depending on (arbitrarily small) negative powers of h for d = 3, see also the discussion of this
topic in [22].

Inserting the estimates (4.11)–(4.16) (4.18) and (4.19) into (4.10) leads to
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for all qh ∈ Qh.
In order to apply Gronwall’s lemma to (4.20), the L1(0, T )-regularity of the appearing terms has to be studied.

Consider first the critical terms on the right-hand side. Let t ∈ (0, T ] be arbitrary.
From the stability estimates in Lemmas 4.1 and 4.2 it follows that ‖u‖L2 ∈ L∞(0, T ) and ‖uh‖L2 ∈ L∞(0, T ).

Hence
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Also note that, since the Lipschitz continuity coefficient C̃L is given by C̃L = max{‖D(ũh
I )‖L3,D(ũ)‖L3}, by the

Cauchy–Schwarz inequality, (4.3), (4.6) and (4.8), the following term is bounded
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Sobolev imbeddings, Poincaré’s and Korn’s inequality imply that ‖u‖2
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L6 are in L1(0, T ). In

addition, Korn’s inequality and the stability estimate imply that ‖∇uh‖2
L3 ∈ L1(0, T ). The L1(0, T )-regularity of the

additional terms is a direct consequence of (4.1)–(4.6) and (4.8). Hence, by setting
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with t ∈ [0, T ], it follows that A(t) ∈ L1(0, T ). Applying Gronwall’s lemma and the triangle inequality to (4.20)
proves the following theorem.

Theorem 4.1. Let (u,p) be the solution of (2.1) and let uh be the solution of (2.6). Suppose (4.1), (4.2) hold, and let
A(t) be given in (4.21). Then there exists a constant C∗ independent of ν such that∥∥A(t)
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∥∥D

(
ũ − ũh

I

)∥∥3
L3(0,T ;L3)

+ exp
(
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))(∥∥(
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∥∥D
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I

)∥∥2
L2(0,T ;L2)

+ ν0(h)
∥∥D

(
ũ − ũh
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ũh
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+ δ2
∥∥D(ũ)

∥∥3
L3(0,T ;L3)

+ ν0(h)
∥∥D(ũ)

∥∥2
L2(0,T ;L2)

+ δ−1[∥∥u(0)
∥∥2

L2 + ν−1‖f‖2
L2(0,t;H−1)

+ exp(t)
(∥∥uh(0)

∥∥2
L2 + δ−1‖f‖3/2

L3/2(0,T ;W−1,3/2)
+ H−(d+6)/3‖f‖2

L2(0,T ;W−1,3/2)

)]3/2∥∥u − uh
I

∥∥3/2
L3/2(0,T ;L6)

+ (
1 + H−(d+6)/3)∥∥u − uh

I

∥∥2
L2(0,T ;L6)

+ H−(d+6)/3
∥∥p − qh

I

∥∥2
L2(0,T ;L3/2)

+ δ−1
∥∥p − qh

I

∥∥3/2
L3/2(0,T ;L3/2)

)]
.

The right-hand side of the error estimate depends on negative powers of the viscosity (hence on positive powers
of the Reynolds number). However, this dependency is inevitable since the error to the solution of the Navier–Stokes
equations is considered and the stability of these equations appears naturally in the final estimate. The influence on ν

can be seen directly in the term ν−1‖f‖2
L2(0,t;H−1)

and it enters indirectly in the terms ‖u‖2
L6,‖u‖2

L2 in (4.21).
Apart from this dependency, the right-hand side of the final estimate depends on parameters of the method: ν0(h),H

and δ. In addition, there is a dependency on h in C∗(ν0(h),H,h), which is, however, arbitrarily small. As mentioned
in Remark 4.2, the inclusion of an appropriate grad–div stabilization would remove this dependency. Grad–div stabi-
lization terms are used for instance in the bubble VMS methods of [13].

If ν0(h) → 0, the estimate of term (4.17) has to be modified. This is easily possible using Hölder’s and Young’s
inequality. It leads, however, to another term in the final estimate depending on ν. In the case ν0(h) > 0 but δ → 0,
the estimates in Lemma 4.2 and in (4.11) can be changed such that the δ−1-terms in the final estimate are replaced by
ν0(h)−1-terms.

There are two terms in the final estimate which do not involve factors with approximation errors: δ2‖D(ũ)‖3
L3(0,T ;L3)

and ν0(h)‖D(ũ)‖2
L2(0,T ;L2)

. The wish that these terms do not spoil the error estimates imposes conditions on the choice

of ν0(h) and δ. The specification of these choices for a concrete example requires the knowledge of the interpolation
errors of the other terms, which in turn requires knowledge on the regularity of the solution and the knowledge of the
used finite element spaces. In practice, the choices δ = Ch,C ∈ [1,2], and ν0(h) = 0, see Remark 2.1 and Section 5,
are standard.

5. Numerical illustration

The numerical tests consider the projection-based VMS method with Smagorinsky-type turbulent viscosity νT . The
stability of the method with respect to the size of the viscosity ν and the convergence with respect to the mesh width
will be studied exemplarily at the Beltrami flow problem. The projection-based VMS method used in these studies
defines the scale separation in a somewhat different way than the method analyzed in Section 4, see Remark 3.1. The
used FEVMS is the same method which was applied in the turbulent flow simulations in [25,28,31] and for which
finite element error estimates in the case of constant turbulent viscosity were derived in [26]. Based on the available
computational and analytical results, we think that the two slightly different definitions of the scale separation will not
affect such fundamental properties of projection-based FEVMS like stability and convergence.

The fundamental difficulty in convergence studies for the incompressible Navier–Stokes equations is that analytical
expressions for the solution are generally not known for realistic flows. There are only very few academic examples
which have at least some physical meaning. One of them is the so-called Beltrami flow which was used e.g. in [12].
The Beltrami flow is defined in Ω = (1,1)3 and the prescribed solution is

u = −α

(
eαx sin(αy + βz) + eαz cos(αx + βy)

eαy sin(αz + βx) + eαx cos(αy + βz)

eαz sin(αx + βy) + eαy cos(αz + βx)

)
e−νβ2t ,

p = −α2

2

[
e2αx + e2αy + e2αz + 2 sin(αx + βy) cos(αz + βx)eα(y+z) + 2 sin(αy + βz) cos(αx + βy)eα(z+x)

+ 2 sin(αz + βx) cos(αy + βz)eα(x+y)
]
e−2νβ2t ,

where x = (x, y, z)T and α and β are parameters. They were set to α = π/4, β = π/2, see [9] for this proposal. The
characteristic feature of this flow is a series of counter-rotating vortices intersecting one another at oblique angles.
The time-dependent factors in the solution show the exponential decay in time of the initial configuration.

The projection-based VMS method was discretized in time with the Crank–Nicolson scheme and the equidistant
time step 0.001. We checked with smaller time steps that the discretization error in space dominates the discretization
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Table 1
Information on the grids and the number of degrees of freedom

k Cells Xh Qh LH = P0 LH = P disc
1

2 64 2187 256 384 1536
3 512 14 739 2048 3072 12 288
4 4096 107 811 16 384 24 576 98 304
5 32 768 823 875 131 072 196 608 786 432

Fig. 1. Stability of the projection-based VMS method with respect to the size of the viscosity, h = 2−4, ν = Re−1. The curves for ν = 10−6 and
ν = 10−9 are on top of each other.

Fig. 2. Convergence of the projection-based VMS method, ν = 10−9.

error in time with this choice. The final time was set to T = 1. The velocity was approximated with the Q2 finite
element and the pressure with the P disc

1 finite element. This pair of finite element spaces fulfills the inf–sup condi-
tion (2.4), see [34], and it is one of the best performing pairs of finite elements in incompressible flow computations
[14,23,24]. The Smagorinsky-type turbulent viscosity model was chosen as in (2.7) with CS = 0.01, δ the diameter of
the mesh cells and ν0(h) = 0, see also Remark 2.1. The projection-based VMS method from [25,28,31] requires the
choice of a tensor-valued space LH for the definition of the projection, see Remark 3.1. Numerical studies were per-
formed for LH = P0 and LH = P disc

1 . Since the qualitative results were the same for both spaces, for shortness only
the results obtained with LH = P0 will be presented. The computational grids consisted of cubes with edge length
2−k , k ∈ {2,3,4,5}. Information on the number of grid cells and on the number of degrees of freedom (including
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Dirichlet nodes) are given in Table 1. Since LH is a space consisting of symmetric tensors, only six components of
these tensors have to be stored. The computations were performed with the code MooNMD [30].

Results are presented for ‖u−uh‖L∞(0,T ;L2). Fig. 1 demonstrates the stability of the projection-based VMS method
with respect to the size of the viscosity. The errors in L∞(0, T ;L2) are nearly the same for ν = 10−6 and ν =
10−9. At the final time, the difference between these two errors is around 5 · 10−6. The numerical results show that
for sufficiently small viscosity ν, the contribution of the turbulent viscosity dominates the overall viscosity in the
projection-based VMS method. The application of the Smagorinsky model to the subspace of the resolved small
scales was sufficient to perform stable simulations. The results on the other grid levels are similar to those presented
in Fig. 1.

Fig. 2 shows the convergence of the projection-based VMS method in the case ν = 10−9. The error reduction
between subsequent levels tends to the factor of four (it is 3.77 between h = 2−4 and h = 2−5 at the final time). Thus,
if the discretization error in time is kept sufficiently small, second order convergence can be expected. The results
obtained with other values of the viscosity are qualitatively the same.
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