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Abstract. We investigate the residual-free bubble method for the linearized incompressible
Navier–Stokes equations. Starting with a nonconforming inf-sup stable element pair for approxi-
mating the velocity and pressure, we enrich the velocity space by discretely divergence-free bubble
functions to handle the influence of strong convection. An important feature of the method is that the
stabilization does not generate an additional coupling between the mass equation and the momentum
equation as is the case for the streamline upwind Petrov–Galerkin method applied to equal-order
interpolation. Furthermore, the discrete solution is piecewise divergence-free, a property which is
useful for the mass balance in transport equations coupled with the incompressible Navier–Stokes
equations.
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1. Introduction. Finite element approximations of the Oseen equations need
stability for advective-dominated flows and compatibility between the velocity and
pressure spaces. The latter is also necessary for the Stokes flow.

Starting with the streamline upwind Petrov–Galerkin (SUPG) stabilization of
Brooks and Hughes [9] for the advective term, this idea has been extended to the
Stokes equations in [21], where a stabilized method is proposed accommodating low
equal-order interpolation to be stable and convergent. This formulation circumvents
the need to abide by inf-sup condition for many interpolations. In an attempt to get
the stability features of these works, a method is proposed in [14] that at the same
time is advective stable and overcomes the inf-sup restrictions of the standard Galerkin
method. The analysis of these SUPG-type stabilizations, including the case of equal-
order interpolations, can be found in [31]. The drawback of these methods is that
various terms need to be added to the weak formulation. Residual-based stabilization
methods which use inf-sup stable pairs of elements reduce the number of terms which
have to be added to the Galerkin formulation [17, 25]. However, there is still a strong
coupling of the form (∇p, (b · ∇)vh) which is difficult to handle, and an optimal L2

error estimate for the pressure is missing in [17]. Several attempts have been made to
relax the strong coupling of velocity and pressure and to introduce symmetric versions
of the stabilizing terms; for an overview see [5]. Local projection-type methods have
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been introduced for the Stokes problem in [2], extended to the transport equation in
[3], and analyzed for low-order discretizations of the Oseen equations in [4]. They
are designed for equal-order interpolation and allow a separation of the velocity and
pressure in the stabilization terms. The disadvantage is that the finite element stencil
is less compact than for the SUPG-type stabilization. They also suffer from the weak
fulfillment of the incompressiblity constraint which is important for mass conservation
in a transport equation coupled with the Navier–Stokes problem. In the edge-oriented
stabilization technique, introduced in [10], we find the same problem of a much wider
stencil which needs also some special data structure or an implicit defect correction.

Our method of enriching the velocity space of an inf-sup stable pair of finite ele-
ments by discretely divergence-free functions will always suppress additional coupling
terms in the discrete formulation and lead to a separation of the velocity and pressure
in the stabilization terms. Due to the use of inf-sup stable finite element pairs, the
computed velocity field is always discretely divergence-free. As a first step in this
paper, we analyze the simplest version of such an enrichment method, the Crouzeix–
Raviart element of lowest order, i.e., piecewise linear nonconforming velocity and
piecewise constant pressure approximations.

The plan of the paper is as follows. In section 2, the weak formulation of the Oseen
equations and its Galerkin discretization is considered. Next, in section 3, we apply
the residual-free bubble approach and highlight the advantages of using discretely
divergence-free enrichments. The relation to the classical SUPG method is studied in
section 4. Finally, an a priori error estimate for an approximate residual-free bubble
method is derived in section 5. A numerical test example confirms the convergence
rates.

Notations. We use the Sobolev spaces W k,p(D), Hk(D) = W k,2(D), Hk
0 (D),

L2(D) = H0(D), and write Wk,p(D), Hk(D), Hk
0(D), L2(D) for their vector-valued

versions. The norms and seminorms in the scalar and vector-valued versions of
W k,p(D) are denoted by ‖ · ‖k,p,D and | · |k,p,D, respectively [12]. To simplify the
notation, we drop D if D = Ω and p if p = 2. Moreover, we introduce the broken H1

seminorm and norm for piecewise H1 functions defined on a triangulation Th by

|v|1,h :=

( ∑
K∈Th

|v|21,K

)1/2

, ‖v‖1,h :=
(
|v|21,h + ‖v‖2

0

)1/2
.

2. A linearized Navier–Stokes model. We consider the steady linearized
Navier–Stokes model given by

−νΔu + (b · ∇)u + ∇p = f in Ω ⊂ R
d,(2.1)

∇ · u = 0 in Ω,(2.2)

u = 0 on Γ = ∂Ω,(2.3)

where b ∈ W1,∞(Ω) with ∇·b = 0 in Ω, f ∈ L2(Ω), and Ω denotes a bounded domain
in R

d with d = 2 or d = 3. Homogeneous Dirichlet boundary conditions are considered
for simplicity of presentation. The extension to nonhomogeneous Dirichlet boundary
conditions is straightforward when the boundary data are interpolated in the space
of restrictions of discretely divergence-free functions. For smooth boundary data, this
is always possible and requires only additional technical details which do not lead to
further insight into the method. The weak formulation of (2.1)–(2.3) reads:
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Find (u, p) ∈ H1
0(Ω) × L2

0(Ω) such that for all (v, q) ∈ H1
0(Ω) × L2

0(Ω),

a(u,v) + b(u,v) − (p,∇ · v) + (q,∇ · u) = (f ,v),(2.4)

where the bilinear forms a and b are defined by

(2.5) a(u,v) := ν(∇u,∇v), b(u,v) := ((b · ∇)u,v) ∀u,v ∈ H1
0(Ω),

(·, ·) denotes the inner product in L2(Ω) or its vector-valued and tensor-valued ver-
sions, and

L2
0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0}.

The property

b(v,v) = ((b · ∇)v,v) =
1

2
(b · ∇(v · v), 1) = −1

2
(∇ · b,v · v) = 0 ∀v ∈ H1

0(Ω)

of the bilinear form b guarantees that the Lax–Milgram lemma can be applied in
the subspace of divergence-free functions. A unique pressure in L2

0(Ω) follows from
the Babuška–Brezzi condition for the pair (H1

0(Ω), L2
0(Ω)) [18]. Therefore, there is a

unique solution (u, p) of (2.4) for all positive ν.
For the finite element approximation, we use the nonconforming Pnc

1 /P0 element
pair of Crouzeix–Raviart [13]. Let Th be a regular decomposition of the domain
Ω ⊂ R

d into d-dimensional simplices K ∈ Th, where the mesh parameter h represents
the maximum diameter of the elements K ∈ Th. We denote by Eh the set of all
(d − 1)-dimensional faces E of cells K ∈ Th. We choose for any face E ∈ Eh a unit
normal nE with an arbitrary but fixed orientation where nE on boundary faces is
the outer unit normal of Ω. We will write nK for the outer unit normal with respect
to the cell K. For a scalar piecewise continuous function ψ, the jump [ψ]E and the
average {ψ}E on a face E are defined by

[ψ]E : =

{
(ψ|K)|E − (ψ|

K̃
)|E if E �⊂ Γ,

(ψ|K)|E if E ⊂ Γ,

{ψ}E : =

⎧⎨⎩
1
2

(
(ψ|K)|E + (ψ|

K̃
)|E

)
if E �⊂ Γ,

1
2 (ψ|K)|E if E ⊂ Γ,

where K and K̃ are chosen such that E = ∂K ∩ ∂K̃ and nK = nE .
Note that the definition of the jump and the average on a boundary face corre-

sponds to that on an inner face when extending the functions outside of Ω by zero.
Furthermore, we have the relation

[ϕψ]E = [ϕ]E{ψ}E + {ϕ}E [ψ]E

on both inner and boundary faces E. The jump and the average of vector-valued
functions are defined in a componentwise manner.

Now our approximate spaces Vh ≈ H1
0(Ω) and Qh ≈ L2

0(Ω) can be defined to be

Vh : =

{
vh ∈ L2(Ω) : vh

∣∣∣
K

∈ P1(K)d ∀K ∈ Th,
∫
E

[vh]E dγ = 0 ∀E ∈ Eh
}
,(2.6)

Qh : =
{
qh ∈ L2

0(Ω) : qh

∣∣∣
K

∈ P0(K) ∀K ∈ Th
}
,(2.7)
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where Pn(K) is the set of all polynomials on K of degree less than or equal to n. Note
that a function vh ∈ Vh—in general—is discontinuous across the inner faces E and
does not vanish on the boundary.

Now, we introduce the discrete bilinear forms elementwise to be

ah(uh,vh) : = ν
∑

K∈Th

(∇huh,∇hvh)K ,(2.8)

bh(uh,vh) : =
∑

K∈Th

((b · ∇h)uh,vh)K −
∑
E∈Eh

〈b · nE [uh]E , {vh}E〉E .(2.9)

Here, the discrete versions of the gradient and the divergence operators, ∇ and ∇·,
respectively, are understood in the following sense:

(∇hvh)
∣∣
K

: = ∇
(
vh

∣∣
K

)
∀vh ∈ Vh, ∀K ∈ Th,

(∇h · vh)
∣∣
K

: = ∇ ·
(
vh

∣∣
K

)
∀vh ∈ Vh, ∀K ∈ Th,

and 〈·, ·〉E denotes the inner product in L2(E) and its vector-valued versions. To
simplify the notation, we briefly write ∇ instead of ∇h in expressions like (2.8) and
(2.9). Clearly, we have

ah(u,v) = a(u,v), bh(u,v) = b(u,v), u,v ∈ H1(Ω).

The additional term in the elementwise-defined bilinear form bh (compare (2.9)) van-
ishes for vh ∈ H1(Ω). For functions vh belonging to our nonconforming finite element
space Vh, it guarantees that we have

bh(vh,vh) =
1

2

∑
K∈Th

((b · ∇)(vh · vh), 1)K −
∑
E∈Eh

〈b · nE [vh]E , {vh}E〉E

=
∑
E∈Eh

(
1

2
〈b · nE [vh · vh]E , 1〉E − 〈b · nE [vh]E , {vh}E〉E

)
= 0,

in analogy to b(v,v) = 0 for all v ∈ H1
0(Ω).

The standard Galerkin finite element method reads:
Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh,

(2.10) ah(uh,vh) + bh(uh,vh) − (ph,∇h · vh) + (qh,∇h · uh) = (f ,vh).

The finite element pair (Vh, Qh) satisfies the discrete inf-sup stability condition

(2.11) ∃β0 > 0 ∀qh ∈ Qh : β0‖qh‖0 ≤ sup
vh∈Vh

(qh,∇h · vh)

|vh|1,h
;

see [6, 13]. As a result, we have the unique solvability of (2.10). Error estimates which
do not take into consideration the size of ν are standard, e.g., in the energy norm we
have

(2.12) ν1/2|u − uh|1,h + ‖p− ph‖0 ≤ C(ν) h (|u|2 + |p|1)

with a constant C(ν) depending on ν. We are interested in the case of small ν (high
Reynolds numbers) in which numerical experiments show the need for stabilization
[11, 29, 30]. In the next section, we will follow the concept of residual-free bubble sta-
bilizations, which has been already successfully applied to scalar convection-diffusion
equations [1, 7, 8, 16].
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3. Residual-free bubble method. Let us enrich the velocity space Vh by the
space of residual-free bubbles

Bh :=
⊕
K∈Th

H1
0(K)

and denote the enriched space by VRFB . Since a piecewise linear function which
vanishes at the boundary of each cell is identically zero, we conclude VRFB = Vh⊕Bh.
The pair (VRFB , Qh) satisfies the discrete inf-sup stability (2.11) as well. Note that
a function from the bubble space Bh is discretely divergence-free since we have, for
all qh ∈ Qh, vB ∈ Bh,

(qh,∇h · vB) =
∑

K∈Th

qh
∣∣
K

(1,∇ · vB)K =
∑

K∈Th

qh
∣∣
K
〈1,vB · nK〉∂K = 0.

In this sense the inf-sup stability will not be improved by enriching Vh by Bh. Each
element uRFB ∈ VRFB can be uniquely represented in the form

uRFB = uh + uB with uh ∈ Vh, uB ∈ Bh.

The Galerkin approximation of (2.4) with respect to the pair (VRFB , Qh) reads:
Find (uh,uB , ph) ∈ Vh × Bh ×Qh such that

ah(uh,vh) + bh(uh,vh) + bh(uB ,vh) − (ph,∇h · vh) = (f ,vh) ∀vh ∈ Vh,(3.1)

ah(uB ,vB) + bh(uB ,vB) + bh(uh,vB) = (f ,vB) ∀vB ∈ Bh,(3.2)

(qh,∇h · uh) = 0 ∀qh ∈ Qh.(3.3)

Note that in deriving (3.1)–(3.3) we have taken into consideration the orthogonality
property

ah(vB ,wh) = ah(wh,vB) = ν
∑

K∈Th

(∇wh,∇vB)K

= ν
∑

K∈Th

(〈
∂wh

∂nK
,vB

〉
∂K

− (Δwh,vB)K

)
= 0

and the property that uB and vB are discretely divergence-free. Equation (3.2) can
be considered to define uB as a functional of uh. In order to find a representation for
uB , we define M(uh), F (f) ∈ Bh as the solutions of the problems:

Find M(uh), F (f) ∈ Bh such that for all vB ∈ Bh,

ah(M(uh),vB) + bh(M(uh),vB) = −bh(uh,vB),

ah(F (f),vB) + bh(F (f),vB) = (f ,vB).

Then, the solution uB of (3.2) can be represented in the form uB = M(uh) + F (f).
Elimination of uB from (3.1) gives the residual-free bubble method for solving (2.4):

Find (uh, ph) ∈ Vh ×Qh such that

aRFB(uh,vh) − (ph,∇h · vh) = lRFB(vh) ∀vh ∈ Vh,(3.4)

(qh,∇h · uh) = 0 ∀qh ∈ Qh,(3.5)
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where

aRFB(uh,vh) = ah(uh,vh) + bh(uh,vh) + bh(M(uh),vh),(3.6)

lRFB(vh) = (f ,vh) − bh(F (f),vh).(3.7)

The difficulty in realizing the exact residual-free method (3.4)–(3.5) is that we have
to evaluate the terms bh(M(uh),vh) and bh(F (f),vh), which essentially means solving
an infinite-dimensional problem. Therefore, in practice some sort of approximation is
used. We mention in particular the following approaches:

• stabilizing subgrid methods [8],
• pseudo-residual-free bubble method [7],
• two-level and three-level approaches [15, 16, 19, 20].

In the following we will reformulate the method (3.4)–(3.5) by looking at the constant
coefficient case.

4. Relation to other stabilized methods. The case of continuous P1 pressure
and velocity approximations on triangles has been considered in [28]; for a systematic
study on quadrilaterals with a continuous Q1 pressure approximation and a sufficiently
large velocity space see [24]. In that paper the fully nonlinear case of the Navier–Stokes
equations has also been considered.

In the following we consider a discretization within the space (Vh×Qh), i.e., non-
conforming piecewise linear velocity and piecewise constant pressure approximations.
Let us assume that b and f are constants. Moreover, let ϕK ∈ H1

0 (K) be the solution
of the scalar convection-diffusion problem

−νΔϕK + b · ∇ϕK = 1 in K, ϕK = 0 on ∂K.

Then, we obtain

M(uh)
∣∣∣
K

= −(b · ∇)uh

∣∣∣
K

ϕK , F (f)
∣∣∣
K

= f
∣∣∣
K

ϕK .

The terms which appear in (3.6)–(3.7), in addition to the standard Galerkin approach,
become

bh(M(uh),vh) =
∑

K∈Th

((b · ∇)M(uh),vh)K −
∑
E∈Eh

〈b · nE [M(uh)]E , {vh}E〉E

= −
∑

K∈Th

((b · ∇)vh,M(uh))K

=
∑

K∈Th

((b · ∇)vh, (b · ∇)uh ϕK)K

=
∑

K∈Th

τK((b · ∇)vh, (b · ∇)uh)K ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2398 L. P. FRANCA, V. JOHN, G. MATTHIES, AND L. TOBISKA

−bh(F (f),vh) = −
∑

K∈Th

((b · ∇)F (f),vh)K +
∑
E∈Eh

〈b · nE [F (f)]E , {vh}E〉E

=
∑

K∈Th

((b · ∇)vh, F (f))K

=
∑

K∈Th

((b · ∇)vh, f ϕK)K

=
∑

K∈Th

τK((b · ∇)vh, f)K ,

since M(uh), F (f) ∈ Bh where

τK =
1

|K|

∫
K

ϕK dx.

Thus, the exact residual-free bubble method for constant b and f is equal to:
Find (uh, ph) ∈ Vh ×Qh such that

ãRFB(uh,vh) − (ph,∇h · vh) = l̃RFB(vh) ∀vh ∈ Vh,(4.1)

(qh,∇h · uh) = 0 ∀qh ∈ Qh,(4.2)

where

ãRFB(uh,vh) = ah(uh,vh) + bh(uh,vh) +
∑

K∈Th

τK((b · ∇)uh, (b · ∇)vh)K ,

l̃RFB(vh) = (f ,vh) +
∑

K∈Th

τK(f , (b · ∇)vh)K .

Since on each K ∈ Th it holds that −νΔuh + ∇ph = 0, the method corresponds to
the SUPG method analyzed in [26] for the fully nonlinear case of the Navier–Stokes
equations. However, the influence of small ν on the error constants has not been
investigated in that paper.

5. Error estimate for the generalized Oseen equations. We now turn
to estimates with Reynolds-number-independent constants. It has been shown in
a series of papers [22, 23, 27] that for nonconforming finite element discretizations
applied to scalar convection-diffusion equations, one has to add certain jump terms
to the discretization to recover the error estimates of the SUPG method known for
conforming finite elements. Therefore, we expect to meet the same situation in the
more complex problem of linearized Navier–Stokes equations and add

jh(uh,vh) :=
∑
E∈Eh

γE〈[uh]E , [vh]E〉E

with positive constants γE to the discrete formulation. In the case of a scalar
convection-diffusion equation it turns out that it is enough to choose γE ∼ 1 (see [22]),
but due to the coupling with the pressure we have to choose γE differently; see
Lemma 5.2. Note that the solution (u, p) ∈ H1

0(Ω) × L2
0(Ω) satisfies [u]E = 0 and

consequently jh(u,v) = 0 for all v ∈ H1
0(Ω) + Vh.
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We shall consider and analyze the case of the generalized Oseen equations,

−νΔu + (b · ∇)u + σu + ∇p = f , ∇ · u = 0 in Ω, u = 0 on Γ = ∂Ω

which appears as a result of time discretizations of the nonstationary Navier–Stokes
equations with σ = (1/Δt). Its weak formulation reads:

Find (u, p) ∈ H1
0(Ω) × L2

0(Ω) such that for all (v, q) ∈ H1
0(Ω) × L2

0(Ω),

(5.1) aσ(u,v) + b(u,v) − (p,∇ · v) + (q,∇ · u) = (f ,v),

where the bilinear form a(·, ·) in (2.4) has been replaced by the bilinear form

aσ(u,v) := ν(∇u,∇v) + σ(u,v).

Let us introduce the following notations:

A ((u, p), (v, q)) = aσh(u,v) + bh(u,v) + jh(u,v) +
∑

K∈Th

τK((b · ∇)u, (b · ∇)v)K

− (p,∇h · v) + (q,∇h · u),

L ((v, q)) = (f ,v) +
∑

K∈Th

τK(f , (b · ∇)v)K

with aσh(·, ·) being the discrete analogue of aσ(·, ·), more precisely

aσh(uh,vh) :=
∑

K∈Th

(ν(∇uh,∇vh)K + σ(uh,vh)K) ∀uh,vh ∈ Vh + H1
0(Ω).

The discrete problem to be studied now becomes:
Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh,

(5.2) A ((uh, ph), (vh, qh)) = L ((vh, qh)) .

The bilinear form A(·, ·) generates a norm on the product space Vh ×Qh

|||(v, q)||| =

(
ν|v|21,h + σ‖v‖2

0 + (ν + σ)‖q‖2
0

+ jh(v,v) +
∑

K∈Th

τK‖(b · ∇)v‖2
0,K

)1/2

.

First we show an inf-sup condition for the bilinear form A(·, ·) on the product
space Vh ×Qh.

Lemma 5.1. Assume that max(ν, σ, τK , γEhE) ≤ C. Then, there is a positive
constant β independent of ν > 0 such that for all (vh, qh) ∈ Vh ×Qh,

(5.3) |||(vh, qh)||| ≤ 1

β
sup

(wh,rh)∈Vh×Qh

A ((vh, qh), (wh, rh))

|||(wh, rh)||| .

Proof. Let us consider an arbitrary (vh, qh) ∈ Vh × Qh. Choosing (wh, rh) =
(vh, qh), we have

A
(
(vh, qh), (vh, qh)

)
= ν|vh|21,h + σ‖vh‖2

0 + jh(vh,vh) +
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K(5.4)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2400 L. P. FRANCA, V. JOHN, G. MATTHIES, AND L. TOBISKA

due to the property bh(vh,vh) = 0 which has been shown in section 2.
Now let us consider another choice of (wh, rh). For any qh ∈ Qh the discrete

Babuška–Brezzi condition (2.11) guarantees the existence of a function vqh ∈ Vh

such that

(∇h · vqh , qh) = −(qh, qh), ‖vqh‖1,h ≤ C‖qh‖0.

Thus, by choosing (wh, rh) = (vqh , 0) we obtain

A ((vh, qh), (vqh , 0)) = ‖qh‖2
0 + aσh(vh,vqh) + bh(vh,vqh) + jh(vh,vqh)

+
∑

K∈Th

τK((b · ∇)vh, (b · ∇)vqh)K .(5.5)

Now, the second term on the right-hand side of (5.5) can be bounded as follows:

|aσh(vh,vqh)| ≤ C (ν|vh|1,h + σ‖vh‖0) ‖qh‖0

≤ C
(
ν2|vh|21,h + σ2‖vh‖2

0

)
+

1

8
‖qh‖2

0.

Elementwise integration by parts of the third term on the right-hand side of (5.5)
gives

bh(vh,vqh) =
∑
E∈Eh

〈b · nE , [vh · vqh ]E〉E −
∑

K∈Th

((b · ∇)vqh ,vh)K

−
∑
E∈Eh

〈b · nE [vh]E , {vqh}E〉E

=
∑
E∈Eh

〈b · nE [vqh ]E , {vh}E〉E −
∑

K∈Th

((b · ∇)vqh ,vh)K .

Let ω(E) denote the union of the cells K sharing a common face E. For any vh ∈ Vh

we have

‖[vh]E‖0,E ≤ C h
1/2
E |vh|1,h,ω(E), ‖{vh}E‖0,E ≤ C h

−1/2
E ‖vh‖0,ω(E),

from which

|bh(vh,vqh)| ≤ C |vqh |1,h ‖vh‖0 ≤ C ‖qh‖0 ‖vh‖0 ≤ C ‖vh‖2
0 +

1

8
‖qh‖2

0

follows. Similarly, for the fourth term on the right-hand side of (5.5) we obtain

jh(vh,vqh) ≤ C
∑
E∈Eh

γE‖[vh]E‖0,E h
1/2
E |vqh |1,h,ω(E)

≤ C
∑
E∈Eh

γ2
EhE‖[vh]E‖2

0,E +
1

8
‖qh‖2

0.

Finally, the fifth term on the right-hand side of (5.5) is estimated by∣∣∣∣∣ ∑
K∈Th

τK((b · ∇)vh, (b · ∇)vqh)K

∣∣∣∣∣ ≤ ∑
K∈Th

τK‖(b · ∇)vh‖0,K‖(b · ∇)vqh‖0,K

≤ C
∑

K∈Th

τ2
K‖(b · ∇)vh‖2

0,K +
1

8
‖qh‖2

0.
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Combining the inequalities and taking into consideration that ν, τK , and γEhE

are bounded from above, we get from (5.5)

A
(
(vh, qh), (vqh , 0)

)
≥ 1

2
‖qh‖2

0

−C1

[
ν|vh|21,h + ‖vh‖2

0 + jh(vh,vh) +
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K

]
.(5.6)

Multiplying this inequality by (ν + σ), using the estimate ν + σ ≤ C to bound

(ν + σ)ν|vh|21,h ≤ Cν|vh|21,h,
(ν + σ)jh(vh,vh) ≤ Cjh(vh,vh),

(ν + σ)
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K ≤ C

∑
K∈Th

τK‖(b · ∇)vh‖2
0,K ,

and hiding the ν‖vh‖2
0 term by the discrete Poincaré’s inequality

(ν + σ)‖vh‖2
0 = ν‖vh‖2

0 + σ‖vh‖2
0 ≤ Cν|vh|21,h + σ‖vh‖2

0,

we end up with

A
(
(vh, qh), ((ν + σ)vqh , 0)

)
≥ ν + σ

2
‖qh‖2

0

−C2

[
ν|vh|21,h + σ‖vh‖2

0 + jh(vh,vh) +
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K

]
.(5.7)

From (5.4) and (5.7) we get for (wh, rh) := (1 − α)(vh, qh) + α((ν + σ)vqh , 0),

(5.8) A
(
(vh, qh), (wh, rh)) ≥ α

2
|||(vh, qh)|||2

with α = 2/(2C2 + 3) ∈ (0, 1). Moreover, analyzing each individual term in the triple
norm, we can show that

|||(vqh , 0)||| ≤ C‖vqh‖1,h ≤ C‖qh‖0,

and with ν + σ ≤ C
√
ν + σ we conclude that

|||(wh, rh)||| ≤ (1 − α)|||(vh, qh)||| + α(ν + σ)|||(vqh , 0)|||

≤ C3|||(vh, qh)|||

follows. Thus, we obtain (5.3) with β = α/(2C3).
Remark. Note that for σ > 0 we have control over the L2 norm of the velocity

and the pressure uniformly with respect to ν. However, for σ = 0 we lose this uniform
L2 norm control. In this case, the pressure is only controlled by ν1/2‖ · ‖0. Taking
into consideration Poincaré’s inequality we see that the velocity is also controlled by
ν1/2‖ · ‖0. This behavior, that the case σ > 0 leads to a uniform (with respect to
ν) control of the L2 norm of velocity and pressure, can be also observed in other
stabilized methods; see, for example, [11].
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Let the weak solution of the generalized Oseen equations belong additionally to
H2(Ω) × H1(Ω). Our formulation admits the following consistency property, where
the parameter choice satisfies the assumption of Lemma 5.1.

Lemma 5.2. Let (u, p) ∈ (H1
0(Ω) ∩ H2(Ω)) × (L2

0(Ω) ∩ H1(Ω)) be the weak
solution of (5.1) and let (uh, ph) ∈ Vh × Qh be the discrete solution of (5.2). Then,
the consistency error can be represented in the form

R(u, p;wh, rh) : = A ((u − uh, p− ph), (wh, rh))

=
∑
E∈Eh

{〈
ν

∂u

∂nE
, [wh]E

〉
E

− 〈p, [wh]E · nE〉E
}

+
∑

K∈Th

τK(νΔu − σu −∇p, (b · ∇)wh)K .

Furthermore, assume that τK ∼ h2
K and γE ∼ h−1

E . Then, there is a positive constant
C independent of ν such that

|R(u, p;wh, rh)| ≤ C h(‖u‖2 + ‖p‖1) |||(wh, rh)||| ∀(wh, rh) ∈ Vh ×Qh.

Proof. The representation follows by testing the strong form of the problem with
wh and (b · ∇)wh, respectively, elementwise integration by parts, and taking into
consideration the definition of A(·, ·), (5.1), and (5.2). Following [13] we have∣∣∣∣∣ ∑

E∈Eh

〈
ν

∂u

∂nE
, [wh]E

〉
E

∣∣∣∣∣ ≤ C hν‖u‖2 |wh|1,h ≤ C h‖u‖2 |||(wh, rh)|||,

∣∣∣∣∣ ∑
E∈Eh

〈p, [wh]E · nE〉E

∣∣∣∣∣ ≤ Ch‖p‖1 |wh|1,h,

which shows that the second estimate does not lead to the desired estimate with a ν
independent constant. Therefore, we bound the term in a different way as follows:∣∣∣∣∣ ∑

E∈Eh

〈p, [wh]E · nE〉E

∣∣∣∣∣ ≤ C
∑
E∈Eh

γ
−1/2
E h

1/2
E |p|1,h,ω(E) γ

1/2
E ‖[wh]E‖0,E

≤ Ch‖p‖1

√
jh(wh,wh).

Concerning the last term of the consistency error, we get∣∣∣∣∣ ∑
K∈Th

τK(νΔu − σu − ∇p, (b · ∇)wh)K

∣∣∣∣∣
≤

∑
K∈Th

τ
1/2
K (‖u‖2,K + ‖p‖1,K) τ

1/2
K ‖(b · ∇)wh‖0,K

≤ Ch (‖u‖2 + ‖p‖1,K)

( ∑
K∈Th

τK‖(b · ∇)wh‖2
0,K

)1/2

.
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Summarizing the individual estimates we obtain the statement of the lemma.
Next we shall investigate the interpolation error. First, note that a discretely

divergence-free function is divergence-free on each cell K. Indeed, if χK denotes
the characteristic function of K, |K| and |Ω| denoting the measure of K and Ω,
respectively, we conclude for a discretely divergence-free function vh ∈ Vh that the
function ∇h · vh is piecewise constant and, thus, by setting qh = χK − |K|/|Ω| ∈ Qh,

0 = (qh,∇h · vh) = (1,∇h · vh)K − |K|
|Ω| (1,∇h · vh)Ω

= |K|
(
∇ · vh

∣∣
K

)
− |K|

|Ω|
∑

K∈Th

〈1,vh · nK〉∂K

= |K|
(
∇ · (vh

∣∣
K

)
)
.

Lemma 5.3. The canonical interpolant Ih : H1
0(Ω) → Vh defined by

1

|E|

∫
E

(Ihv − v) ds = 0 ∀E ∈ Eh

satisfies

(qh,∇h · Ihv) = (qh,∇ · v) ∀ qh ∈ Qh, v ∈ H1
0(Ω),(5.9)

‖v − Ihv‖0,K + hK |v − Ihv|1,K ≤ C h2
K |v|2,K ∀v ∈ H1

0(Ω) ∩ H2(Ω).(5.10)

Proof. For the proof see [13].
Lemma 5.4. Let (u, p) ∈ (H1

0(Ω) ∩ H2(Ω)) × (L2
0(Ω) ∩ H1(Ω)) be the weak

solution of (5.1) and let (uh, ph) ∈ Vh ×Qh be the discrete solution of (5.2). Assume
that τK ∼ h2

K and γE ∼ h−1
E . Then, for the canonical interpolant Ih : H1

0(Ω) → Vh

and the L2 projection Jh : L2
0(Ω) → Qh there is a constant C independent of ν such

that

(5.11) |A ((u − Ihu, p− Jhp), (wh, rh))| ≤ C h(‖u‖2 + ‖p‖1) |||(wh, rh)|||

for all (wh, rh) ∈ Vh ×Qh.
Proof. Taking into consideration the definition of ||| · |||, we estimate each term

in A(·, ·) separately. The estimate

|aσh(u − Ihu,wh)| ≤ C h ‖u‖2 |||(wh, rh)|||

is standard. Using elementwise integration by parts, we obtain

bh(u − Ihu,wh) =
∑
E∈Eh

〈b · nE [wh]E , {u − Ihu}E〉E −
∑

K∈Th

(u − Ihu, (b · ∇)wh)K

(see also the proof of Lemma 5.1). The first term on the right-hand side is estimated
by ∣∣∣ ∑

E∈Eh

〈b · nE [wh]E , {u − Ihu}E〉E
∣∣∣

≤ C
∑
E∈Eh

γ
−1/2
E h

3/2
E ‖u‖2,ω(E) γ

1/2
E ‖[wh]E‖0,E

≤ C h2 ‖u‖2

√
jh(wh,wh)
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and the second one by∣∣∣∣∣ ∑
K∈Th

(u − Ihu, (b · ∇)wh)K

∣∣∣∣∣ ≤ C
∑

K∈Th

τ
−1/2
K h2

K‖u‖2,K τ
1/2
K ‖(b · ∇)wh‖0,K

≤ C h ‖u‖2

( ∑
K∈Th

τK‖(b · ∇)wh‖2
0,K

)1/2

.

The next expression is

|jh(u − Ihu,wh)| ≤ C
∑
E∈Eh

γ
1/2
E h

3/2
E ‖u‖2,ω(E) γ

1/2
E ‖[wh]E‖0,E

≤ C h ‖u‖2

√
jh(wh,wh)

followed by

∑
K∈Th

τK
(
(b · ∇)(u − Ihu), (b · ∇)wh

)
K

≤ C h2 ‖u‖2

( ∑
K∈Th

τK‖(b · ∇)wh‖2
0,K

)1/2

.

The orthogonality of the L2 projection Jh and the property that any discretely
divergence-free function is divergence-free on each cell yield that the last two terms
become zero; i.e.,

(p− Jhp,∇h · wh) = 0 ∀wh ∈ Vh,

(rh,∇h · (u − Ihu)) = 0 ∀rh ∈ Qh.

Collecting all estimates, we get the statement of the lemma.
Theorem 5.5. Let (u, p) ∈ (H1

0(Ω) ∩ H2(Ω)) × (L2
0(Ω) ∩ H1(Ω)) be the weak

solution of (5.1) and let (uh, ph) ∈ Vh ×Qh be the discrete solution of (5.2). Assume
that τK ∼ h2

K and γE ∼ h−1
E . Then, there is a positive constant C independent of ν

such that

(5.12) |||(u − uh, p− ph)||| ≤ C h (‖u‖2 + ‖p‖1).

Proof. Starting with Lemma 5.1 we have

|||(uh − Ihu, ph − Jhp)||| ≤
1

β
sup

(wh,rh)∈Vh×Qh

A((uh − Ihu, ph − Jhp), (wh, rh))

|||(wh, rh)|||

≤ 1

β
sup

(wh,rh)∈Vh×Qh

A((uh − u, ph − p), (wh, rh))

|||(wh, rh)|||

+
1

β
sup

(wh,rh)∈Vh×Qh

A((u − Ihu, p− Jhp), (wh, rh))

|||(wh, rh)||| .

Now, the first term can be bounded by Lemma 5.2 and the second one by Lemma 5.4.
It remains to apply the triangle inequality

|||(u − uh, p− ph)||| ≤ |||(u − Ihu, p− Jhp)||| + |||(uh − Ihu, ph − Jhp)|||
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and the approximation properties of the interpolation operators Ih and Jh.
Remark. According to the definition of the triple norm we have for σ > 0 an

additional control uniformly with respect to ν over the L2 norm of the velocity and
the pressure. For σ = 0 we lose this control for ν → 0.

Remark. In the SUPG method the additional stabilizing term∑
K∈Th

γK(∇ · uh,∇ · vh)K

is often used [17, 31]. In our case of the Crouzeix–Raviart element, discretely diverg-
ence-free functions are piecewise divergence-free, therefore this term vanishes.

Remark. Often the SUPG parameter in the SUPG method is chosen in the
advective regime as τK ∼ hK , which is the correct choice for equal-order interpolation
[9, 14, 31]. However, using inf-sup stable elements with different-order interpolation
in the SUPG method, we have to take τK ∼ h2

K [5].
Numerical test. We consider the generalized Oseen equations (5.2) in Ω =

(0, 1)2 with the prescribed solution

u =

(
2x2(1 − x)2y(1 − y)(1 − 2y)

−2y2(1 − y)2x(1 − x)(1 − 2x)

)
, p = x3 + y3 − 0.5,

the convection field

b =

(
sin(x) sin(y)
cos(x) cos(y)

)
,

and with the parameters ν = 10−3, σ = 100. The choice of σ corresponds to a length
of the time step of 0.01 in the nonstationary Navier–Stokes equations.

The coarsest grid in the computations (level 0) consists of two triangles with the
common edge from (0, 0) to (1, 1). On level 7, the system has 98 816 velocity degrees
of freedom (including Dirichlet nodes) and 32 768 pressure degrees of freedom.

Results for different choices of the parameter γE in the jump term jh(uh,vh) are
presented in Tables 5.1 and 5.2. In Table 5.1, computations without this jump term
(γE = 0) and with the appropriate choice (γE = 1) known from scalar convection-
diffusion equations (cf. [22]) are given. It can be observed that the order of con-
vergence with respect to the natural norms for the Oseen equations is far below the
optimal one in the convection-dominated regime; even an increase of errors occurs.
However, optimal orders are obtained for the choice γE = 1/hE , which is in agreement
with our theoretical results presented in this section; see Table 5.2. In addition, the
optimal order of convergence in the ||| · ||| norm, (5.12), can be seen.

Table 5.1

Results obtained with γE = 0 and γE = 1.

γE = 0 γE = 1
Level ‖∇(u − uh)‖0 Order ‖p− ph‖0 Order ‖∇(u − uh)‖0 Order ‖p− ph‖0 Order

3 3.057e-1 — 2.790e-1 — 2.211e-1 — 2.185e-1 —
4 5.899e-1 −0.949 2.625e-1 0.088 3.377e-1 −0.611 1.601e-1 0.449
5 1.083e+0 −0.876 2.487e-1 0.078 4.549e-1 −0.430 1.077e-1 0.572
6 1.748e+0 −0.691 2.166e-1 0.200 5.336e-1 −0.230 6.433e-2 0.744
7 2.205e+0 −0.335 1.474e-1 0.555 5.486e-1 −0.040 3.410e-2 0.916
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Table 5.2

Results obtained with γE = 1/hE .

Level ‖∇(u − uh)‖0 Order ‖p− ph‖0 Order |||(u − uh, p− ph)||| Order
3 8.610e-2 — 1.176e-1 — 1.179e+0 —
4 5.332e-2 0.691 4.389e-2 1.422 4.409e-1 1.418
5 2.775e-2 0.942 1.776e-2 1.306 1.789e-1 1.301
6 1.386e-2 1.002 8.196e-3 1.115 8.270e-2 1.113
7 6.895e-3 1.001 4.053e-3 1.021 4.090e-2 1.021
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