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Fluid motion in many applications occurs at higher Reynolds numbers. In these applications dealing with
turbulent flow is thus inescapable. One promising approach to the simulation of the motion of the large
structures in turbulent flow is large eddy simulation in which equations describing the motion of local
spatial averages of the fluid velocity are solved numerically. This report considers “numerical errors” in
LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element
approximation of the model and give an estimate of the error. © 2002 Wiley Periodicals, Inc. Numer Methods
Partial Differential Eq 18: 689–710, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI
10.1002/num.10027
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I. INTRODUCTION

Consider the (turbulent) flow of an incompressible fluid. One promising and common approach
to the simulation of the motion of the large fluid structures is large eddy simulation (LES).
Various models are used in LES; a common one is to find (w, q), where w : �(� �d, d � 2 or
3, polygonal domain) � [0, T] 3 �d, q : � � (0, T] 3 � satisfying

wt � w � �w � Re�1�w � �q � � � ��T��w��w� � �1�
2� � �A�1��w�w�� � f� in � � �0, T	

� � w � 0 in � � 
0, T	

w�x, 0� � u� 0�x� in �

� boundary conditions on ��. (1.1)
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The notation and terms in (1.1) require some explanation. The operator A�1 denotes a
regularization operator, introduced in [1], which is described below. The term �w�w is
shorthand for the tensor

��w�w�ij :� �
l�1

d
�wi

�xl

�wj

�xl
.

The function �T(�w) is the “turbulent viscosity” coefficient arising from the subgrid scale
model used for turbulent fluctuations. There are many mathematically interesting possibilities
for �T(�w); see [2–9]. In this article we study the most commonly used Smagorinsky [4] model

�T��w� � �0�
2��w�, ��w� � � �

i,j�1

d ��wi

�xj
�2�1/2

. (1.2)

The parameter � denotes the “averaging radius”: the model (1.1) seeks to provide an approxi-
mation of the eddies of size O(�) or larger. The data f�, u� 0 are O(�) averages of data from some
turbulent flow problem underlying (1.1). The domain � is assumed to be polyhedral and
bounded with boundary �.

The question of boundary conditions for (1.1) is a fundamental question in LES. There are
various proposals; we impose a boundary condition suggested in [1] and developed in [10]. If
the fluid particles adhere to the walls, it does not follow that the large eddies also “stick.” In fact,
it is clear that large eddies do move slip along walls and lose energy as they slip. The conditions
we impose are no penetration (1.3) and slip with resistance (1.4):

w � n̂ � 0, on �, (1.3)

w � 	̂j � 
�1��, Re�t � 	̂j � 0, and �, j � 1, d � 1. (1.4)

Here 
(�, Re) is the friction coefficient, and the vectors n̂ and 	̂j (where j � 1 if d � 2 and
j � 1, 2 if d � 3) denote the unit normal and tangent vectors to � where, if d � 3, 	̂1 � 	̂2. The
computational choice of n̂ and 	̂j at the corners in such boundary conditions is resolved in the
work by Gresho and Sani [11]. If d � 3, all terms in which 	̂j occurs should (by understanding)
be summed from j � 1, 2; for example, �w � 	̂j��

2 means ¥j�1
2 �w � 	̂j��

2. Also t represents the
Cauchy stress vector associated with w. Specifically,

t � n̂ � 
�qI � �1�
2A�1��w�w� � Re�1�w � �t��w��w	.

There are several natural choices for the regularization A�1 in (1.1). The most commonly
used model, which we consider here, is with no regularization A�1 � I. This model evolved
from the work of Leonard [12] and Clark, Ferziger, and Reynolds [13]. Its derivation is based
on a Taylor polynomial approximation of the Fourier transform of the Gaussian filter wherefore
it is called sometimes Taylor LES model (also known as the gradient or nonlinear or tensor-
diffusivity LES model). A systematic derivation can be found in Aldama [14], and it has been
used for many computational studies, for example, Cantekin, Westerink, and Luettich [15] and
Sagaut [9]. The report [1] suggests the inclusion of a regularization operator A�1 in the system
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(1.1). One choice of A�1 is simply to reapply the spatial filter underlying (1.1): A�1v � g� � v;
another possibility is A�1v � (��2� 
 I)�1v.

Large eddy simulation involves two fundamental issues: assessment of “modeling errors” and
“numerical errors.” Modeling errors refer to the question of how close w(x, t) is to the true flow
averages: ��w � u� �� for some norm �� � ��. To our knowledge, there are no analytical results to
date on this question for (1.1), but there are experimental results comparing various averages of
w to those same averages of u� (i.e., averages of averages of u). If we accept w(x, t) as an
interesting model for u� , numerical errors describe how close an approximation wh is to w.
Numerical errors raise classical questions of stability, consistency, and convergence for approx-
imations of (1.1).

This report considers precisely this question for finite element approximations of (1.1). In
Theorem 3.4 we show that the usual, continuous-in-time, finite element approximation to (1.1),
wh, converges to w as the mesh width h3 0 for the Reynolds number Re and averaging radius
� fixed.

This analysis leads to interesting questions beyond the case of the usual Navier-Stokes
equations (pioneered by Heywood and Rannacher in a series of papers [16, 17]), including the
case of slip with friction boundary conditions (1.4) (see, for example, [18, 19] for some work
related to this case); the degeneracy of the �-Laplacian-based subgrid-scale model in (1.1) (see,
for example, [20, 5] for numerical analysis of the equilibrium model composed of NSE 

�-Laplacian); the “cross-term” �2� � (�w�w) in (1.1), which is nonmonotone, nonlinear, and
higher order; and the dependence of the error on the Reynolds number, Re, and the averaging
radius, �.

Our convergence analysis comes to grips with some of these questions. In particular, we
prove convergence as h3 0 for fixed Re. In some sense, Theorem 3.4 shows that the parameter
� does not degrade convergence. Naturally, we expect that a sharper analysis will show that its
presence in the model improves the estimates. The degeneracy in the Smagorinsky [4] subgrid-
scale model is not an essential difficulty; but (surprisingly) its polynomial growth, which must
match that of the cross term to ensure boundedness of the kinetic energy in w, seems to cause
suboptimality in the resulting error estimates. This issue has recently been studied in a simplified
setting in [21].

Nevertheless, convergence wh3 w as h3 0 is proven. The long-term analytical goals in the
numerical analysis of large eddy simulation are then to extend the error analysis to the model,
including the regularization operator A�1; to sharpen this result, especially with respect to error
dependence on � and Re, where possible; and to complement it with analysis of the modeling
error. Preliminary steps in this last direction have recently been taken in [22] for a different class
of LES models.

II. VARIATIONAL FORMULATION OF THE MODEL

We now introduce the notation for the functional setting. The L2(�) norm and inner product are
denoted � � � and ( � , � ). The L2(�) norm and inner product are denoted � � �� and (�, �)�. The
L3(�) norm is � � �L3, and the Sobolev Wk,p(�) norm is denoted � � �k,p, with p omitted if p � 2.
See, for example, [23] for a clear development of Sobolev spaces focusing on those important
for the Navier-Stokes equations. Generic constants independent of the mesh width h are denoted
by C.

It is natural to define the velocity-pressure spaces as follows:
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X :� �v � W1,3���d : v � n̂ � 0 on �,�

Q :� L0
2��� � ���x� � L2��� : ��, 1� � 0�.

The Smagorinsky model used needs the assumption �v � L3(�).
Some existence results for weak solutions of (1.1)–(1.4) have recently been proven in

[24–26]. The regularity of weak solutions to (1.1)–(1.4) is still an open question, including
regularity down to t � 0. We shall nevertheless assume that (1.1)–(1.4) has a unique solution
in the sense of the variational formulation (2.1). We will attempt to minimize any additional
regularity assumed, and it will be explicitly stated as it is used. Because the boundary conditions
on w are not simple Dirichlet conditions, care must be taken in developing a variational
formulation of (1.1) in (X, Q).

Consider the following term, for v � X and w smooth enough:

�
�

� � 
qI � �1�
2��w�w� � �Re�1 � �T��w���w	 � v dx � �

�

n̂ � 
qI � �1�
2��w�w�

� �Re�1 � �T��w���w	 � v ds � �
�

q� � v � 
�1�
2��w�w� � �Re�1�w � �T��w���w	 : �v dx.

Decomposing v � (v � 	̂j)	̂j 
 (v � n̂)n̂ � (v � 	̂j)	̂j in the first integral, canceling the obvious
terms, and using (1.3)–(1.4), we obtain

�
�

� � 
qI � �1�
2��w�w� � �Re�1 � �T��w���w	 � v dx � 
��, Re� �

�

�w � 	̂j��v � 	̂j� ds

� �
�

q� � v � 
�1�
2��w�w� � �Re�1 � �T��w���w	 : �v dx.

The next lemma is fundamental to energy estimation. Its proof is the same index calculation
as in the case of the no-slip boundary condition.

Lemma 2.1. For any u, v, w � X satisfying � � v � 0

�v � �w, u� � ��v � �u, w�.

Thus,

�v � �w, u� �
1
2
�v � �w, u� �

1
2
�v � �u, w�.

Proof. This follows since v � n̂ � 0 on � for all v � X and � � v � 0. y

We consider the skew-symmetric form of the convective term, which is denoted by

b�u, v, w� �
1
2
��u � �v, w� � �u � �w, v��.
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A variational formulation of (1.1)–(1.4) is thus as follows. For f� � L2 (0, T; L2(�)), find a
differentiable map w : [0, T] 3 X, q : (0, T] 3 Q satisfying

�wt, v� � ��Re�1 � �T��w���w, �v� � 
��, Re��w � 	̂j, v � 	̂j��

� �q, � � v� � b�w, w, v� � �1�
2���w�w�, �v� � �f�, v�,��, � � w� � 0, (2.1)

for all (v, �) � (X, Q).
We will frequently use the Poincaré inequality for all v � X

�v� � C��v�. (2.2)

Note that this inequality needs only v � n̂ � 0 on � to hold, rather than v � 0 on �; see Galdi
[23], Section II.4.

The next two technical lemmas quantify the control the model of turbulent diffusion exerts
over the interaction of large and small eddies. They are also the key for proving existence of
weak solutions; see Coletti [25, 24] and Berselli et al. [26]. Define, for brevity,

F�w� :� �Re�1 � �T��w���w � �1�
2��w�w�. (2.3)

Lemma 2.2. Let �T(�w) :� �0�2��w�, where �0 
 4�1. Then, there is a constant C� such that
for any v1, v2 � X,

�F�v1� � F�v2�, ��v1 � v2�� � 
��, Re���v1 � v2� � 	̂j, �v1 � v2� � 	̂j��


 Re�1���v1 � v2��2 �
C�

2
�0�

2���v1 � v2��L3
3 � 
��, Re���v1 � v2� � 	̂j��

2.

Proof. The proof of a similar estimate can be found in Coletti [25], which in turn is based
on a proof by Ladyzhenskaya [27]. Because we need an explicit relation between �0 and �1 in
our new setting, we will present here the proof to highlight the condition �0 
 4�1.

Let

F̃�w� :� �Re�1 �
1
2

�0�
2��w���w � �1�

2��w�w�.

Note that F(w) � F̃(w) 
 1
2

�0�2��w��w.
Letting v� :� �v1 
 (1 � �)v2, � � [0, 1], and using the �-Laplacian’s strong monotonicity

(see, for example, [5]) and the approach in [25], we get

�F�v1� � F�v2�, ��v1 � v2�� � 
��, Re���v1 � v2� � 	̂j, �v1 � v2� � 	̂j��

� 
��, Re���v1 � v2� � 	̂j��
2 � �F�v1� � F�v2�, ��v1 � v2��


 
��, Re���v1 � v2� � 	̂j��
2 � �

�

��
0

1 d

d�
F̃�v��d����v1 � v2�dx

�
C�

2
�0�

2���v1 � v2��L3
3 . (2.4)
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We now start to evaluate the second term on the right-hand side of the last inequality. In the
sequel, by convention, repeated indices denote summation.

d

d�
F̃�v����v1 � v2� � �Re�1

d

d�
�v� �

1

2
�0�

2
d

d�
���v���v�� � �1�

2
d

d�
��v��v���

� ��v1 � v2� � Re�1
d

d�

�vi
�

�xj ��v1i

�xj
�

�v2i

�xj � �
1

2
�0�

2
d

d�

� ���
k,l
��vl

�

�xk�2�1/2 �vi
�

�xj���v1i

�xj
�

�v2i

�xj � � �1�
2

d

d� ��vi
�

�xl

�vj
�

�xl���v1i

�xj
�

�v2i

�xj �
� Re�1��v1i

�xj
�

�v2i

�xj �2

�
1

2
�0�

2��
k,l
��vl

�

�xk�2��1/2���vl
�

�xk���v1l

�xk
�

�v2l

�xk��
� ���vi

�

�xj���v1i

�xj
�

�v2i

�xj �� �
1

2
�0�

2��
k,l
��vl

�

�xk�2�1/2��v1i

�xj
�

�v2i

�xj �
� ��v1i

�xj
�

�v2i

�xj � � �1�
2���v1i

�xl
�

�v2i

�xl �
�

�vj
�

�xl
�

�vi
�

�xl ��v1j

�xl
�

�v2j

�xl ����v1i

�xj
�

�v2i

�xj �.

In the last equality, dropping the second term (which is positive) and using (twice) the
Cauchy-Schwarz inequality for the last term, we get for �0 
 4�1

d

d�
F̃�v����v1 � v2� 
 Re�1���v1 � v2��2 �

1

2
�0�

2��v�����v1 � v2��2

� �1�
2��v�����v1 � v2��2 � �1�

2��v�����v1 � v2��2 
 Re�1���v1 � v2��2.

Inserting this estimate into (2.4) proves the statement of the lemma. y

Remark: This lemma does not include the w � �w nonlinearity describing how the large
eddies convect themselves. Because of this w � �w term, the nonlinearity in (1.1) is not
monotonic.

The next technical lemma concerns the continuity properties of F�.

Lemma 2.3. Assume �T(�w) :� �0�2��w�. Then, there is a constant C� such that for any v1,
v2, � � X with ��v1�L3 � r and ��v2�L3 � r,

�F�v1� � F�v2�, ��� � C� r�2���v1 � v2��L3����L3 � Re�1���v1 � v2������.

Proof. Using Hölder’s inequality and adding and subtracting terms as appropriate, we get

�F�v1� � F�v2�, ��� � Re�1���v1 � v2������ � �0�
2���v1��v1 � ��v2��v2, ��� � �1�

2��v1�v1

� �v2�v2, ��� � Re�1���v1 � v2������ � �0�
2���v1��v1 � ��v1��v2
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� ��v1��v2 � ��v2��v2, ��� � �1�
2��v1�v1 � �v1�v2 � �v1�v2

� �v2�v2, ��� � Re�1���v1 � v2������ � C�0�
2��v1�L3���v1

� v2��L3����L3 � C�0�
2���v1 � v2��L3��v2�L3����L3 � �1�

2��v1�L3���v1

� v2��L3����L3 � �1�
2���v1 � v2��L3��v2�L3����L3,

which proves the lemma. y

Using these lemmas, we can prove an energy bound for the solution of the continuous
problem (1.1)–(1.4). This first bound is the foundation on which an existence theory for
(1.1)–(1.4) is built.

Proposition 2.4. [Leray’s inequality for the Large Eddy Model]. Let w(x, t) satisfy (2.1).
Then, w satisfies the energy inequality

1
2

�w�t��2 � �
0

t



�w � 	̂j��
2 � Re�1��w�2 � C� �0�

2��w�L3
3 	 dt� �

1
2

�w�0��2 � �
0

t

�f�, w� dt�,

for any t � 0. In particular,

��w�L3�0,t,L3�
3 � C��, �0���w�x, 0��2 � �

0

t

� f� �L6/5
3/2� �: C1��, �0, t�.

Proof. Set v � w and � � q in (2.1). Using Lemma 2.2 then gives

1

2

d

dt
�w�2 � Re�1��w�2 � C� �0�

2��w�L3
3 � 
�w � 	̂j��

2 � �f�, w�,

from which the energy inequality follows by integration.
To prove the second part, use Hölder’s inequality, the Sobolev embedding W1,3(�)3 L6(�),

Poincaré inequality (2.2), and Young’s inequality to obtain

�f�, w� � �w�L6�f��L6/5 � C��w�L3�f��L6/5 �
�

3
��w�L3

3 �
C

�1/2 �f��L6/5
3/2 .

Choosing � � C�2 proves the second statement of Proposition 2.4. y

Before proceeding with the error analysis of the nonlinear, time-dependent problem, we give
estimates of two equilibrium projections. The first (Proposition 2.5) gives an estimate of the
error in the nonlinear Galerkin projection obtained by dropping time dependence and convection
(hence retaining only those terms associated with the turbulence modeling.) This estimate is not
optimal, reflecting the quadratic growth in the model’s nonlinearity. (Suboptimal estimates
similar to this also occur in error analysis of problems such as the �-Laplacian [28], which are
locally Lipschitz and strongly monotone in the sense of Vainberg [29].) Proposition 2.5 thus
gives an idea of rates of convergence attainable in more complex settings as well.
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We assume that the velocity-pressure space (Xh, Qh) satisfies the natural ([18, 19]) inf-sup
condition associated with slip with friction conditions on �. Note that since � is polyhedral, the
natural norm on � is not the H1/2(�) norm but rather the sum of the H1/2(�i) norms over all faces
�i of �. Thus, we assume

inf
�h�Qh

sup
vh�Xh

��h, � � vh�

��h�
��vh�2 � ¥all faces �i of � �vh � 	̂j�1/2,�i

2 	1/2 
 � � 0. (2.5)

Under this condition, the space of discretely divergence-free functions Vh

Vh :� �vh � Xh : ��h, � � vh� � 0, � �h � Qh�

is not empty [30, 31]. Examples of finite element spaces satisfying (2.5) are constructed in [18,
19].

Proposition 2.5. Let �h denote an approximation of w in Vh satisfying ���h�L3 � C��w�L3.
Assume also the conditions of Lemma 2.2 hold. Let w̃ � Vh be defined by

�F�w� � F�w̃�, �vh� � 
��w � w̃� � 	̂j, vh � 	̂j�� � 0,

for all vh � Vh. Then, w̃ � Vh exists uniquely and the error w � w̃ satisfies


��, Re���w � w̃� � 	̂j��
2 � Re�1���w � w̃��2 � C� �0�

2���w � w̃��L3
3

� C��C� �0�
�1/2�C� ��w�L3�3/2�2���w � �h��L3

3/2 � Re�1���w � �h��2 � 
��, Re���w � �h� � 	̂j��
2�.

Proof. That w̃ exists uniquely follows from standard arguments using monotonicity fol-
lowing Minty’s lemma, [32–34]. For the error estimate, adding and subtracting terms give


���h � w̃� � 	̂j, vh � 	̂j�� � �F��h� � F�w̃�, �vh� � 
���h � w� � 	̂j, vh � 	j�� � �F��h� � F�w�, �vh�

for all vh � Vh. Setting vh � �h � w̃ and using Lemma 2.2 gives


���h � w̃� � 	̂j��
2 � Re�1����h � w̃��2 � C� �0�

2����h � w̃��L3
3

� �F��h� � F�w�, ���h � w̃�� � 
���h � w� � 	̂j, ��h � w̃� � 	̂j��.

Thus, using the Cauchy-Schwarz inequality, Young’s inequality, and Lemma 2.3 give


���h � w̃� � 	̂j��
2 � Re�1����h � w̃��2 � C� �0�

2����h � w̃��L3
3

�
1

2
Re�1����h � w��2 �

1

2
Re�1����h � w̃��2

�



2
���h � w̃� � 	̂j��

2 �



2
���h � w� � 	̂j��

2 � C� r�2����h � w̃��L3���w � �h��L3,

where r � max{���h�L3, ��w�L3}, which is bounded by C��w�L3. Collecting terms gives

696 ILIESCU ET AL.




���h � w̃� � 	̂j��
2 � Re�1����h � w̃��2 � 2C� �0�

2����h � w̃��L3
3

� 2C� r�2����h � w̃��L3���w � �h��L3 � Re�1���w � �h��2 � 
��w � �h� � 	̂j��
2.

Using Young’s inequality and the triangle inequality completes the proof. y

Remark. Lp stability estimates of the L2 projection into finite element spaces is proven for
many interesting spaces, for example, in [35] and [36].

III. FINITE ELEMENT APPROXIMATION OF LARGE EDDY MOTION

The usual, continuous-in-time, Galerkin finite element approximation of the solution of (w, q)
of the large eddy model (1.1)–(1.4) will be given now. First, finite-dimensional finite element
subspaces

Xh � X, Qh � Q

are selected that satisfy the discrete inf-sup condition (2.5).
The continuous-in-time approximations (wh, qh) are maps wh : [0, T]3 Xh, qh : (0, T]3 Qh

satisfying that wh(0) approximates u� 0 in Xh and

�wt
h, vh� � ��Re�1 � �T��wh���wh, �vh� � b�wh, wh, vh� � �qh, � � vh� � 
��, Re��wh � 	̂j, vh � 	̂j��

� �1�
2��wh�wh�, �vh) � �f�, vh���h, � � wh� � 0, (3.1)

for all (vh, �h) � (Xh, Qh). Using Vh and the nonlinear operator F� defined by (2.3), we can
write the approximation (3.1) more compactly. In particular, wh : [0, T] 3 Vh satisfies

�wt
h, vh� � �F�wh�, ��vh�� � b�wh, wh, vh�

� 
��, Re��wh � 	̂j, vh � 	̂j�� � �f�, vh�, for all vh � Vh. (3.2)

The method (3.1) or (3.2), respectively, is stable. It satisfies the same energy inequality as the
continuous problem.

Proposition 3.1. [Leray’s inequality for wh]. Suppose wh is the solution of (3.2). Then, wh

satisfies for all t � 0

1
2

�wh�t��2 � �
0

t



�wh � 	̂j��
2 � Re�1��wh�2

� C� �0�
2��wh�L3

3 	 dt� �
1
2

�wh�0��2 � �
0

t

�f��t��, wh�t��� dt�.

In particular,
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�
0

t

Re�1��wh�2 dt � �wh�0��2 � C Re �
0

t

�f��t���2 dt�.

Proof. The proof of the first estimate is the same as that of Proposition 2.4. The second
estimate follows from the first estimate by neglecting the first, second, and the last term on the
left-hand side. Then, the second term on the right-hand side is estimated by the Cauchy-Schwarz
inequality, the Poincaré inequality (2.2), and Young’s inequality, leading to

�
0

t

�f��t��, wh�t��� dt� � �
0

t ��

2
�f��t���2 �

C

2�
�wh�t���2� dt�.

Choosing � � C Re and collecting terms, we conclude the proof. y

By a similar argument, we obtain a particularly simple bound on �wh(t)�, uniform in both Re
and �.

Lemma 3.2. Suppose wh is the solution of (3.2). Then, for T � 0

max
0�t�T

�wh�t�� � �wh�0�� � �
0

T

�f��t�� dt.

Proof. Set vh � wh in (3.2). Dropping the non-negative terms resulting on the left-hand side
gives

1

2

d

dt
�wh�t��2 � �wh�

d

dt
�wh�t�� � �f�, wh� � �f���wh�.

Thus, d/dt�wh(t)� � �f�(t)�, and the result follows. y

Combining this lemma and Proposition 3.1 gives an a priori bound on the quantity

ah�t� :� �wh�t��1/2��wh�t��1/2. (3.3)

Lemma 3.3. Let ah(t) be as above and wh be the solution of (3.2). Then, ah(t) � L4(0, T)
uniformly in h and

�ah�t��L4�0,T�
4 � ��wh�0�� � �

0

T

�f��t�� dt�2�Re�wh�0��2 � C Re2 �
0

T

�f��t��2dt�.

Proof. Since

�ah�t��L4�0,T�
4 � �wh�L��0,T;L2����

2 �
0

T

��wh�2 dt,

the result follows from Proposition 3.1 and Lemma 3.2. y
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The method (3.2) reduces existence of wh to existence for a system of ordinary differential
equations in Vh. The Cauchy-Schwarz inequality and Proposition 3.1 give immediately an a
priori bound on wh(t). Thus, wh(x, t) exists uniquely. If the discrete inf-sup condition (2.5) and
standard arguments of Girault and Raviart [30] are used, qh does as well.

We now turn to the error in the approximation wh of w. Important questions in the error
analysis of large eddy simulation include dependence of the errors upon Re and �, including
cases in which � and h are related. In this report we consider only the first, without which later
steps are not imaginable: we consider convergence of wh to w as h 3 0 for Re and � fixed.
Further, if there were a convergence result for wh to w that was uniformly in �, this would
immediately imply a convergence result w 3 u (the solution of the underlying Navier-Stokes
equations) as � 3 0. Such a result has never been proven (to the authors’ knowledge) for any
conventional turbulence model and only for the Camassa-Holm model and one large eddy model
[37].

Theorem 3.4. Let (w, q) let be the solution of (2.1) and (wh, qh) be the solution of (3.1). Let
the finite element spaces fulfill the inf-sup condition (2.5), let �0 
 4�1, and let ah(t) be defined
in (3.3). Under the assumption

�w � L4�0, T; L2����,

the error e � w � wh satisfies

�e�L��0,T;L2�
2 � 
�e � 	̂j�L2�0,T;L2����

2 � Re�1��e�L2�0,T;L2�
2 � �0�

2��e�L3�0,T;L3�
3 � CC*�T��w�x, 0�

� wh�x, 0��2 � C inf
w̃�Xh���,�h�Qh

��w � w̃, q � �h, Re, �, �0, T�

with

C*�T� � exp��
0

T

�1 � C�Re�3��w�4� dt� (3.4)

and

��w � w̃, q � �h, Re, �, �0, T� � C
�w � w̃�L��0,T,L2�
2 � �0�

2���w � w̃��L3�0,T,L3�
3

� C*�T�
��w � w̃��x, 0��2 � Re��ah�t��L4�0,T�
2

� ��w�L4�0,T,L2�
2 ����w � w̃��L4�0,T,L2�

2

� C��, �0, T����w � w̃��L3�0,T,L3�
3/2

� Re�1���w � w̃��L2�0,T,L2�
2 � Re��w � w̃�t�L2�0,T,H�1�

2

� 
��w � w̃� � 	j�L2�0,T,L2����
2 � Re�q � �h�L2�0,T,L2�

2 		.

Proof. Let e � w � wh and vh � Vh. An error equation is obtained by subtracting (3.1)
from (2.1). This yields

�et, vh� � �F�w� � F�wh�, �vh� � b�w, w, vh�

� b�wh, wh, vh� � 
�e � 	̂j, vh � 	̂j�� � �q � �h, � � vh�, (3.5)
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where �h � Qh is arbitrary. Let w̃ � Vh denote an approximation to w. Then, with � � w �
w̃ and �h � (wh � w̃) � Vh, and choosing vh � �h, we can rewrite the error equation (3.5) as

��t
h, �h� � 
��h � 	̂j, �h � 	̂j�� � �F�wh� � F�w̃�, ��h� � b�w, w, �h� � b�wh, wh, �h� � �F�w�

� F�w̃�, ��h� � �q � �h, � � �h� � ��t, �h� � 
�� � 	̂j, �h � 	̂j��.

Using Lemma 2.3 gives the estimate for the nonlinear eddy viscosity term

�
�T��w��w � �1�
2��w�w�	 � 
�T�w̃���w̃�

� �1�
2��w̃�w̃�	, ��h� � C� r�2���w � w̃��L3���h�L3,

with

r � max���w�L3, ��w̃�L3� � C��w�L3. (3.6)

From Lemma 2.2 and the usual definition of a dual norm, we conclude

1

2

d

dt
��h�2 � 
��h � 	̂j��

2 � Re�1���h�2 � C� �0�
2���h�L3

3 � b�w, w, �h� � b�wh, wh, �h�

� ��t�H�1���h� � C� r�2����L3���h�L3 � Re�1�������h� � �q � �h����h�
� 
�� � 	j����h � 	j��. (3.7)

We consider now the convection terms on the right-hand side of this last inequality. Adding
and subtracting terms give

b�w, w, �h� � b�wh, wh, �h� � b�w, e, �h� � b�e, w, �h� � b�e, e, �h�.

By skew symmetry and e � � � �h � w � wh, this can be rewritten in the form

b�w, w, �h� � b�wh, wh, �h� � b��, w, �h� � b�wh, �, �h� � b��h, w, �h�. (3.8)

In the analysis of the trilinear form we will use the estimate

b�u, v, w� � C��u�1/2�u�1/2��v���w�. (3.9)

This estimate is derived by Hölder’s inequality, the Sobolev imbeddings W1/2,2(�)3 L3(�) and
W1,2(�) 3 L6(�), the interpolation of W1/2,2(�) by L2(�) and W1,2(�), and Poincaré’s
inequality (2.2); see also the proof of Lemma 2.2 (f) in [38]. We obtain by (3.9), Poincaré’s
inequality (2.2), and Young’s inequality, for any � � 0

�b��, w, �h� � b�wh, �, �h�� � C�����1/2���1/2��w� � ��wh�1/2�wh�1/2��������h�
� C���w� � ��wh�1/2�wh�1/2��������h�

�
�

2
���h�2 �

C

�
���w�2 � ��wh��wh������2.
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The remaining term on the right-hand side of (3.8) is also estimated by (3.9) and Young’s
inequality:

�b��h, w, �h�� � C���h�3/2��h�1/2��w� �
�

2
���h�2 �

C

�3 ��w�4��h�2.

Applying again Young’s inequality, for � � C� �0,

C� r�2���h�L3����L3 �
�

3
�2���h�L3

3 �
2

3
��1/2�2�C� r�3/2����L3

3/2

�
1

3
C� �0�

2���h�L3
3 �

2

3
�C� r�3/2�C� �0�

�1/2�2����L3
3/2.

The remaining terms on the right-hand side of (3.7) are also estimated by Young’s inequality:

��t�H�1���h� � Re��t�H�1
2 �

Re�1

4
���h�2

Re�1�������h� �
1

2 Re
����2 �

1

2 Re
���h�2

�q � �h����h� �
1

2�
�q � �h�2 �

�

2
���h�2


�� � 	j����h � 	j�� �



2
�� � 	j��

2 �



2
��h � 	j��

2

Picking � � O(Re�1), inserting all estimates into (3.7), and collecting terms give

1

2

d

dt
��h�2 �




2
��h � 	̂j��

2 � C Re�1���h�2 �
2

3
C� �0�

2���h�L3
3 � C�Re���w�2

� ��wh��wh������2 � Re��t�2 �
1

2 Re
����2 �

2

3
�C� r�3/2�C� �0�

�1/2�2����L3
3/2 � C Re�q

� �h�2 �



2
�� � 	j��

2� � �1

2
� C�Re�3��w�4���h�2.

Since, by assumption, ��w�4 � L1(0, T), Gronwall’s inequality now implies

max
0�t�T

��h�2 � �
0

T �2
��h � 	̂j��
2 � Re�1���h�2 �

4

3
C� �0�

2���h�L3
3 � dt � C*�T���h�0��2

� CC*�T� �
0

T �Re���w�2 � ��wh��wh������2 � Re��t�2 �
1

Re
����2 � r3/2�0

�1/2�2����L3
3/2

� Re�q � �h�2 � 
�� � 	j��
2� dt,
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where C*(T) is defined in (3.4). We can bound by using the Cauchy-Schwarz inequality in L2(0,
T):

�
0

T

��w�2����2dt � ��w�L4�0,T,L2�
2 ����L4�0,T,L2�

2

�
0

T

��wh��wh�����2 � �ah�t��L4�0,T�����L4�0,T,L2�
2

�
0

T

r3/2����L3
3/2 � C �

0

T

��w�L3
3/2����L3

3/2 � C��w�L3�0,T,L3�
3/2 ����L3�0,T,L3�

3/2

� C��, �0, T�����L3�0,T,L3�
3/2 .

The last estimate was obtained by using the estimate of r (3.6) and the result of Proposition 2.4.
The term ah(t) is estimated in Lemma 3.3.

The error estimate now follows by the triangle inequality and collecting terms. y

IV. NUMERICAL RESULTS

We present two numerical tests that confirm the error estimate given in Theorem 3.4. The first
example is Chorin’s vortex decay problem in 2D, and the second example has an analytical
solution in 3D. A third example illustrates the slip with resistance boundary condition. Before
the numerical examples, we will describe the numerical schemes used in the computations.

We start by discretizing Equation (1.1) in time by the fractional-step-�-scheme; see, for
example, Bristeau, Glowinsky, and Periaux [39], which is analyzed for the time-dependent

TABLE I. Example 1, mesh widths and degrees of freedom for Q2/P1
disc discretization (left) and Q3/P2

disc

discretization (right).

h Velocity Pressure Total Velocity Pressure Total

1/4 338 96 434
1/8 578 192 770 1250 384 1634
1/16 2178 768 2946 4802 1536 6338
1/32 8450 3072 11522 18818 6144 24962
1/64 33282 12288 45570

TABLE II. Example 1, �e�L�(0,T,L2) for the Q2/P1
disc discretization.

h
	 � 1000

Error Order
	 � 10,000

Error Order
	 � 100,000

Error Order

1/8 2.139817e-02 2.140299e-02 2.140347e-02
1/16 2.758204e-03 2.956 2.758924e-03 2.956 2.758996e-03 2.956
1/32 3.470081e-04 2.991 3.470864e-04 2.991 3.471288e-04 2.991
1/64 4.498844e-05 2.947 4.351145e-05 2.996 4.351082e-05 2.996
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Navier-Stokes equations by Kloucek and Rys [40]. This implicit scheme is of second-order
accuracy, more stable than the Crank-Nicolson scheme, and is currently considered “best” on the
basis of accuracy and reliability; see, for example, Turek [41] or Rannacher [42].

The fractional-step-�-scheme divides each time step into three subtime steps. In each subtime
step, a nonlinear saddle point problem has to be solved. The nonlinear problem is linearized by
a fixed-point iteration. The term coming from the LES model, A�1(�w�w), is computed only
at the beginning of each subtime step and is not changed during the fixed-point iteration. All
other nonlinear terms are updated after each iteration step. We have used two finite element
discretizations of different polynomial degree to discretize the arising linear saddle point
problems. The lower-order finite element is the Q2/P1

disc (or Q2/P�1 in the notation of Gresho
and Sani [11]) finite element discretization; that is, the velocity is approximated by continuous
piecewise biquadratics in 2D (triquadratics in 3D) and the pressure by discontinuous linears. The
higher-order pair of finite elements is the Q3/P2

disc discretization; that is the discrete velocity is
continuous and piecewise bicubic in 2D (tricubic in 3D) and the pressure discontinuous and
piecewise quadratic. These conforming pairs of finite element spaces fulfill the inf-sup or
Babus̆ka–Brezzi stability condition on meshes consisting of parallelepipeds. They are currently
considered among the most stable and best-performing elements for finite element discretiza-
tions of Navier–Stokes equations; see, for example, Fortin [43], Gresho and Sani [11], or the
studies in [44, 45].

The linear saddle point problems are solved by a flexible GMRES method; see Saad [46]. The
preconditioner is a coupled multigrid method with Vanka-type smoothers as studied numeri-
cally, for example, in [47, 44, 45]. These algorithmic choices are currently considered among
the best in terms of reliability, stability, and accuracy in finite element CFD.

Example 1. Chorin’s vortex decay problem in 2D.This problem is taken from [48] and is
also used in other numerical tests, for example, by Tafti [49] or in [22]. The domain is the unit
square � � (0, 1)2, and the prescribed solution has the form

w1 � �cos�n�x�sin�n�y�exp��2n2�2t/	�,

w2 � sin�n�x�cos�n�y�exp��2n2�2t/	�,

TABLE III. Example 1, ��e�L2(0,T,L2) for the Q2/P1
disc discretization.

h
	 � 1000

Error Order
	 � 10,000

Error Order
	 � 100,000

Error Order

1/8 1.476035e
00 3.954061e
00 5.086226e
00
1/16 3.652900e-01 2.015 9.784881e-01 2.015 1.258638e
00 2.015
1/32 9.097928e-02 2.005 2.436802e-01 2.006 3.134455e-01 2.006
1/64 2.273662e-02 2.001 6.087638e-02 2.001 7.830957e-02 2.001

TABLE IV. Example 1, �e�L�(0,T,L2) for the Q3/P2
disc discretization.

h
	 � 1000

Error Order
	 � 10,000

Error Order
	 � 100,000

Error Order

1/4 3.301491e-02 3.497423e-02 3.531723e-02
1/8 2.065646e-03 3.998 2.066067e-03 4.081 2.066109e-03 4.095
1/16 1.364503e-04 3.920 1.364647e-04 3.920 1.364567e-04 3.920
1/32 8.900156e-06 3.938 8.902196e-06 3.938 8.902265e-06 3.938
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q � � 1
4
�cos�2n�x� � cos�2n�y��exp��4n2�2t/	�.

We have chosen n � 4 and three different values of the relaxation parameter 	 in our
computations. Because the solution is known, we use for simplicity Dirichlet boundary condi-
tions. The right-hand side f� is chosen such that w � (w1, w2)T and q fulfill

wt � Re�1�w � w � �w � �q � � � ��0�
2��w��w� � �1�

2� � ��w�w� � f� in �0, T	 � �.

(4.1)

The derivation of the Taylor LES model with the Gaussian filter gives �1 � 1/12; see, for
example, [14]. As consequence of Lemma 2.2, we have chosen �0 � 1/3. The other parameters
in this example were

Re � 10000, � � 0.1, T � 20.

To reduce the influence of the time discretization error, we carried out all computations with the
small equidistant time step �t � 0.001. The unit square was decomposed into equidistant grids
with squares of size h � h. The number of degrees of freedom (d.o.f.) for the finite element
discretizations and the different mesh sizes are given in Table I.

We present results for �e�L�(0,T,L2), Tables II and IV, and for ��e�L2(0,T,L2), Tables III and V.
According to Theorem 3.4, the order of convergence of these errors is connected to the
approximation error of the used pair of finite elements. This can be clearly observed in the
numerical results. Theorem 3.4 predicts the same order of convergence for �e�L�(0,T,L2) and
��e�L2(0,T,L2). The higher order of convergence for �e�L�(0,T,L2) in the numerical results can be
explained with the smoothness of the prescribed solution, because the error estimate for
�e�L�(0,T,L2) can be improved assuming a higher regularity of w in Theorem 3.4.

In addition, under the assumption that the approximation errors in �(w � w̃, q � �h, Re,
�, �0, T) are independent of t, Theorem 3.4 predicts a rate of convergence of O(h3k/4),
where k is the polynomial degree of the finite element velocity space. This order comes from

TABLE V. Example 1, ��e�L2(0,T,L2) for the Q3/P2
disc discretization.

h
	 � 1000

Error Order
	 � 10,000

Error Order
	 � 100,000

Error Order

1/4 1.555536e
00 4.164188e
00 5.356372e
00
1/8 2.156786e-01 2.850 5.778960e-01 2.849 7.434777e-01 2.849
1/16 2.549815e-02 3.080 6.814509e-02 3.084 8.765900e-02 3.084
1/32 3.160856e-03 3.012 8.432707e-03 3.015 1.084991e-02 3.014

TABLE VI. Example 2, mesh widths and degrees of freedom for Q2/P1
disc discretization.

h Velocity Pressure Total

1/2 375 32 407
1/4 2187 256 2443
1/8 14739 2048 16787
1/16 107811 16384 124195
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the term ��(w � w̃)�L3(0,T,L3)3/ 2 . The computations on this very smooth problem show O(hk)
and even O(hk
1) convergence. The asymptotic error estimate O(h3k/4) in Theorem 3.4
includes more general nonsmooth problems. This reduced rate of convergence appears
already in Proposition 2.5 and even in usual energy norm error estimates for the �-Lapla-
cian alone.

Example 2. An analytical solution in 3D.In this example, the right-hand side f� is chosen
such that

w1 � t�10 � t��x2 � y2 � z2 � y5 � sin��x�sin��y�sin��z��,

w2 � t�10 � t��x2 � 2xz � 3z4 � 13 � cos��x�cos��y�cos��z��,

w3 � t�10 � t���2xz � 5y2 � x4y � cos��x�sin��y�cos��z� � cos��x�sin��y�sin��z��,

q � t�10 � t��3x � 2y � 7z � 4�/25,

fulfill (4.1) in � � (0, 1)3. Again, we used for simplicity Dirichlet boundary conditions. The
other parameters in this example were

�0 �
1
3

, �1 �
1

12
, Re � 10,000, � � 0.1, T � 10.

The solution depends quadratically on t such that the discretization error in time of the
fractional-step-� scheme is negligible. We have used the equidistant time step �t � 0.01. The
unit cube is divided into equidistant h � h � h meshes. The number of degrees of freedom for
the different mesh sizes using the Q2/P1

disc discretization is given in Table VI.
The results for �e�L�(0,T,L2) and ��e�L2(0,T,L2) are presented in Table VII. The evaluation of the

numerical tests leads to the same observations as in Example 1.

Example 3. We like to give with this example a numerical illustration of the application of
the slip with resistance and no penetration boundary conditions. To our knowledge, these

TABLE VII. Example 2, �e�L�(0,T,L2) (left) and ��e�L2(0,T,L2) (right).

h
�e�L�(0,T,L2)

Error Order
��e�L2(0,T,L2)

Error Order

1/2 3.080651e
00 1.055479e
02
1/4 2.686117e-01 3.520 1.657113e
01 2.671
1/8 4.133357e-02 2.700 4.645197e
00 1.835
1/16 6.429026e-03 2.685 1.051972e
00 2.143

FIG. 1. Coarsest grid (level 0) in Example 3.
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boundary conditions have not been used in LES before. The implementation of these boundary
conditions into a finite element code is described in [50]. In addition, we wish to demonstrate
the behavior of the regularization operator A�1 in (1.1). An assessment of some models in LES,
[51], demonstrates that the regularization the Taylor LES model, A�1 � I, and leads in
numerical tests often to a blowup of the solution. In contrast, A�1 � (I � �2/(4�)�)�1 and
A�1 � g� �, both called the rational LES model in [51], have yielded good numerical results.

We consider the channel flow past a step; see Fig. 1 for the domain and the initial grid. The
length of the channel is 40, its height 10; the step of height 1 starts at length 5 and ends at length
6. Parabolic inflow boundary conditions

w � �y�10 � y�/25, 0�T

and outflow boundary conditions, so-called do-nothing conditions, (see Heywood, Rannacher,
and Turek [52]), are prescribed. The parameters in (1.1) and (1.2) are chosen to be

FIG. 2. Example 3, reattachment points for slip with friction boundary conditions (top) and no-slip
boundary conditions (bottom).
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Re � 1000, � � 0.0625, �0 � 0.01, �1

�
1

12
, T � 100, A�1 � � I �

�2

4�
���1

.

The friction constant in (1.4) was set 
 � 0.1.
We test the qualitative fidelity of the finite element approximation using �0 � 0.01, �1 �

1/12. These values lie outside the regime �0 
 4�1 for which full mathematical reliability can
be proven for the Taylor LES model. Although the numerical analysis of the model with
regularization, the rational LES model, is not yet complete, the available theory, [3], and
computational experience, [51], suggest the extra A�1-regularization will ensure a reliable
simulation. Indeed, with regularization, the finite element approximation works smoothly in this
parameter regime.

We used the Q2/P1
disc finite element discretization in this example. The computations were

carried out on level 3 (105 602 d.o.f. of the velocity, 39 168 d.o.f. of the pressure) and with equal
distant time step �t � 0.01.

The initial velocity was set to be zero in all interior degrees of freedom and we applied an
impulsive start. The flow starts to develop vortices behind the step which are traveling on the
lower boundary and finally leaving the channel. Because of the slip with resistance boundary
condition, the reattachment point of a vortex can be determined easily by a change of the sign
of the tangential velocity on the boundary. In contrast to homogeneous Dirichlet boundary

FIG. 3. Example 3, streamlines for t � 50, 75, 100.
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conditions, the tangential component, in general, does not vanish. The reattachment points of the
vortices are presented in Fig. 2 for t � [0, 100]. Streamlines of the corresponding velocity for
some times t are given in Figure 3.

The reattachment points for a computation with no-slip boundary conditions are also
presented in Fig. 2. On the scale of Fig. 2, one can observe only minor differences to the
solution with the slip with friction boundary condition. However, a closer look on the
difference of the reattachment points of the first travelling eddy, Fig. 4, shows clearly the
different dynamics in the evolution of these points. A detailed investigation of the effect of
different friction parameters on the flow is beyond the scope of this article and will be
subject of a forthcoming study.
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