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Abstract

This paper presents a Streamline-Upwind Petrov–Galerkin (SUPG) reduced order model (ROM) based on proper orthog-
onal decomposition (POD). This ROM is investigated theoretically and numerically for convection-dominated convection–
diffusion–reaction problems. The SUPG finite element method was used on realistic meshes for computing the snapshots, leading
to some noise in the POD data. Numerical analysis is used to propose the scaling of the stabilization parameter for the SUPG-ROM.
Two approaches are used: One based on the underlying finite element discretization and the other one based on the POD trunca-
tion. The resulting SUPG-ROMs and the standard Galerkin ROM (G-ROM) are studied numerically. For many settings, the results
obtained with the SUPG-ROMs are more accurate. Finally, one of the choices for the stabilization parameter is recommended.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The numerical simulation of many complex problems requires repeatedly solving subproblems. For instance, in
the iterative solution of optimal control problems with partial differential equations, one has to solve the same type
of partial differential equation, with (slightly) changing data, over and over again. With standard discretizations for
partial differential equations, like finite element methods, the solution of the subproblems is often the most time-
consuming part of the simulations. Reduced order modeling aims at finding low-dimensional spaces that allow so-
lution of partial differential equations orders of magnitude more efficiently than a finite element method, with only
an acceptable loss of accuracy. This paper considers reduced order models (ROMs) for scalar convection-dominated
convection–diffusion–reaction equations and studies suitable choices for the parameter of a stabilized discretization.
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Solutions of convection-dominated problems usually possess layers which cannot be resolved with the underlying
mesh, particularly in higher dimensions. The Galerkin finite element method is called unstable because it cannot cope
with this situation and its usage leads to numerical solutions which are globally polluted with spurious oscillations.
One has to use a so-called stabilized discretization. A variety of such discretizations have been proposed over the
last few decades, e.g., see [1–3] for reviews and numerical comparisons. However, the question of finding a perfect
discretization, i.e., a discretization which gives solutions with steep layers and without spurious oscillations, is still
open. One of the most popular stabilized finite element methods is the Streamline-Upwind Petrov–Galerkin (SUPG)
method proposed in [4,5]. Solutions computed with this method usually possess steep layers but also exhibit some
spurious oscillations in a vicinity of the layers. The SUPG method contains a stabilization parameter whose asymp-
totic value for steady-state problems is well known from finite element error analysis (e.g., [6]); it depends on the
local mesh width. The situation is not completely clear for time-dependent problems. For general problems, optimal
estimates can only (to the best of the authors’ knowledge) be derived for parameters dependent on the length of the
time step. For a simplified situation, estimates can also be proven for parameters dependent on the mesh width; see [7]
for details. From the practical point of view, the latter choice seems to be more appropriate since the difficulty of not
being able to resolve the layers vanishes on sufficiently fine meshes but not for sufficiently small time steps.

ROMs are already used for many complex systems. One of the most popular ROM approaches is Proper Orthogonal
Decomposition (POD). POD extracts the most pertinent features of a data set and naturally leads to a Galerkin for-
mulation of a ROM, which will be denoted as the Galerkin ROM (G-ROM). This paper exclusively considers ROMs
based on POD. There are situations where G-ROMs are efficient and relatively accurate (see [8–10]). However, in
other situations, a G-ROM might produce inaccurate results [11]. One of the main reasons for these inaccurate results
is that the underlying G-ROM can be numerically unstable, e.g., the G-ROM solution can blow up in a nonphysical
way, see [12–14] for the compressible Navier–Stokes equations and [15,16] for the incompressible Navier–Stokes
equations. Various stabilized ROMs have been proposed, see [12,17,18,15,19–21,16,22]; see also [23–25] for similar
work in reduced basis methods. This paper focuses on ROMs for convection-dominated convection–diffusion–reaction
equations and these ROMs’ potential numerical instability due to the unresolved layers.

After computing the POD modes, the question is how to design a numerical method that gives a solution that is
as accurate as possible in the space spanned by the first r POD modes. In the numerical studies presented below, the
solution of the continuous problem is known, so accuracy always refers to this solution. When the solution of the
continuous problem is not available, one could compare the ROM results with the solution of the simulation used to
compute the snapshots, even if this solution is usually not the best approximation of the continuous solution in the
finite element space. Since the numerical method providing the most accurate solution in the r -dimensional space is
not necessarily the method which was used for computing the snapshots, other methods can be investigated as well.

The main class of methods which will be studied in this paper is SUPG stabilized ROMs (SUPG-ROMs), see,
e.g., [26] for alternative approaches. To the best of the authors’ knowledge the SUPG-ROM was first used in [21] and
later on in [19], in both papers for the Navier–Stokes equations. In addition to the SUPG-ROMs, the G-ROM will also
be investigated.

As in the finite element SUPG method, the question of appropriate stabilization parameters for SUPG-ROMs arises.
SUPG-ROM parameters depending only on the spatial resolution are preferable for the same reasons as in the finite
element method. A ROM based on finite element data has two parts to its spatial resolution: The spatial resolution
from the finite element space and the spatial resolution from the space of POD modes used in the ROM, which is a
subspace of the finite element space. One can ask upon which spatial resolution the stabilization parameter for the
SUPG-ROM should depend. This is the main question studied in this paper.

The question of appropriate stabilization parameters for the SUPG-ROM is addressed by means of a numerical
analysis of this problem. To the best of the authors’ knowledge, the use of numerical analysis to propose the SUPG-
ROM stabilization parameter is new. In the literature so far, simply the stabilization parameter from the finite element
method was used, like in [21], or an optimization problem for the determination of the parameter was solved, as in [19].
Motivations for these approaches with numerical analysis were not provided. In the authors’ opinion, it is important
to have some support for the choice of stabilization parameters coming from numerical analysis, since parameters
determined with considerations from numerical analysis should be valid for a wide range of settings (e.g., diffusion
coefficients and the convection vector). Two stabilization parameters will be proposed as a result of analytical consid-
erations. One of them is based on the finite element resolution and the other one is based on the POD spatial resolution.
The resulting ROMs will be denoted as FE-SUPG-ROM and POD-SUPG-ROM, respectively.
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This paper is organized as follows. Section 2 gives the continuous and the finite element formulations of the time-
dependent convection–diffusion–reaction equation. Moreover, a short review of POD is presented and the G-ROM and
the SUPG-ROM are defined. The core of Section 3 is the proposal of two stabilization parameters for the SUPG-ROM,
using a numerical analysis of the SUPG-ROM. The two versions of the SUPG-ROM, together with the G-ROM, are
studied numerically in Section 4 on two convection-dominated convection–diffusion–reaction problems that display
sharp internal layers. The paper concludes with a summary and outlook in Section 5.

2. The continuous, the finite element, and the ROM problem

Throughout this paper, standard notations for Lebesgue and Sobolev spaces and their corresponding norms are
used. With C , a generic constant is denoted which does not depend on the mesh width nor the diffusion coefficient.

A time-dependent linear convection–diffusion–reaction equation is given by

∂t u − ε∆u + b · ∇u + cu = f in (0, T ] × Ω ,
u = 0 on [0, T ] × ∂Ω ,
u(0, x) = u0(x) in Ω ,

(1)

where Ω is a bounded domain in Rd , d ∈ {1, 2, 3}, with the boundary ∂Ω , b(t, x) and c(t, x) denote convection and
reaction fields, respectively, ε > 0 is a constant diffusion coefficient, u0(x) is a given initial condition, and T is the
length of the considered time interval.

Let X = H1
0 (Ω). Eq. (1) in the weak form reads as follows: Find u : [0, T ] → X such that

(∂t u, v)+ (ε∇u,∇v)+ (b · ∇u, v)+ (cu, v) = ( f, v) ∀v ∈ X, (2)

where (·, ·) denotes the inner product in L2(Ω)d . To guarantee the coercivity of (2), it is common to assume that there
is a constant c0 > 0 such that

0 < c0 ≤


c −

1
2
∇ · b


(t, x) ∀(t, x) ∈ [0, T ] × Ω . (3)

Moreover, it will be assumed that b, c and ∇ · b belong to L2(0, T ; L∞).
Let Xh ⊂ X denote a conforming finite element space spanned by piecewise polynomials of order m. The paper

considers only the case of uniform families of triangulations {Th} of Ω , where h is the mesh size for all mesh cells
K ∈ Th . By replacing the space X in (2) by Xh , one obtains the Galerkin finite element method which has to be
equipped with an appropriate finite element approximation uh(0, x) of u0(x).

It is well-known that, in the case of small diffusion ε compared with the convection field b, the Galerkin method
is unstable and leads generally to solutions which are globally polluted with strong spurious oscillations. One of the
most popular stabilized finite element methods is the SUPG method, which will be considered in this paper.

Let ∆t denote a fixed time step and let un
h be the finite element solution at tn

= n∆t . The fully discretized backward
Euler/SUPG method reads as follows: For n = 1, 2, . . . find un

h ∈ Xh such that ∀vh ∈ Xh
un

h − un−1
h , vh


+ ∆taSUPG,h


un

h, vh


= ∆t


f n, vh

+ ∆tδh


f n, bn

· ∇vh


− δh


un

h − un−1
h , bn

· ∇vh


, (4)

where u0
h(x) = uh(0, x), and δh is the SUPG stabilization parameter that has to be chosen. Note that δh is in general a

local parameter defined on each mesh cell K ∈ Th . However, for uniform triangulations it is possible to use the same
parameter for all mesh cells. The bilinear form aSUPG,h(·, ·) is defined by

aSUPG,h(uh, vh) = (ε∇uh,∇vh)+ (b · ∇uh, vh)+ (cuh, vh)

+ δh


K∈Th

(−ε∆uh + b · ∇uh + cuh, b · ∇vh)K (5)

for all uh, vh ∈ Xh , where (·, ·)K denotes the inner product in L2(K )d , K ∈ Th .
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Finite element error analysis for the method (4) can be found in [7]. For the general case of time-dependent
coefficients of the problem, an optimal error estimate was proved for δh = O(∆t). However, this choice of the
stabilization parameter does not reflect the fact that the reason for needing a stabilized discretization is the appearance
of layers in the solution, which are spatial features. Thus, stabilization parameters depending on the mesh width
seem to be more appropriate. For the situation of steady-state convection and reaction, an optimal error estimate for
δh = O(h) was derived in [7]. Numerical studies in [7] reveal that the choice of δh = O(h) is more appropriate also
in the general case. For this reason, all simulations with the finite element SUPG method presented in this paper were
performed with δh = h.

It is assumed that the space Xh satisfies the following local approximation property: for each u ∈ X ∩ Hm+1(Ω)
there exists a function ûh ∈ Xh such that

∥u − ûh∥0,K + h∥∇(u − ûh)∥0,K + h2
∥∆(u − ûh)∥0,K ≤ Chm+1

∥u∥m+1,K (6)

for all K ∈ Th . This property is given, for example, for Lagrange finite elements on mesh cells which allow an affine
mapping to a reference mesh cell.

One of the most popular techniques for the reduced order modeling of time-dependent problems is POD. For a
detailed description of the method, the reader is referred to [27,13,28–31]. The main idea of POD is to find a low-
dimensional basis that approximates the snapshots {u1

h, . . . , uN
h }, which here are finite element solutions of (4) at N

different times, in the best possible way with respect to a certain norm. In this paper, the L2(Ω) norm will be chosen,
which is the most common choice found in the literature. The best approximation problem can be expressed by a
minimization problem whose solution is equivalent to the solution of the eigenvalue problem

Y Y T Mϕ
j
= λ jϕ j

, j = 1, . . . , N , (7)

where ϕ
j

and λ j denote the vector of the finite element coefficients of the POD basis functions and the POD
eigenvalues, respectively, Y denotes the snapshot matrix, whose columns correspond to the finite element coefficients
of the snapshots, and M denotes the finite element mass matrix representing the L2(Ω) inner product. It turns out that
the eigenvalues are real and non-negative such that they can be ordered in the form

λ1 ≥ λ2 ≥ · · · ≥ λR > λR+1 = · · · λN = 0.

Then, the basis for the ROM is chosen to consist of the functions ϕi , i = 1, . . . , r , which correspond to the first r ≤ R
largest eigenvalues. These functions are normalized such that ∥ϕi∥0 = 1, i = 1, . . . , r and r is called the rank of the
basis.

Let X R denote the R-dimensional space of the snapshots with R ≤ N , and Xr the r -dimensional POD space
spanned by the POD basis functions ϕ1, . . . , ϕr . As the POD basis functions are, by construction, linear combinations
of finite element basis functions, it holds that

Xr ⊆ X R ⊂ Xh ⊂ X. (8)

Let Mr , Sr , and Hr be the POD mass, stiffness, and Hessian matrices, respectively, with

(Mr )i j =


Ω
ϕ jϕi dx,

(Sr )i j =


Ω

∇ϕ j · ∇ϕi dx,

(Hr )i j =


K∈Th


K

∆ϕ j∆ϕi dx. (9)

In the numerical studies, second order finite elements will be used such that Hr does not become the zero matrix.
In this paper, the centered-trajectory method for computing the POD basis functions is considered, i.e., the POD

basis functions are computed from the fluctuation of the snapshots un
h − ūh , n = 1, . . . , N , where ūh is the arithmetic

average value of the snapshots. The centered-trajectory method is the common approach in practice. Among other
advantages, the use of the centered-trajectory method facilitates the incorporation of steady-state Dirichlet boundary
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conditions into the ROM, since these boundary conditions are taken by ūh and the fluctuations obey homogeneous
Dirichlet boundary conditions.

Let ur (t, x) + ūh(x) denote the ROM approximation of the finite element solution and let un
r + ūh denote the

ROM solution evaluated at the time instance tn . The backward Euler/SUPG reduced order model reads as follows:
For n = 1, 2, . . . find un

r ∈ Xr such that ∀vr ∈ Xr
un

r − un−1
r , vr


+ ∆taSUPG,r


un

r , vr


= ∆t


f n, vr


+∆tδr


f n, bn
· ∇vr


− δr


un

r − un−1
r , bn

· ∇vr


− ∆taSUPG,r (ūh, vr ) , (10)

where aSUPG,r (·, ·) has the same form as the bilinear form (5) with the SUPG-ROM parameter δr instead of δh . Note
that by setting δr = 0 in (10), the G-ROM is recovered. The study of appropriate choices of the SUPG-ROM parameter
δr , using numerical analysis of the method and numerical simulations, is the main goal of this paper. To the best of
the authors’ knowledge, such investigations do not exist in the literature yet.

3. Proposals for the stabilization parameter δr based on numerical analysis

The proposals for choosing the stabilization parameter δr of the SUPG-ROM (10) are based on considerations of
the error between the solution u of the continuous problem (2) and the solution ūh + ur of (10). As the first step, the
error is split in the form

u − (ūh + ur ) = (u − uh)+ (uh − Pr (uh))+ (Pr (uh)− (ūh + ur )), (11)

where

Pr (uh) := ūh +

r
j=1


uh − ūh, ϕ j


X ϕ j (12)

is the X projection of a finite element function into the space Xr .
This section starts with a discussion of inverse estimates in the context of ROMs. A new estimate for functions from

Xr is presented. Then, error estimates for the finite element problem are discussed and estimates of the projection
error for the projection from Xh to Xr are derived. Next, conditions for the coercivity of the SUPG bilinear form
in Xr are given. The main part of this section consists in the derivation of appropriate stabilization parameters for
the SUPG-ROM problem (10). Considering the simplified situation of a steady-state problem, two different types of
parameters will be proposed, which are based on different types of inverse estimates discussed at the beginning of this
section. Numerical examples illustrate several estimates and assumptions made in the derivation of the SUPG-ROM
parameters.

3.1. Inverse estimates

Assuming that the family of triangulations is quasi-uniform, the following local inverse inequality for finite element
functions holds, e.g., see [32, Thm. 3.2.6],

∥vh∥m,K ≤ µinv hl−m
K ∥vh∥l,K ∀vh ∈ Xh, (13)

for 0 ≤ l ≤ m, where hK is the diameter of the mesh cell K ∈ Th . Values of µinv for different situations can be
found in [33]. They are of order one. In the following, the constant in (13) will be included into a generic constant.
For families of uniform triangulations, as considered in this paper, one can derive from (13) global inverse estimates
of the form

K∈Th

∥vh∥
2
m,K

1/2

≤ Chl−m


K∈Th

∥vh∥
2
l,K

1/2

∀vh ∈ Xh . (14)

Inverse estimates are also known in the context of POD. In [34], the following inverse estimate was proven:

∥∇vr∥0 ≤


∥Sr∥2 ∥M−1

r ∥2 ∥vr∥0, ∀vr ∈ Xr , r ∈ {1, . . . , R}, (15)
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where ∥ · ∥2 denotes the spectral norm of a matrix. When the L2(Ω) norm is used to generate the snapshots (as in
this paper), Mr in (15) is the identity matrix. Estimate (15) was derived in [34] for the situation that the POD basis is
computed from snapshots in an infinite-dimensional Hilbert space.

In the setting of [34], the POD basis functions are known to belong to the infinite-dimensional Hilbert space. In
practice, however, the POD basis is usually computed from snapshots of some numerical approximation of the solution
of the continuous problem. Here, the situation where snapshots are computed with a finite element method and belong
to Xh is considered. Consequently, the POD basis functions {ϕ1, . . . , ϕr }, r ≤ R, belong not only to X but also to
Xh and Xr as in (8). Hence, two inverse estimates hold for functions in Xr : a POD estimate of form (15) and a finite
element estimate of form (14).

The POD inverse estimate (15) can be extended to the piecewise defined Laplacian.

Lemma 3.1 (POD Inverse Estimate). For all vr ∈ Xr , 1 ≤ r ≤ R, the following estimate holds:

∥∆vr∥0 ≤


∥Hr∥2∥S−1

r ∥2∥∇vr∥0, (16)

where ∥∆vr∥0 is defined by a sum over the mesh cells as used in (9).

Proof. The proof follows [34]. Let vr =
r

j=1 x jϕ j and x = (x1, . . . , xr )
T . Then, one obtains from the definition of

Hr , a standard estimate of matrix–vector products, the fact that Sr is symmetric and positive definite, and the definition
of Sr

∥∆vr∥
2
0 = xT Hr x ≤ ∥Hr∥2∥x∥

2
2 = ∥Hr∥2xT x

= ∥Hr∥2xT ST/2
r S−1

r S1/2
r x ≤ ∥Hr∥2∥S−1

r ∥2∥S1/2
r x∥

2
2

= ∥Hr∥2∥S−1
r ∥2xT Sr x = ∥Hr∥2∥S−1

r ∥2∥∇vr∥
2
0. �

If in the snapshot generation the H1(Ω) seminorm was used (see, e.g., [35,34]) instead of the L2(Ω) norm utilized
in this paper, then Sr in (16) is the identity matrix.

Remark 3.1. The asymptotic behavior of the first factor on the right-hand side of (16) will be discussed in a simplified
situation. As in [35], it is assumed that the POD vectors are the Fourier basis in a single dimension with homogeneous
Dirichlet boundary conditions, i.e., ϕ j (x) = sin(π j x). The single dimension case is relevant because the considered
convection-dominated problems exhibit motion along a preferred direction. Therefore, Hr is diagonal and has entries 1

0
(π2 j2)2 sin(π j x)2dx = O( j4), j = 1, . . . , r.

Similarly, S−1
r is a diagonal matrix and it has entries 1

0
(π j)2 cos(π j x)2

−1

= O( j−2), j = 1, . . . , r.

Hence ∥Hr∥2 = O(r4) and ∥S−1
r ∥2 = O(1). Altogether, the first factor on the right-hand side of (16) scales like

O(r2).

The following numerical example will demonstrate that this scaling can be observed also in more general situations.

Remark 3.2. Consider a two-dimensional test example for the convection–diffusion–reaction equation (1) describing
a traveling wave. The specification of the problem setting is given in Example 4.2. In Fig. 1, the dependence of the
constants from the inverse estimates (15) and (16) on the dimension of the POD basis r is shown. The asymptotic
behavior discussed in Remark 3.1 can be observed also in this two-dimensional case.

3.2. The finite element error

Standard finite element error analysis for scalar convection–diffusion–reaction equations is performed in the en-
ergy norm and for terms in appropriate norms which come from the stabilization of the finite element discretization,
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Fig. 1. Dependence of the constants from the inverse estimates (15) (left) and (16) (right) on the dimension of the POD basis r .

e.g., see [7, Thm. 5.3, Thm. 5.4] for results of this form. The errors are bounded by constants times the sum of the
mesh width and the time step, both to some powers. The constants depend on norms of the solution of the continuous
problem and the data of the problem, but not on ε and h. Thus, one typically obtains finite element error estimates of
the form

(∆t)1/2
 N

n=1

∥un
− un

h∥0 + ε1/2
N

n=1

∥∇(un
− un

h)∥0 + δ
1/2
h

N
n=1

∥b · ∇(un
− un

h)∥0


≤ Chm+1/2

+ (∆t)k, (17)

where k is the order of the temporal discretization.
Using the local approximation property (6), the inverse estimate (14), and estimate (17), one also obtains an

estimate for the Laplacian of the error

(∆t)1/2
N

n=1


K∈Th

∥∆(un
− un

h)∥0,K

≤ (∆t)1/2
N

n=1


K∈Th

∥∆(un
− ûn

h)∥0,K + ∥∆(ûn
h − un

h)∥0,K



≤ C(∆t)1/2
N

n=1


K∈Th

hm−1
∥un

∥m+1,K + h−1
∥∇(ûn

h − un
h)∥0,K



≤ C(∆t)1/2
N

n=1


hm−1

+ h−1
∥∇(un

− ûn
h)∥0 + h−1

∥∇(un
− un

h)∥0


≤ C(∆t)1/2


hm−1

+ ε−1/2hm−1/2
+ ε−1/2h−1(∆t)k


. (18)

3.3. The projection error

This subsection presents an estimate for the error between the snapshots and their projection into the POD space
Xr . This error is the second term on the right-hand side of the error decomposition (11).

Lemma 3.2. Let ūh = 0 and let (·, ·)s , s ∈ {0, 1, 2}, be a semi-inner product [36] with induced seminorm | · |s of
H s(Ω). Then the POD projection error in the s-seminorm satisfies

N
n=1

un
h −

r
j=1


un

h, ϕ j


X ϕ j


2

s

=

R
j=r+1

λ j |ϕ j |
2
s .

For s = 2, (·, ·)s and | · |s have to be understood as a sum over the mesh cells.
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Proof. Taking the s-seminorm of the POD truncation error, using the definition of the eigenvalues and eigenfunctions
of POD, e.g., see [27, Eq. (6)] or (7) for the matrix–vector representation, and applying the orthogonality of the POD
basis functions yields directly

N
n=1

un
h −

r
j=1


un

h, ϕ j


X ϕ j


2

s

=

N
n=1

 R
j=r+1


un

h, ϕ j


X ϕ j


2

s

=

N
n=1


R

j=r+1


un

h, ϕ j


X ϕ j ,

R
k=r+1


un

h, ϕk


X ϕk


s

=

N
n=1

R
j=r+1

R
k=r+1


un

h, ϕ j


X


un

h, ϕk


X


ϕ j , ϕk


s

=

R
j=r+1

R
k=r+1


N

n=1


un

h, ϕ j


X un
h, ϕk

 
ϕ j , ϕk


s

=

R
j=r+1

R
k=r+1


λ jϕ j , ϕk


X


ϕ j , ϕk


s

=

R
j=r+1

λ j |ϕ j |
2
s . �

The result of Lemma 3.2 is similar to results obtained in [37,38].

Corollary 3.1. It holds that

N
n=1

un
h − Pr (u

n
h)
2
s =

R
j=r+1

λ j |ϕ j |
2
s . (19)

Proof. By the definition (12) of the projection, it follows that

N
n=1

un
h − Pr (u

n
h)
2
s =

N
n=1

(un
h − ūh)−

r
j=1


uh − ūh, ϕ j


X ϕ j


2

s

.

Since un
h − Pr (un

h) is zero, the application of Lemma 3.2 proves the statement. �

Corollary 3.2. It holds that

N
n=1

un
h − Pr (u

n
h)
2
s ≤ Ch−2s

R
j=r+1

λ j . (20)

Proof. Since Xr ⊂ Xh , one can apply the inverse estimate (14) to the right-hand side of (19)

|ϕ j |
2
s ≤ Ch−2s

∥ϕ j∥
2
0.

The statement of the corollary follows by utilizing the fact that the POD basis functions are normalized. �

Altogether, there are two ways to bound the projection error: With data from the POD only, as in (19), or with data
from the POD and the finite element method, as in (20). Note that the sums on the right-hand side of (19) and (20)
can be computed.
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3.4. The coercivity of the SUPG-ROM bilinear form in Xr

The coercivity of the SUPG bilinear form (5) in Xr is essential for the well-posedness of the SUPG-ROM problem
in Xr . This property gives some restrictions on the stabilization parameters.

Lemma 3.3. Let either

0 ≤ δr ≤
1
2

min


c0

∥c∥2
∞

,
h2

εµ2
inv


, (21)

or

0 ≤ δr ≤
1
2

min


c0

∥c∥2
∞

,
1

ε∥Hr∥2∥S−1
r ∥2


. (22)

Then

aSUPG,r (vr , vr ) ≥
1
2

|||vr |||
2
SUPG,r ∀vr ∈ Xr , (23)

where

|||vr |||SUPG,r =


ε|vr |

2
1 + c0∥vr∥

2
0 + δr∥b · ∇vr∥

2
0

1/2
.

Proof. The proof follows the standard techniques found, e.g., in [6]. One gets, using integration by parts, (3), the
Cauchy–Schwarz inequality, and Young’s inequality

aSUPG,r (vr , vr ) ≥ ε|vr |
2
1 + c0∥vr∥

2
0 + δr∥b · ∇vr∥

2
0 − δr


K∈Th

ε2
∥∆vr∥

2
0,K − δr∥c∥2

∞∥vr∥
2
0 −

δr

2
∥b · ∇vr∥

2
0.

For estimating the term with the Laplacian, one can either use the finite element inverse estimate (14) or the POD
inverse estimate (16). Inserting in either case the restrictions on the stabilization parameter, proves the statement of
the lemma. �

Note that the second restrictions in (21) and (22) are only necessary if finite elements are used where the restriction
of the Laplacian to a mesh cell does not vanish.

3.5. On error estimates involving the SUPG-ROM solution

The first approach considers the error between un and the SUPG-ROM solution directly, using the splitting

un
− (ūh + un

r ) = (un
− Pr (u

n
h))+ (Pr (u

n
h)− (ūh + un

r )) = ηn
− ψn

r .

Subtracting the SUPG-ROM problem (10) from the continuous equation (2) and using the fact that the residual of the
solution of (2) vanishes almost everywhere leads to

aSUPG,r

ψn

r , ψ
n
r


= aSUPG,r


ηn, ψn

r


+


∂t u

n
−

un
r − un−1

r

∆t
, ψn

r


+ δr


∂t u

n
−

un
r − un−1

r

∆t
, b · ∇ψn

r


. (24)

The second approach consists of considering the error between un
h and the SUPG-ROM solution and using the

decomposition

un
h − (ūh + un

r ) = (un
h − Pr (u

n
h))+ (Pr (u

n
h)− (ūh + un

r )) = ηn
h − ψn

r .

Since Xr ⊂ Xh , POD functions can be used as test functions in the finite element problem (4). An error equation is
obtained by subtracting the SUPG-ROM problem (10) from (4), which is possible for all test functions in Xr . Next,
the test function ψn

r ∈ Xr is used and the right-hand side f is replaced by the solution of the continuous problem (1).
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Noting that (ηn
h , ψ

n
r ) = 0 since Pr (un

h) is the L2 projection of un
h into Xr and similarly (ηn−1

h , ψn
r ) = 0, these steps

lead to the error equation at time tn

∥ψn
r ∥

2
0 + ∆taSUPG,r


ψn

r , ψ
n
r


=


ψn−1

r , ψn
r


+ ∆taSUPG,r


ηn

h , ψ
n
r


+∆t (δh − δr )


K∈Th


−ε∆(un

h − un)+ b · ∇(un
h − un)+ c(un

h − un), b · ∇ψn
r


K

+ δh


un

h − un−1
h − ∆t∂t u

n, b · ∇ψn
r


− δr


un

r − un−1
r − ∆t∂t u

n, b · ∇ψn
r


. (25)

Ideally, one would obtain optimal choices for δr by deriving an error estimate from (24) or (25). However, it is not
known if such a derivation is possible. Even if it is possible, one has to expect that in the general case δr depends
on the length of the time step like the finite element error estimate in [7]. Numerical evidence for simulations of the
finite element problem shows that the stabilization parameter should not depend on the length of the time step; see the
discussion of this topic in Section 2. In [7], an error estimate with the stabilization parameter depending on the mesh
width as in the steady-state case was proven in a simplified case. Here, also a simplified situation will be considered,
which also ensures that the stabilization parameter does not depend on the length of the time step: the steady-state
situation will be studied. To this end, all dependencies of the previous results on the length of the time step will be
neglected in the following. Thus, the error equation (24) simplifies to

aSUPG,r

ψn

r , ψ
n
r


= aSUPG,r


ηn, ψn

r


(26)

and the error equation (25) to

aSUPG,r

ψn

r , ψ
n
r


= aSUPG,r


ηn

h , ψ
n
r


+ (δh − δr )


K∈Th


−ε∆(un

h − un)+ b · ∇(un
h − un)+ c(un

h − un), b · ∇ψn
r


K . (27)

3.5.1. Stabilization parameters obtained with (26)
The estimate of the right-hand side of (26) is obtained in the same way as it is found in the literature, e.g., see [6].

With the Cauchy–Schwarz inequality, one obtains

ε

∇ηn,∇ψn

r


≤ ε∥∇ηn

∥0∥∇ψ
n
r ∥0 ≤ ε1/2

∥∇ηn
∥0
ψn

r


SUPG,r .

Using integration by parts for the convective term gives the estimate


b · ∇ηn

+ cηn, ψn
r


≤


∥∇ · b∥∞ + ∥c∥∞

c1/2
0

+ δ
−1/2
r


∥ηn

∥0
ψn

r


SUPG,r .

Straightforward estimates lead to

δr

b · ∇ηn, b · ∇ψn

r


≤ δ

1/2
r ∥b · ∇ηn

∥0
ψn

r


SUPG,r , (28)

δr

cηn, b · ∇ψn

r


≤ δ

1/2
r ∥c∥∞∥ηn

∥0
ψn

r


SUPG,r ,

δr


K∈Th

ε

−∆ηn, b · ∇ψn

r


K ≤ δ

1/2
r ε


K∈Th

∥∆ηn
∥

2
0,K

1/2 ψn
r


SUPG,r . (29)

Using the coercivity (23) of the SUPG-ROM bilinear form, inserting all terms into (26), and including all data from
convection and reaction into the constant yieldsψn

r


SUPG,r ≤ C


1 + δ

−1/2
r + δ

1/2
r


∥ηn

∥0 + ε1/2
∥∇ηn

∥0

+ δ
1/2
r ∥b · ∇ηn

∥0 + δ
1/2
r ε


K∈Th

∥∆ηn
∥

2
0,K

1/2
. (30)
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The second factor on the right-hand side of (30) shall be minimized, thereby providing information about an appro-
priate choice of the stabilization parameter.

3.5.1.1. The finite element option. The straightforward approach consists in decomposing

ηn
= un

− Pr (u
n
h) = (un

− un
h)+ (un

h − Pr (u
n
h)) (31)

and using the error estimates (17) and (18) for the first part and the estimate (20) for the second part. The term to
minimize becomes

1 + δ
−1/2
r + δ

1/2
r

 
hm+1/2

+ Λ0


+ hm+1/2

+ ε1/2h−1Λ0 + δ
1/2
r δ

−1/2
h hm+1/2

+ δ
1/2
r h−1Λ0 + δ

1/2
r εhm−1

+ δ
1/2
r ε1/2hm−1/2

+ δ
1/2
r εh−2Λ0

with

Λ0 =


R

j=r+1

λ j

1/2

.

Standard calculus, using δh = h, gives the minimum

δr =
hm+1/2

+ Λ0

hm−1(h3/2 + h + ε + ε1/2h1/2)+ Λ0(1 + h−1 + εh−2)
.

Concentrating on the most important terms in the convection-dominated case ε ≪ h and for grid widths h < 1, one
gets

δr = h
hm+1/2

+ Λ0

hm+1 + Λ0
.

Numerical evidence, e.g., Remark 3.4, shows that Λ0 dominates the finite element errors, such that in this case the
stabilization parameter becomes

δFE
r = h. (32)

The SUPG-ROM using δFE
r is denoted by FE-SUPG-ROM.

Remark 3.3. Some remarks on (32) are as follows:

• In the convection-dominated case, condition (21) for the coercivity of the SUPG-ROM bilinear form will be
satisfied for δFE

r .

• There is an explicit impact of the setup for simulating the snapshots onto the stabilization used in the SUPG-ROM.
It is not clear, if this situation is always desirable, e.g., if the snapshots were computed on a very fine mesh, there
would be only a weak stabilization in the SUPG-ROM.

• For using δFE
r , one has to know the mesh width. If even the mesh itself is known, then it is possible to use also the

local mesh width in assembling the terms for the stabilization, like usually done in the finite element method.

• There is no impact of the number of used snapshots or POD modes on δFE
r .

3.5.1.2. The POD option. Instead of using (20) for the second part of the decomposition (31), one can apply (19).

Hypothesis 3.1. Let the finite element simulation be sufficiently accurate or let sufficiently few POD basis functions
be used in the ROM, such that the norms on the left-hand sides of (17) and (18) can be estimated by a constant times
the respective terms of the right-hand side of (19).

This hypothesis implies that there is a constant CΛ such that
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Fig. 2. Remark 3.4: Numerical verification of Hypothesis 3.1 with the help of the test example in Remark 3.2. Here, L1(L2) and L1(H1) are
abbreviations for 1

N
N

n=1 ∥un
− un

h∥0 and 1
N
N

n=1 ∥∇(un
− un

h)∥0, respectively.

∥ηn
∥0 ≤ CΛΛ0,

∥∇ηn
∥0 ≤ CΛ


R

j=r+1

λ j |ϕ j |
2
1

1/2

= CΛΛ1,


K∈Th

∥∆ηn
∥

2
0,K

1/2

≤ CΛ


R

j=r+1

λ j |ϕ j |
2
2

1/2

= CΛΛ2.

Note that the constant CΛ will cancel in the further calculations such that its actual value does not influence the final
result.

Remark 3.4. Considering the same problem as in Remark 3.2, one obtains the curves depicted in Fig. 2 for the errors
of the finite element solution on different meshes (levels 6, 7, and 8 are introduced in the beginning of Section 4) and
for the corresponding values Λ0 and Λ1 for different dimensions of the ROM basis. One can observe that in these
cases Hypothesis 3.1 is satisfied.

Using the estimate ∥b · ∇ηn
∥0 ≤ C∥∇ηn

∥0, the factor to be minimized in (30) has the form
1 + δ

−1/2
r + δ

1/2
r


CΛΛ0 +


ε1/2

+ δ
1/2
r


CΛΛ1 + δ

1/2
r εCΛΛ2,

which leads to the minimum

δr =
Λ0

Λ0 + Λ1 + εΛ2
. (33)

In the convection-dominated regime, the last term in the denominator will be small. From estimate (20), it can be
expected that Λ0 ≪ Λ1, at least for small mesh widths. Thus, an appropriate choice of the stabilization parameter is

δPOD
r =

Λ0

Λ1
. (34)

The SUPG-ROM using δPOD
r is denoted by POD-SUPG-ROM.

Remark 3.5. For the problem described in Remark 3.2, one gets for the values in the denominator of (33) the curves
presented in Fig. 3. Hence, for this example, the assumptions made for reducing (33) to (34) are satisfied. The same
behavior was observed also for other test cases.

Remark 3.6. Some remarks on (34) are as follows:
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Fig. 3. Remark 3.5: Curves for Λ0, Λ1, and εΛ2 for the problem from Remark 3.2.

• It is not clear a priori that either (21) or (22) are satisfied by δPOD
r . In the numerical simulations, where the grids

for computing the snapshots were not extremely fine, it was found that generally δPOD
r ≤ δFE

r , which implies the
satisfaction of (21).

• The parameter δPOD
r is influenced by the number r of used POD modes and also by the simulation for computing

the snapshots, since this simulation determines the eigenvalues and eigenfunctions.
• For computing δPOD

r , one has to consider in the offline step of the ROM simulation all POD modes, because they
are necessary for computing Λ1.

• There is no possibility to localize δPOD
r .

3.5.2. Stabilization parameters obtained with (27)
Most terms of the first term on the right-hand side of (27) are estimated in the same way as in Section 3.5.1. Only,

instead of (28),

δr

b · ∇ηn, b · ∇ψn

r


≤ Cδ1/2

r ∥∇ηn
∥0
ψn

r


SUPG,r

is used, giving the upper bound

C
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−1/2
r + δ

1/2
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∥ηn
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+ δ
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h∥0 + δ
1/2
r ε


K∈Th

∥∆ηn
h∥

2
0,K

1/2 ψn
r


SUPG,r .

For estimating the second term of (27), the finite element error estimates (17) and (18) are utilized, leading to the
upper bound

C |δh − δr |δ
−1/2
r


εhm−1

+ ε1/2hm−1/2
+ δ

−1/2
h hm+1/2

+ hm+1/2
 ψn

r


SUPG,r .

By inserting these bounds into (27) and using δh = h, one gets the estimateψn
r


SUPG,r ≤ C


1 + δ

−1/2
r + δ

1/2
r


∥ηn

h∥0 +


ε1/2

+ δ
1/2
r


∥∇ηn

h∥0

+ δ
1/2
r ε


K∈Th

∥∆ηn
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2
0,K

1/2

+ |δh − δr |δ
−1/2
r

×


εhm−1

+ ε1/2hm−1/2
+ hm

+ hm+1/2

.

From this estimate, one can determine the parameter δr which minimizes the right-hand side again with standard cal-
culus. Restricting the considerations to the convection-dominated case and to the dominant terms, one finds the same
parameters δFE

r and δPOD
r as in (32) and (34), respectively, depending on using the estimates (20) or (19). For the sake

of brevity, details of the calculations leading to these results will be omitted here.
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4. Numerical studies

The numerical investigations aim at answering the following questions:

• Question 1: Does the SUPG-ROM yield more accurate results than the G-ROM?
• Question 2: Which of the two stabilization parameters of the SUPG-ROM (derived in Sections 3.5.1 and 3.5.2)

yields more accurate results?

To answer Question 1, a variety of two-dimensional tests were considered. For the sake of brevity, only results for
the case that the finite element mesh was significantly coarser than the width of the internal layers will be presented
below, since this is the common situation in applications. If the mesh width h ∈ [10−3, 10−2

] and the layer width
O
√
ε


were comparable, the SUPG-ROM and the G-ROM performed similarly in the numerical tests.
For all the ROMs investigated, the SUPG method (4) with P2 finite elements and the backward Euler time integrator

with small time steps were used to generate the snapshots. All test problems were defined in the unit square. For the
coarsest grid (level 0), the unit square was divided by the diagonal from bottom left to top right into two triangles.
Uniform grid refinement was applied for constructing the finer grids. Snapshots were computed on levels 6, 7, and 8,
with 16 641, 66 049, 263 169 degrees of freedom (including Dirichlet nodes), respectively. For the sake of brevity,
only results for two test problems are presented: A hump changing its height (Example 4.1) and a traveling wave
(Example 4.2). The results from these two tests are representative for the other tests that were investigated. In all
cases, the POD modes were computed with respect to the L2(Ω) inner product and with the centered-trajectory
method, i.e., from the fluctuating parts of the snapshots.

Three types of ROMs were studied. The first one is the G-ROM, i.e., the ROM without any stabilization. It is
known that solutions of convection-dominated problems can be approximated accurately with the Galerkin finite ele-
ment method if the finite element space possesses sufficient information about the considered problem and its solution.
This information can be used to construct suitable grids, e.g., layer-adapted grids as in [39], or to design appropriate
finite element functions, e.g., exponentially fitted functions as in [40]. For the ROM, the POD modes already contain
important features of the solution. The questions are if the information contained in these basis functions suffices to
stabilize the G-ROM and if yes, how the accuracy of the computational results compares with the accuracy of the
results obtained with the SUPG-ROMs. The same questions were posed in [25], where stabilized ROMs were used
for convection-dominated convection–diffusion–reaction equations. In the “Offline-only” approach in [25], the SUPG
method was used in the offline stage, but not in the online stage. Thus, the “Offline-only” approach is similar to the
G-ROM considered in this paper. In the “Offline–Online” approach in [25], the SUPG method was used both in the
offline and online stages. Thus, the “Offline–Online” approach is similar to the SUPG-ROM considered in this paper.
The other two methods studied in this section are ROMs with SUPG stabilization (10), where the FE-SUPG-ROM
uses the stabilization parameter δFE

r from (32) and the POD-SUPG-ROM the stabilization parameter δPOD
r from (34).

From the practical point of view, the computation of the stabilization parameter δFE
r is much easier than the computa-

tion of δPOD
r . The former parameter is equal to the mesh width h; no additional information is needed. The latter one

requires storage of all R POD modes and eigenvalues. Moreover, Λ0 and Λ1 have to be calculated, which can be time-
consuming for problems with a high-dimensional snapshot space X R . However, these values have to be computed
only once in the offline step.

Analytical solutions are known for the presented examples. Thus, besides plots of the computed ROM solutions,
errors can be used to evaluate the results. In the following, the discrete analog of the L1(0, T ; L2(Ω)) error, given,
e.g., for the ROM solution by

1
N + 1

N
n=0

∥un
− (ūh + un

r )∥0,

will be considered, where un denotes the solution of the continuous problem at time tn .
The code MooNMD [41] was used to run the numerical experiments.

Example 4.1 (Hump Changing its Height). This example is taken from [3]. It is defined in Ω = (0, 1)2 and
(0, T ) = (0, 2). The coefficients of (1) were chosen to be ε = 10−6, b = (2, 3)T and c = 1. There is a prescribed
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Fig. 4. Example 4.1: Galerkin finite element method (left), SUPG finite element method (right) at t = 0.5.

Fig. 5. Example 4.1: POD modes ϕ1, ϕ2, and ϕ3 (from left to right).

solution of the form

u(t, x, y) = 16 sin(π t) x(1 − x)y(1 − y)

×


1
2

+
arctan


2ε−1/2


0.252

− (x − 0.5)2 − (y − 0.5)2


π


. (35)

The forcing term f , the initial condition u0, and the boundary conditions were set such that (35) satisfies the boundary
value problem. The solution (35) possesses an internal layer of size O

√
ε

.

The finite element problem for computing the snapshots was solved on level 7, such that h = 1.1 · 10−2, and the
backward Euler scheme was applied with the time step ∆t = 10−3. Since the problem is convection-dominated and
the solution has a layer, the use of a stabilized discretization is necessary; see Fig. 4 for a comparison of snapshots
from the Galerkin finite element method and the SUPG method (4). Whereas the solution of the Galerkin finite ele-
ment method is globally polluted with spurious oscillations, there are only few oscillations, mainly in the right upper
part of the domain, in the solution computed with the SUPG method.

For computing the POD basis, every fifth solution was stored such that 401 snapshots were used. If the finite
element method accurately resolved all layers then the POD basis would consist just of one mode representing the
time-independent parts of (35). However, such a method is not known so far and in the simulations of convection-
dominated problems one has always to expect numerical artifacts. Because of the spurious oscillations of the SUPG
method, one obtains 14 POD modes; see Fig. 5 for the first POD modes and Fig. 6 for the corresponding eigenvalues,
where the POD modes for r > 1 come from the spurious oscillations of the finite element solution.

Figs. 7 and 8 present results for the three considered ROMs. In Fig. 7, the temporal evolution of the error in the
L2(Ω) norm for r = 9 and the errors in the discrete L1(0, T ; L2(Ω)) norm are shown. Corresponding numerical
solutions for r = 9 are depicted in Fig. 8.

Before answering Questions 1 and 2, the following important observation should be made: The L1(0, T ; L2(Ω))
error in the right panel of Fig. 7 shows that adding more POD modes that represent oscillations (i.e., POD modes
ϕ2, ϕ3, . . . , ϕ14) results in a continuous increase of the error. This behavior is in clear contrast with the standard POD-
ROM experience, where adding more POD modes generally reduces the error. The reason for this behavior is that the
POD uses noisy data, resulting in POD modes which contain mostly information on the numerical artifacts of the finite
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Fig. 6. Example 4.1: POD eigenvalues.

Fig. 7. Example 4.1: Errors for different ROMs, L2(Ω) error (left), L1(0, T ; L2(Ω)) error (right).

Fig. 8. Example 4.1: Solution at t = 0.5 for G-ROM, FE-SUPG-ROM, POD-SUPG-ROM (from left to right) for r = 9.

element solution. As already discussed above, with most of the finite element methods, the appearance of such modes
is inevitable. Unlike the present example, in general it is not known which modes are strongly influenced by the noise.
In adding more and more POD modes, it is important that the ROM can suppress the influence of such noisy modes.

The answer to Question 1 is given by Figs. 7 and 8: Both the FE-SUPG-ROM and the POD-SUPG-ROM yield
more accurate results than the G-ROM for r ≥ 2. The stabilized ROMs can compute good solutions even if POD
modes strongly influenced by spurious oscillations are used. Question 2 is answered in Fig. 7: The FE-SUPG-ROM
performs better than the POD-SUPG-ROM, which seems to be due to the larger stabilization parameters, see Fig. 9.

Example 4.2 (Traveling Wave). This example is similar to the one used in [42]. It is given in Ω = (0, 1)2 and
(0, T ) = (0, 1) with coefficients of (1) chosen as ε = 10−8, b = (cos(π/3), sin(π/3)), and c = 1. The analytical
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Fig. 9. Example 4.1: Stabilization parameters for the SUPG-ROMs.

Fig. 10. Example 4.2: POD eigenvalues.

solution is defined by

u(t, x, y) = 0.5 sin(πx) sin(πy)


tanh


x + y − t − 0.5

√
ε


+ 1


. (36)

The right-hand side f , the initial condition u0, and the boundary condition were chosen such that (36) satisfies the
boundary value problem. Solution (36) possesses a moving internal layer of width O

√
ε

.

To investigate the sensitivity of the numerical results with respect to the mesh width h, the finite element problem
for computing the snapshots was solved on levels 6, 7, and 8. The backward Euler scheme was applied with a time
step ∆t = 10−4. Example 4.2 is a convection-dominated problem and therefore the SUPG stabilization was applied
to the finite element method, just as in Example 4.1. For computing the POD basis, every tenth solution was stored
such that 1001 snapshots were used. Note that Example 4.2 is more complex than Example 4.1 since the position
of the layer depends on time. The complexity is reflected by the dimension of the snapshot space X R , which is 14
for Example 4.1 and between 800 and 1000, depending on the underlying spatial level, for Example 4.2 (see Fig. 10
with the corresponding POD eigenvalues). The plot in Fig. 10 also shows that the snapshot space X R changes with
the mesh width h, its dimension increases with decreasing h. Also in this example, the studied ROMs use noisy POD
data, which, as explained, is inevitable for convection-dominated problems on realistic meshes.

In Figs. 11–13, the errors in the discrete L1(0, T ; L2(Ω)) norm are shown for the three considered ROMs and for
spatial levels 6, 7, and 8. On every spatial level, a similar behavior to that in Example 4.1 is observed: Increasing the
number of POD modes eventually results in an increase of the G-ROM error. This time, however, this error increase
is observed later than in Example 4.1 (around r = 70 for level 6, r = 130 for level 7, and r = 270 for level 8). Like
in Example 4.1, the G-ROM error grows due to the fact that the impact of noise becomes more and more dominant
for modes with higher indices. Note that the finer the mesh, the higher the threshold rank is. Furthermore, below
this threshold the discrete L1(0, T ; L2(Ω)) errors of the G-ROM and the SUPG-ROMs are similar. The answer to
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Fig. 11. Example 4.2: L1(0, T ; L2(Ω)) error for different ROMs and three different spatial levels.

Fig. 12. Example 4.2: L1(0, T ; L2(Ω)) error for different ROMs, three different spatial levels, and small r .

Fig. 13. Example 4.2: Different ROMs at three different spatial levels and for very small r : Stabilization parameters (left) and L1(0, T ; L2(Ω))

error (right). The G-ROM error curves for all spatial levels are the same.

Question 1 is given by Figs. 11–14. For small numbers of POD modes, all ROMs have a similar error in the discrete
L1(0, T ; L2(Ω)) norm and for large numbers of POD modes, both the FE-SUPG-ROM and POD-SUPG-ROM yield
more accurate results than the G-ROM. With respect to the size of the spurious oscillations, the SUPG-ROMs are
always better than the G-ROM. In Figs. 13 and 15, the used stabilization parameters δFE

r and δPOD
r for three spatial

levels are shown. Even if the representation of δPOD
r in (34) has no explicit dependence on the mesh width h, the

stabilization parameter seems to depend implicitly on the underlying grid. This behavior is expected as Λ0 and Λ1
in (34) are computed using the POD modes and eigenvalues resulting from the finite element simulation. In particu-
lar, the value of δPOD

r decreases for finer grids. The difference between the parameters δFE
r and δPOD

r becomes more
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Fig. 14. Example 4.2 for level 7: Solution at t = 1.0 for G-ROM, FE-SUPG-ROM, POD-SUPG-ROM (from left to right) for r = 30, 130 (from
top to bottom).

Fig. 15. Example 4.2: Stabilization parameters for the SUPG-ROMs.

pronounced for large r . Question 2 can be studied with the results presented in Figs. 11–14. Concerning the spuri-
ous oscillations, the results obtained with FE-SUPG-ROM are always better. With respect to the error in the discrete
L1(0, T ; L2(Ω)) norm, the POD-SUPG-ROM performs slightly better than FE-SUPG-ROM for larger values of r .
The explanation of both observations comes again from the different sizes of the stabilization parameters, see Fig. 15.
Since δFE

r is larger than δPOD
r , the spurious oscillations in the FE-SUPG-ROM are damped more efficiently than in the

POD-SUPG-ROM. To investigate why the POD-SUPG-ROM for larger r yielded slightly more accurate results than
the SUPG finite element method in Fig. 11, additional SUPG finite element simulations with δh = δPOD

r = 0.2h were
carried out. The resulting discrete L1(0, T ; L2(Ω)) error was comparable to that of the POD-SUPG-ROM for larger
r in Fig. 11. The plots in Figs. 11–13 also show that as the mesh width h changes, the ROM results change as well,
but the qualitative behavior of the ROMs (and in particular the answers to Questions 1 and 2) remains unchanged. The
plots in Fig. 13, however, show that for very low r as the mesh width decreases the difference between the stabilization
parameters and the difference between the errors of the two SUPG-ROMs decrease as well.

5. Summary and outlook

This paper presented a theoretical and numerical investigation of an SUPG-ROM for convection-dominated
convection/diffusion/reaction equations. At a theoretical level, numerical analysis was used to suggest the stabilization
parameter applied in the SUPG-ROM. Two scalings for the stabilization parameter were proposed: One based on the
underlying finite element discretization (which yields the FE-SUPG-ROM) and one based on the POD truncation
(which yields the POD-SUPG-ROM). At a numerical level, the G-ROM, the FE-SUPG-ROM, and the POD-SUPG-
ROM were tested on a variety of convection-dominated convection/diffusion/reaction problems. For clarity, results
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were presented for two representative test problems that display sharp internal layers. The numerical investigations
yielded the following conclusions:

• If the finite element discretization was fine enough to capture the internal layer (and thus no numerical stabilization
was needed), i.e., h ≈ O(

√
ε) ∈ [10−3, 10−2

], then the standard G-ROM yielded accurate results that the SUPG-
ROM could not improve upon.

• On relatively coarse meshes, which is the usual situation encountered in practice, a SUPG finite element discretiza-
tion was used to generate the snapshots. This approach led to POD modes containing numerical artifacts (spurious
oscillations). Thus, the considered ROMs used noisy POD data.

• The standard G-ROM was stable, i.e., the solutions were not globally polluted with huge spurious oscillations. It
yielded comparable results to the SUPG-ROMs with respect to the discrete L1(0, T ; L2(Ω)) error only if suffi-
ciently few POD modes were used. Once the number of POD modes was increased above a certain limit, the noise
of these modes was reflected strongly in the results of the G-ROM.

• Both the FE-SUPG-ROM and the POD-SUPG-ROM yielded results that were significantly more accurate than
those for the G-ROM for larger numbers of used POD modes. The noise of the POD modes was suppressed by
both SUPG-ROMs much better than by the G-ROM.

• The exact meanings of “sufficiently few” and “large” numbers of POD modes in the previous points depend on the
example and the mesh width. In practice, corresponding values for the number of POD modes will generally not
be known.

• In the numerical studies, it was observed that δPOD
r was generally smaller than δFE

r . Based on this experience, it
is recommended that one uses δFE

r , i.e., FE-SUPG-ROM. This choice of the SUPG-ROM stabilization parameter
suppressed the spurious oscillations in the ROM somewhat better than δPOD

r and it was never observed that the
results obtained with FE-SUPG-ROM were notably worse in any respect than the results of POD-SUPG-ROM.
Moreover, the computation of δFE

r is easier than that of δPOD
r .

• The sensitivity study with respect to the mesh width showed that, although the ROMs yield different results, their
qualitative behavior remains unchanged.

This paper considered the SUPG method for both computing the snapshots and performing the ROM simulations,
since this method is analytically well understood and the main purpose was to propose SUPG-ROM stabilization
parameters based on analytical considerations. The numerical tests showed that the ROM solutions exhibit spurious
oscillations. The next step consists in studying if it is possible to obtain snapshots without (or with fewer) spurious
oscillations and to investigate if the availability of such snapshots is sufficient to obtain more accurate SUPG-ROM
results than with the approach studied in this paper. A sensitivity study of the ROM results with respect to parameters,
e.g., the diffusion coefficient, would also be an interesting research topic. After achieving a clear understanding of the
issues and possible remedies for SUPG-ROMs of convection-dominated convection–diffusion–reaction equations, one
could carry out a similar theoretical and numerical investigation of the significantly more challenging Navier–Stokes
equations.
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