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1. Introduction

The flow of an incompressible fluid is governed by the incompressible Navier—
Stokes equations

w,—2vV-Du)+ (u-Viu+Vp = f (0,7
Veu =0 in[0,7] x €,
u=20 [0
u(0,x) = wup in €,

/pdx = 0, in (0,7]. (1)
Q

Here, Q C R?,d € {2,3}, is a bounded domain with boundary 92, [0, T] a finite time
interval, u(z,x) is the velocity of the fluid and p(¢, x) the pressure. The viscosity v > 0,

which is inverse proportional to the Reynolds number Re = O(v~!), the body forces
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f(r,x) and the initial velocity field ug(x) are given. The velocity deformation tensor is
the symmetric part of the velocity gradient D(u) = (Vu + Vu’)/2.

We are interested in the simulation of turbulent flows. Such flows are
characterized by a small viscosity (or a large Reynolds number). Their characteristic
feature is the richness of scales (flow structures). There are very large flow structures
but also rather small ones, e.g., imagine a tornado. A direct discretization of equation
(1), e.g., by a Galerkin finite element method, would try to simulate the behavior of all
flow structures. This requires, at least, that all scales can be resolved by the given
mesh. However, this is in general, in particular in three dimensions, far beyond the
capacity of present day computers. A practical approach, which is the main goal of
Large Eddy Simulation (LES), is to simulate only the behavior of large scales
appropriately. Following Collis [5], the flow can be decomposed into three scales

— the (resolved) large scales,
— the (resolved) small scales,
— the unresolved scales.

An important aspect of turbulent flows is the mutual influence of all scales. Thus,
simply neglecting the unresolved scales in numerical simulations would predict in
general a completely wrong behavior of the resolved scales. Instead, one needs to
model the influence of the unresolved scales onto the resolved ones by using a
turbulence model.

It still has to be clarified how the resolved scales are defined. In the classical LES
approach [14,20], they are defined as an average in space given by convolution with an
appropriate filter function. A crucial assumption in the derivation of equations for the
resolved scales is the commutation of convolution and differentiation. However, this
property only holds in special cases. In particular, it does not hold in the case that €2 is
a bounded domain. A so-called commutation error is committed if convolution and
differentiation are simply interchanged nevertheless. Recent analytical results of
different commutation errors, [3,4,6], and numerical studies, [23], show that this error
is in general large near the boundary of the domain and it cannot be neglected. This
error is one reason why numerical simulations with LES models need in general a
special treatment at the boundary (wall models, van Driest damping).

In [13], Hughes proposed to define the large scales in a different way, namely by
a projection into appropriate subspaces. This approach is called Variational Multiscale
Method (VMS). VMS might be a remedy of the problems which LES encounters near
the boundary. Based on ideas developed in [9,13], several VMS have been proposed in
the literature [8,12,15]. The VMS from [15], which has as parameters a large scale
space L consisting of symmetric tensors and a turbulent viscosity v7, is analyzed in
the present paper. The analysis will be carried out for the case that vy is a positive
constant. Error estimates are proven for the difference of the velocity u of the
Navier-Stokes equations (1) and the finite element velocity u” of the VMS. From the
numerical point of view, the VMS introduces additional viscosity which acts directly,
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however, only on the (resolved) small scales of the discrete velocity. Because of this
artificial viscosity, one can expect to obtain error estimates whose constants do not
depend on the Reynolds number, like for the Galerkin finite element discretization of
the Navier—Stokes equations, but on some reduced Reynolds number. These will be
exactly the results proved in this paper. We will present two results of this kind.

One possibility of realizing the VMS considered in this paper is to define the
large scale space L on a coarser grid. So-called two-grid methods for non-linear
partial differential equations have been analyzed, e.g., in Xu [24,25] and Layton et al.
[18,19]. We like to point out that the task of the coarse grid in these methods and in
the VMS is completely different. In [18,19,24,25], the non-linear equation is solved
solely on the coarse grid and this solution is used for solving on the fine grid only a
linear equation whose solution converges still asymptotically optimal. Thus, an
asymptotically optimal solution can be computed with less computational effort. The
coarse grid (space) in a VMS serves for distinguishing the scales of the solution and
not for reducing the computational costs. In the VMS considered in [15] and here, the
non-linear equation will be solved on the fine grid. Since the turbulent viscosity might
depend on the velocity, there is even an additional non-linearity in comparison to the
Navier—Stokes equations.

The paper is organized as follows. In Section 2, the VMS is introduced. Section 3
provides some auxiliary results which are needed in the proofs and gives an outline of
the proofs. The error estimates with constants depending on a reduced Reynolds
number are presented in Sections 4 and 5.

2. The variational multiscale method

Standard notations for Lebesgue and Sobolev spaces are used throughout this
paper, e.g., see Adams [1]. The inner product in (L%(Q))?, d € N, is denoted by (+, *).
Generic constants which do not depend on the Reynolds number Re and the mesh
width 4 are denoted by C.

Let V = (HL(€))* equipped with the norm ||v]|, = [|[Vv]|,» and Q = L2(Q). A
variational formulation of the Navier—Stokes equations (1) is as follows: Find u :
[0,T] =V, p : (0,T] — Q satisfying

(u;,v) + 2vD(u), D(v)) + bs(w,u,v) — (p,V - v) = (f,v) VvevV,
(¢,V-u) =0 VgeQ (2)

and u(0,x) = uy(x) € V. Here,

by, w) = 3 (- V), w) — ((u- V)w,v))

is the skew-symmetric form of the convective term.
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A Galerkin finite element discretization of (2) is unstable in the case of small
viscosity (or high Reynolds number). The use of a turbulence model becomes
necessary which should model the action of the unresolved scales onto the resolved
scales and which serves as stabilization in a numerical simulation. We consider an
approach which was presented in [15], see also [16] for this approach in the context of
scalar convection—diffusion equations.

We will study the continuous-in-time finite element approach, i.e., only a semi-
discretization in space is considered. Let V" C V and Q" C Q be conforming finite
element spaces which fulfill the inf-sup condition

A\VA Vh, h
inf sup LV V2d) o (3)
g0 vieyr [|VV| 214" 12

where C is independent of h. For the VMS, a large scale space L C L ={L ¢
(L2(€2))"“, L. = L} and a so-called turbulent viscosity vy = vr(t,x,u”, p") > 0 are
introduced. The semi-discrete problem reads as follows: Find u” : [0,7] — V" p" :
(0,T] — Q" and G" : [0,T] — L satisfying

(uf, v") + 2vD(u"), D(V")) + bs(u”, u, v")
— (p",V * ¥") + (vp(D(u”) — G*), D(v")) = (F,v") Vv eV
(" V-u") =0 VqheQ,
(G" — D", L) = 0 vILE el? (4)

and u’(0,x) = ug € V" is a discretely divergence-free approximation of u.

The parameters in (4) are the large scale space L and the turbulent viscosity v7.
In the last term on the left hand side in the first equation, the turbulent viscosity is
added to the difference of the deformation tensor of all resolved scales and the
deformation tensor of the large scales. The large scales are defined in the last equation
of (4) by projection of the resolved scales onto L. Altogether, v acts directly only on
the resolved small scales. This is the basic idea of a VMS, see [15] for a discussion of
the connection of (4) to the VMS proposed in [12]. The implementation of the VMS
(4) into a code for solving the Navier—Stokes equations and numerical results are
presented in [15].

Consider now the limit cases for L”:

— L = D(V"), that means, D(v") € L for all v/ € V" and if L € L then exists a
v € V# such that L7 = D(v"). In this case, D(u") € L7, G" = D(u") and the
turbulence model is subtracted for all scales. System (4) becomes a Galerkin finite
element discretization of the Navier—Stokes equations.

— [ = {0}. Then, G" = O and the model vy acts on all resolved scales.
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We require L C D(V"). If this relation is violated, the turbulence model v would be
subtracted from scales where it was not added previously.
Let Ppu @ L — LY D(v) — PpuD(v) with

(PD(v) —D(v),LFy=0 VLI cL” (5)

denote the L?-projection from L onto L. Then Gl = Pru ]ID(uh) in (4). Since P;# is an
L2-projection, it follows for v € V and [|D(v)[;. > 0

vrll( = Pu)BI: = vr(IDWIE: — 1PDV)F:)

= upr _M D 2
<1 DO )H Wz

= (V) [ID(V) | z2- (6)

In addition, from 0 < ||PzzD(v)];> < ||D(v)||,. follows
0 S Vadd(v) S vr. (7)
if

Note, if v depends on 7 then v444(V), t00. From (7) follows vaaa(v(t, +)) € L*(0,T) i
vr is bounded almost everywhere in the time interval. If ||D(v)|[,» =0 then v =10
since v € V. In this case, we set ,4q(v) = 0.

In this paper, we consider the case that v is a non-negative constant. A
straightforward calculation shows that

(vrD(u”), D(V")) — (vpPra D(u?), D(v"))
= (vr(Il = Ppu)D(u"), (I = Ppu) D(V")). (8)

Thus, System (4) can be reformulated as follows: Find u" : [0,7] — V" p" :
(0,T] — Q" satisfying

(uf,v") + (2vD(u"), D(v"))
+ bg(u u vt — (ph,V - V")
4 (I — Pu)D(u), (I — P )D(¥")) = (£,¥%) V¥ vk e v,
(¢, V -uh) = 0 Vg e Q" )
Let V.

ho={vheV" . (V- vhgh)=0V g" € Q"} the space of discretely
divergence free functions. From the inf-sup condition (3) follows that this space is
not empty. Then, (9) is equivalent to: Find u" : [0, 7] — V. such that

(uf, v") + (20 D(u"), D(V")) + by(u”, u, v")
+ (vr(I — Pu)D(u"), (I — Pp)D(vh)) = (fh,vh) (10)

for all vi € V.
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The finite element spaces (V" Q") contain all resolved scales. Let V¢
(H'(Q))? be a finite element space such that L# = I(V#). The space V¥ should be
coarser than V. The functions of V¥ may be defined on the same grid as the functions
of V" with a lower piecewise polynomial degree or on a coarser grid. But no boundary
conditions, like no-slip conditions, are incorporated in the definition of V7, i.e., in
general V' ¢ V", The large eddies of a turbulent flow generally do not fulfill no-slip
boundary conditions, e.g., the large eddies of a tornado move along the surface of the
earth instead of sticking on the surface. The pair of spaces for the resolved large scales
is given by (V¥ 0'). Here, Q" is chosen such that an inf-sup condition of type (3) is
fulfilled for (V¥ Q). The large scales Pyu of the velocity are defined by an elliptic
projection into V/ and the large scales Pyp of the pressure by the L2-projection into

0" Py (V,0) — (V¥,0%)

(D(u — Pyu), D(V¥)) =0 v v evH
(u—Pyu, 1) = 0,

(p—Pup,q") = 0 V4" e

It was proven in [15] that for L7 = D(V#) holds
P#D(v) = D(Pyv) VYvelV. (11)

That means, the definition of the large scales by projection and differentiation
commute. This property does not hold in general for the classical LES.

3. Preliminaries and the outline of the proofs

The following sections present a finite element error analysis for the space
discrete velocity solution of (10). For simplicity, we assume that the characteristic
length scale and velocity scale in the Navier—Stokes equations are chosen such that
Re = v~ !, Considering the limit cases of the choice of L in Section 2, one has:

— L = D(V"): a finite element error estimate which constants depending on 2Re or
(2v)7!, e.g., see Heywood and Rannacher [10,11];

— [ = {O}: a finite element error estimate where the most constants, in particular
the constant in the dominating exponential factor, depend on Re,, := (2v + Z/T)il,
e.g., see the analysis for the Smagorinsky turbulence model in [14,17]. Since in our
analysis, the finite element solution of the VMS is compared to the solution of
the continuous Navier—Stokes equations (2), some constants may depend on 2Re
instead on Re,,.
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The limit cases lead to the expectation that if L is chosen in between them allows
finite element error estimates with constants depending on a reduced Reynolds number
Reeq with

Re,, < Rerq < 2Re. (12)

In the following sections, such error estimates will be derived for the case that vy is
constant.

For the finite element error analysis, we need some assumptions on the regularity
of the parameters of the Navier—Stokes equations and the solution. We assume that

fe (Lz(ov T; Lz))dv up € V7 (13)
and that (2) possesses a solution (u,p) with
Vu e (LY0,T;L2)7, u, € (L2(0,T;H ), p e L0, T;L?).  (14)

Note, these assumptions imply that Serrin’s condition is fulfilled from what follows
that the solution of (2) is unique, e.g., see Temam [22], Galdi [7] or Sohr [21]. For
simplicity let f =f". In addition, we assume that © has a polygonal (in 2d) or
polyhedral (in 3d) boundary such that no boundary approximation in the application of
the finite element method becomes necessary.

Inequalities which will be used frequently are Young’s inequality

t—q/P

t 1 1
ab < —d’ + b, a,b,p,qteR, —+—=1, p,ge(l,0), t>0, (15)
p P q

Poincaré’s inequality in V

IVl <C|IVV|. VveV (16)

and Korn’s inequality in V
|Vv]. <CIDV)|l. VveV. (17)
The proof of the finite element error estimate uses an approach by Rannacher and
Heywood [10,11]. We will first give an outline:

1. Prove stability of u and u”, i.e., certain norms of u and u” are bounded a priori by
the data of the problem: f, ug, v.

2. Derive an error equation by subtracting (10) from (2) for test functions from Vg‘iv.
Split the error into an approximation term 7 and a (finite element) remainder ¢"

e=u—u'=@w-0")- W -0")=n9-9¢" (18)
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where 0" € V4 is a projection of u which fulfills certain interpolation estimates.
An example for such a projection is the Stokes projection. Then, take ¢" as test
function in the error equation.

3. Estimate the right hand side of the error equation such that one obtains an in-
equality of the form

d h I
E qu Hiz + gl(t7¢l) < g2(tv"77u) + g3(17 u)||¢h||12427 (19)

where all functions are non-negative for almost all ¢ € [0, T].

4. Show that Gronwall’s lemma can be applied to (19), i.e., show that all functions in
(19) belong to L'(0,T). Apply Gronwall’s lemma to get an estimate for ¢".

5. Prove the error estimate for e by applying the triangle inequality to (18).

Along these lines, two estimates with constants depending on a reduced Reynolds
number will be proved.

4. First error estimate with constants depending on a reduced Reynolds
number

This error estimate uses the parameter v,4q defined in (6). We will first prove the
stability of u and u”.

Lemma 4.1. The solution u” of the finite element problem (4) fulfills u” € (L*°(0,
T;12))? and D(u") € (L2(0,T; Lz)}d”]. The velocity solution of the continuous prob-
lem (2) fulfills u € (L(0,T;L*))" and D(u) € (L2(0,T; L))"

Proof. The proof for u" and u is very similar. We will show the result for u”. Set

v" =" in (10), use the skew symmetry of by(*,*, *), (6), the standard estimate of the
dual pairing, Korn’s inequality (17) and integrate over (0,¢) with r < T

1 t
SO+ [ v+ @ )Rl
1 t
< I+ [ 10l 190 ) e

1 2 C 2 121/ + v, dd(uh(T)) 2
< g IR+ SR+ [ 2D o)
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Subtraction of the last term and the regularity (13) of the coefficients give D(u") €
(L2(0,T; L))", Taking then the supremum of ¢ € (0,T) gives the statement u" €
(L>(0,T; L))", O

The splitting of the error (18) is performed with the help of a projection u” € V%
of u. Let 7 € [0, T] be arbitrary. We require that this projection fulfills

7]l + 2D |2 < CH(Jue, )l + 27 (), (20)

712 + A (D)) Ml < R (lult, )l + v () llpe) (21)

where the constants depend only on (2. Korn’s inequality (17), (20) with k = 1 and the
regularity assumptions (14) imply

Vv € (L*(0,T; L))" (22)

An example for an appropriate projection is the Stokes projection which is the solution
of: Find u" € V/ such that

2uD(u(t,-) —a"), D) = (p(t,-),V-v") VvV e Vi

Let u(z, -) € (H*(Q),p(t,+) € H*1(Q), k > 1 and V" possess a (k — 1)-th order ap-
proximation property, e.g., V" is the finite element space P~! on simplicial meshes
or Q=1 on quadrilateral/hexahedral meshes, then a simple scaling argument of Lemma
5.3. in [11] gives (20), (21). For ¢ = 0, the pressure can be well defined, e.g., see
[10,22].

Now, Step 2 of the proof is carried out by a straightforward calculation. One
obtains

L2+ o+ @) D

= (m,4/) + (2vD(n), D@) + (vl ~ Pur)Dlm). (1 ~ Pur) D)
b, ¢) — byl o ) — (v — ) D), (1~ Po) D)
XV 23)

with arbitrary \" € Q”.
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To get an inequality of form (19), the terms on the right hand side of (23) have to
be estimated. All bilinear terms are estimated essentially in the same way: using the
Cauchy-Schwarz inequality (or the estimate for the dual pairing), Korn’s inequality
(17) and Young’s inequality (15). In addition, (6) is used. One obtains

(") < 1l [V |2 < Cllmgll- D"

2V+Vadd( ) h )
< T I+ 5 e
(2vD(n), D(¢") < 20[|D(n) | [ID(S") ]2
<

1%
< ID@)IIL + 8D ()22,
P ="V ¢") < p =NV ¢l < Cllp = N[l D"l

2V + Vagd(@ ) C 7y
< 2 nal®) gz O N

2v + Vadd(¢ )
(vr(I = Pp)D(m), (I —PLH)HD(¢h))

—gH(l Pun)D(@") 22 + 4vr|(1 = Pu)D(n)||

—_

= 2 | + s D)

(vr(I = Ppa)D(w), (I — Ppn)D(¢"))
< wrl|(f = Pp)D(u)| 2| (1 = Pro)D(P)]] 2

= 28 i ) .+ P D

The trilinear term is first decomposed into three terms. A direct calculation gives
bs(“v u, ¢h) - bs(uh7 uh7 ¢h) = bs(na u, ¢h) - bs<¢h7 u, ¢h) + bs(uh7 n, ¢h)
The terms on the right hand side are estimated separately using the inequality
1/2 1/2
by(u, v, w) < Clluf[ 27| D(w) || 2 D(v) |2 [ D(W) ] .- (24)

This estimate is well known. It can be derived by applying Holder’s inequality,
Sobolev imbeddings, interpolation theorems in Sobolev spaces, Poincaré’s and Korn’s
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inequality, e.g., see Layton and Tobiska [19]. One obtains by applying (24) and
Young’s inequality (15)

bs(n,u,¢")
< Cllnll 221D |27 D (W)= D" |2

2V+Vadd( ) h C 2
S—— D@ )iz +Tadd(¢h) [l 2 D) [| 2 [ D(w) 172,

bs(¢",u,¢")
< Cll¢",22 D) |2 | D@2

20 + vaaa(9") |2 C B2 4
S——% ID(¢")l72 + 20+ ra @) 6" 22 1D (w) [|;2,
by(u",n,¢")

< Cllu|, 2D |22 ()] | D" 2

20 + vpaa(¢) / C h / 2
< —— =T 7 |ID(d" —{|a"|,» | D(a™)||,.||D 2.
< 2L D@+ 5 I D B

Collecting terms gives

20 + vpa(¢") N
g 2D g
C

2 2
PN o+ (8v+4v D
2 ety Ml + B+ daa(m) | D)

———————|lp = N7 + dvr||(I = Pp) D(w) |2
20 + vaga(4") ¢ r

C 2
RET—— (Il I D) DCw)
+ ||u’1||Lz||m<uh>||L2||m<m||;)]

C
(2 + vaaa(¢"))

3 HD(U)Hiz] 16”172
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We define

Rered := (2v 4 inf 1,44(¢"(1))) " (25)

t(0,7]

It follows that Reyeq is smaller or equal than 2Re. Using v,44(n) < vr finishes Step 3 of
the proof:

Rere
4D

WHLz =

2 -1 2 hy2

<C [ReredH"’tHHl + (Re™ +vr) | D(n)[|72 + Rereallp — A7|l12
+ vrl|(7 = Pp) D(w)||

+&mmwmmmmmmwm+wMmewmmwMJ]

+ CRereal| D(w)lI72 1" 1 :- (26)

To perform Step 4 of the proof, the L!(0, T)-regularity of the terms appearing in
(26) has to be studied. Let 7 € (0, 7] be arbitrary. We have by Poincaré’s inequality
(16), Korn’s inequality (17), the Cauchy—Schwarz inequality, (14) and (22)

/t ()2 11D () (7) ]2 | D(w) () [ 727
< ¢ [ D@11 ) ar
< D) (0,02 1D 73 022y < 00
Similarly follows by Holders inequality, Lemma 4.1 and (22)

/t o (7) |2 D) (7) 2 D () (7) |72

< HU'Hm,m/ ID")(7) |2 | D) (1)l f2dr

2
< ||u ||Lo<(o,z;L2)||HD(“ )||L2(0,I;L2)HD("’)HL“(O,I;LZ)

2 2 2
< C<R€1/2H“8HL2 +Re3/2||fHL2(0,z;H—l)>||D("l)||L4(0,z;L2) < 0.

The L! (0, T)-regularity of the other terms is a direct consequence of (14), (20), (21)
and (22).
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The application of Gronwall’s inequality and the last step of the proof are
straightforward.

Theorem 4.2. Let (u,p) €V x Q be the solution of (2) and let u" € V4  be the
solution of (10) where vy > 0 is a constant. Let the regularity assumptions (14) be
fulfilled, @" be a projection of u into V%  such that n = u — a" fulfills (20) and (21).
Let the reduced Reynolds number Re.q be defined in (25). Then, the error u — u”
satisfies for T > 0

I = o) @l: + == 1D — o

<C inf u—ﬁh T 2 + Re_. ]D)u_ﬁh 2 .
<C it 1= 8@ +Reg D =) 1
NeL2(0,T;0M)

4 2 ~ 2
+ oxp(CRe%|D(W) 1072 ) | 100 = 2 + fluo — & (O)11

~ 2 2
+ Rerea| 0 = 8) 2071y + 1P = Nl 1
~ Ny (12 2
+ [[D(u—u )”U(o,t;LZ)||]D)(“)||L4(O,t;L2)

2 2 =\ 112
+ (Rel/zllugllu + Re3/2||f||L2(0,t;H*‘)) [D(u - uh)HL“(OJ;LZ)

+ (Rfl + vr)[|D(u — ﬁh)HiZ(o,T;LZ)

+ |1 - PL”)HD(H)HIZ}(OI;LZ)] } (27)

Remark 4.1. Let us consider the convergence of the right hand side of (27). The crucial
term is the last one on this side since it does not possess a factor where the
interpolation error u — u’ appears. This term tends to zero as the mesh width 7 — 0 if
vr — 0 or if L tends to D(V). In both cases, the Galerkin finite element discretization
of the Navier-Stokes equations is recovered asymptotically. Otherwise, in particular if
vr and L* are fixed and & — 0, one cannot expect that the solution of the discrete
system converges to the solution of the continuous problem.

Let (u,p) € (H1(Q))! x H*(Q) for all times, k > 1, let the velocity finite
element space be of piecewise order £ and let the pressure finite element space be of
piecewise order k — 1. Then, the optimal order of convergence of the left hand side of
(27) is h* where h is the mesh parameter connected with the space V”. Again, the
crucial term on the right hand side is the last one. Its optimal order of convergence is
H*. Here, H is the mesh parameter connected with L”. Depending on the ratio of / and
H, the artificial viscosity vr can be chosen in such a way that the last term on the right
hand side of (27) does not spoil the order of convergence of the estimate.
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For fixed / and v — 0, the estimate in Theorem 4.2 tends to the estimate for the
Galerkin finite element discretization of the Navier—Stokes equations.

Remark 4.2. There is no improvement in the constant in the exponential, i.e.
Rereq = 2Re, if there is a time 7 at which v,44(¢"(r)) = 0. This is equivalent to

1P D" (1))]I7> = [D(@" (1)]]72 or
(I — Pp)D(u") = (I — Py )D(@"). (28)

That means, the resolved small scales of u” and u" are the same. However, this
situation is unlikely for turbulent flows since these scales of u" are considerably
influenced by the model which is used for the unresolvable small scales whereas the
interpolation " does not posses any information about this model, e.g., if 0" is defined
by the Stokes projection which is asymsptotically optimal. In this case, (28) is only
likely if there are solely large scales in the flow, which is not the case in turbulent
flows. From the mathematical point of view, the difficulty consists in the fact that the
equations for laminar flows and turbulent flows are the same, namely the Navier—
Stokes (1). Since the analysis is carried out for (1), it is not possible to distinguish
between the two kinds of flows and the results must also hold for the case of laminar
flows. For such flows, Uadd((bh (t)) may vanish and the error estimates of [10,11] are
recovered in which the constants depend on Re.

Remark 4.3. A finite element error estimate for the L?((2)-error in the pressure can also
be derived following Heywood and Rannacher [11], Section 7. Using the inf-sup
condition (3) and the estimates for the Stokes projection (20) and (21), the pressure
error can be estimated by approximation errors and the velocity error ||(u — u”)(?)]|,2.
Then, the result of Theorem 4.2 finishes the error estimate for the pressure. Since the
analysis is lengthy and follows closely [11], we will not present it here.

5. Second error estimate with constants depending on a reduced Reynolds
number

This section will present an error estimate with a mesh-dependent reduced
Reynolds number. This reduced Reynolds number will be considerably smaller than
Re if v > v and if the mesh width H connected with the space L is also much larger
than v. This is the typical situation in turbulent flow simulations.

The starting point for this error estimate is the error equation

1d
5 1B + 20 D@ + wrll (L — Pun) D

= (m,,¢") + (2vD(n), D(¢")) + (vr(I — Pra)D(n), (I — Pra)D(¢"))
+ by(u,u,¢") — by(u" u, ¢") — (vp(I — Ppi)D(u), (I — Pru)D(¢"))
—(p=XN',V-¢" (29)
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with arbitrary M € Q" which follows directly by subtracting (10) from (2) and taking
¢" € V. as test function.

We assume that the condition L = ID(V#) holds and that the finite element
spaces V" VH rely on quasiuniform triangulations of €. The first assumption was
needed to prove the commutation of differentiation and the definition of the large
scales by projection. From the latter assumption follows that inverse estimates for
finite element functions hold.

Starting with (11) and applying the inverse estimate for V gives

1P D@2 = I D(Pug")ll> < CH[Prg’lo, (30)

where H is the mesh parameter connected with V. We assume now that the elliptic
projection is [2-stable for functions from Vgiv, 1.e., there is a constant C such that

1Pud"ll2 < Cll¢ll,- V¥ ¢ € Vi, (31)
Together with (30), this gives
1P D(¢")]2 < CHTY|g" ]2V ¢" € Vi (32)

Assumption (31) is true, e.g., for quasiuniform meshes. From Babuska and Osborn [2
equation (6.6)] follows [P'||2,, < C[|¢/],2,, for a mesh-dependent norm |l-,,
For finite element functions, this mesh-dependent norm is equivalent to |||, from
which the L?-stability of the elliptic projection is obtained immediately.

The first step in the estimate of the terms on the right hand side of (29) is the
same as in the derivation of the error estimate leading to Theorem 4.2. But then, the
term ||D(¢")||,> is estimated further using the triangle inequality and (32)

ID(¢") |2 < (T = Prn)D(")| 2 + [Pra D)2
<N =Py D)2 + CH ¢l 2.

This gives, e.g.,

(,8") < llm Iz (7 = Put) D)2 + CH iyl 1]

< ¢(max{v,vr} ™+ H2) Im, - + 4117

max{v, v
L G AL 33)
64

The last term on the right hand side of this estimate has to be hidden on the left hand
side of (29). If vy > v, then it is absorbed by the third term on the left hand side. In the
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case vy < v, we obtain by using the triangle inequality and the H'()-stability of the
elliptic projection with constant 1

max{v, vr}
64

3v

It = P} < <

(I3 + 1P

<2 (I . + D)2

3v )
= 2D

In this case, this term is absorbed by the second term on the left hand side of (29).
The trilinear term which determines the most important coefficient in the ex-
ponential factor of the final estimate can be estimated in the following way

bS(¢hau>¢h)
< Il 121Dl (10 = P D@3 + [P D@L)
< C (v D)2 +H2| (w2 ) 14"

n g_z I(I — Ppa)D(¢")|I72

or in the standard way

v

1 D@2 + Co D) 21" |-

bs(¢" u,¢") <

For the final estimate of the VMS, we will take the estimate which gives the smaller
constant.

All other terms in (29) are estimated in the same fashion as (33). The conditions
which allow the application of Gronwall’s lemma are checked in the same way as for
the error estimate given in Theorem 4.2. The second error estimate is formulated in the
following theorem.

Theorem 5.1. Let (u,p) € V x Q be the solution of (2) and let u" € VJ be the
solution of (10) where vy > 0 is a constant. Let the regularity assumptions (14) be
fulfilled, 0" be a projection of u into Vé’iv such that n = u — a” fulfills (20) and (21).
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Let L = D (V!), let V" and V¥ be defined on quasiuniform triangulations of 2 and let
(31) be fulfilled. Then, the error u — u” satisfies for 7 > 0

Re™!
=)Dl + = 1D =0 [ )
vr
+ 2L = Py D(u — ")

<C inf (= u") (T + Reggl D(w —u") 70,72

u'eL*(0,T;V4)

NeL?(0,T;0M)

+ exp <4T + Cmin{u‘3 | D(u) ||24(07T;L2),
Vfa ([ D(u) ”24(0,T;L2) +H? [ D(w)]], (0,T;L2) })

X [Huo — ugl|> + luo — 0" (0) 17> + Rerea [II(u — "), |22 0701y
h)|2 (12 2
+p—A ||L2(0,T;L2) + [|D(u —u )HL“(O,r;L2)H]ID(H)HL“(OJ;LZ)

(R I3 + Re¥281 ) ) 1D — ) g0

+ (Reil + ]/T)H]D)(u - uh)Hiz(O,T;U) + VTH(I - PLH)]D)(U)H[Z}(O’T;LZ)] } (34)

where

Rereq = max{v,vp} ' + H2. (35)

Remark 5.1. The viscosity v is very small for turbulent flows. To have a stabilizing
effect by using an artificial viscosity, one has to choose vy > v, in general even
vr > v. Hence max{v, Z/T}_l =vr !in (35). Then, the reduced Reynolds number (35)
is not dominated by the mesh size if

vr S Hz. (36)

Making the same assumptions and considerations on the convergence of the individual
terms in (34) as in Remark 4.1, one finds that the second term on the left hand side of
(34) behaves like 7%, the third term on the left hand side like v74* and the last term on
the right hand side like vrHF. Given h and either H or vy, one can choose by
equilibrating these orders of convergence an appropriate value for the remaining
parameter, taking into account also restriction (36).
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Let v be small, v < h < H, let h be fixed and vy — 0. Then, Re,q is very close

to v~ ! = Re and the constants in estimate (34) have the same dependency on Re as for
the Galerkin finite element discretization of the Navier—Stokes equations.
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