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Abstract. In Large Eddy Simulation of turbulent flows, the Navier–Stokes equations are con-
volved with a filter and differentiation and convolution are interchanged, introducing an extra
commutation error term, which is nearly universally dropped from the resulting equations. We
show that the commutation error is asymptotically negligible in Lp(Rd) (i.e., it vanishes as the
averaging radius δ → 0) if and only if the fluid and the boundary exert exactly zero force on
each other. Next, we show that the commutation error tends to zero in H−1(Ω) as δ → 0.
Convergence is proven also for a weak form of the commutation error. The order of convergence
is studied in both cases. Last, we study the influence of the commutation error on the energy
balance of the filtered equations.
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1. Introduction

The space averaged Navier–Stokes equations for the space averaged fluid velocity u
and pressure p are the basic equations for large eddy simulation (LES) of turbulent
flows. They are derived in many papers and in nearly every book on turbulence
modeling, e.g. Aldama [2], Lesieur [20], Pope [21] or Sagaut [23], from the Navier–
Stokes equations as follows:

1. One chooses a filter g(x) and an averaging radius δ > 0. The large eddies
u (of size ≥ O(δ)) are defined by filtering the underlying fluid velocity u:

u := g ∗ u.

2. To derive the equations for u, the Navier–Stokes equations are convolved
with g(·).
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3. Ignoring boundaries and commuting convolution and differentiation leads
to the space averaged Navier–Stokes equations, given by

ut −∇ · S(u, p) +∇ · (uuT ) = f , ∇ · u = 0, (1)

where the stress tensor associated with the velocity and pressure averages
(u, p) is given by

S(u, p) := 2νD (u)− pI where D(u) =
∇u +∇uT

2
(2)

is the velocity deformation tensor.
One central problem in LES is the closure problem of modeling ∇ · (uuT ) in

terms of u, see, e.g., Sagaut [23]. We shall show herein that there is in fact another
possibly serious closure problem in steps 2 and 3 above leading to the incorrect
space filtered equations (1).

It is often reported in the LES literature that difficulties exist for simulating
turbulence driven by interaction of flows with boundaries. In this report, we will
show one reason: when the flow is given in a bounded domain with typical no-
slip boundary conditions and the strong form of the space averaged Navier–Stokes
equations is used, steps 2 and 3 lead to an O(1) error near the boundary. A
correct derivation of (1) (Section 2) reveals that an extra commutation error term
Aδ(S(u, p)), see Definition 2.1, must be included in (1). We show, Proposition 4.2,
that ‖Aδ(S(u, p))‖Lp(Rd) → 0 as δ → 0 if and only if the traction or Cauchy stress
vector of the underlying flow is identically zero on the boundary of the domain! In
other words, the equations (1) are reasonable only for flows in which the domain’s
boundary exerts no influence on the flow.

An inspection of the proof of Proposition 4.3 reveals that the commutation
error Aδ(S(u, p)) is largest at the boundary and decays rapidly as one moves away
from the boundary.

If the commutation error term is simply dropped and then the strong form
of the space averaged Navier–Stokes equations is discretized, as by, e.g., a finite
difference method, the results of Section 4 show that the error committed is O(1).
On the other hand, variational methods, such as finite element, spectral or spectral
element methods, discretize the weak form of the relevant equations. These meth-
ods are known to depend on the size of the H−1-norm of any omitted terms. We
show in Section 5 that variational methods are possible since the H−1(Ω)-norm of
the dropped commutation error does approach zero as δ → 0, Proposition 5.1.

Section 6 studies the weak form of the commutation error, (Aδ(S(u, p)),v) for
v fixed. The third main result, Proposition 6.1, is that the weak form of the
commutation error tends to zero as δ → 0. The order of convergence in two
dimensions is at least O(δ1−ε) with arbitrary ε > 0.

The issue of the commutation error has appeared occasionally in the engineering
community, e.g. see Fureby and Tabor [9], Ghosal and Moin [12], or Vasilyev et
al. [25]. Its critical importance is beginning to be realized, see Das and Moser
[6]. One approach, [12, 25], has been to shrink the averaging radius δ(x) as x
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tends to the boundary of the domain; the correct boundary conditions are then
clear: u = 0. This approach requires extra resolution and another commutation
error due to the non-constant filter width occurs. This other commutation error
is usually ignored in the engineering literature on the basis of a one-dimensional
Taylor series estimation of it for very smooth functions. Interesting and important
mathematical challenges remain for this approach as well.

Other special treatments of the near wall regions, such as near wall models,
see [23, Section 9.2.2] for an overview, are common in LES to attempt to correct
for the error. Recently, there are new approaches to LES without modeling, such
as post processing [16] and the variational multiscale method by Hughes and co-
workers [15].

2. The space averaged Navier–Stokes equations in a bounded do-
main

To derive the correct space averaged Navier–Stokes equations in a bounded do-
main, we will extend all functions to Rd and derive the equations satisfied by these
extensions. Then, the new equations will be convolved.

We will always use standard notations for Sobolev and Lebesgue spaces, e.g.
see Adams [1]. For vectors and tensors (matrices), we use standard matrix-vector
notations.

Let Ω be a bounded domain in Rd, d = 2, 3, with Lipschitz boundary ∂Ω with
outward pointing unit normal n and (d − 1)-dimensional measure |∂Ω| < ∞. We
consider the incompressible Navier–Stokes equations with homogeneous Dirichlet
boundary conditions

ut − 2ν∇ · D (u) +∇ · (uuT ) +∇p = f in (0, T )× Ω,
∇ · u = 0 in [0, T ]× Ω,

u = 0 in [0, T ]× ∂Ω,
u |t=0 = u0 in Ω,∫
Ω

p dx = 0 in (0, T ],

(3)

where ν is the constant kinematic viscosity.
It will be helpful to recall that the stress tensor S(u, p) is given by

S(u, p) := 2νD (u)− pI,

where I is the unit tensor, and that the normal stress / Cauchy stress / traction
vector on ∂Ω is defined by S(u, p)n.

Our analysis will require that solutions (u, p) of (3) are regular enough such
that the normal stress has a well defined trace on the ∂Ω which belongs to some
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Lebesgue space defined on ∂Ω. We assume that

u ∈
(

H2(Ω) ∩H1
0 (Ω)

)d

, p ∈ H1(Ω) ∩ L2
0(Ω) for a.e. t ∈ [0, T ],

u ∈
(

H1((0, T ))
)d

for a.e. x ∈ Ω.
(4)

Lemma 2.1. If (4) holds then S(u, p)n belongs to
(
H1/2(∂Ω)

)d
. In particular,

for a.e. t ∈ (0, T ], S(u, p)n ∈ (Lq(∂Ω))d with 1 ≤ q < ∞ if d = 2 and 1 ≤ q ≤ 4
if d = 3 and

‖S(u, p)n‖(Lq(∂Ω))d ≤ C
(
ν‖u‖(H2(Ω))d + ‖p‖H1(Ω)

)
. (5)

Proof. This follows from the usual trace theorem and embedding theorems, e.g.,
see Galdi [10, Chapter II, Theorem 3.1]. ¤

Remark 2.1. The result that S(u, p)n ∈ (Lq(∂Ω))d for 1 ≤ q < 4 suffices for our
purposes but it can be sharpened considerably. For example, Giga and Sohr [13,
Theorem 3.1, p. 84] show that provided f is smooth enough and the initial condition
u0 ∈

(
W 2−2/s,s(Ω)

)d
, s > 0, holds, then for a.e. t > 0, ut and ∇ · (uuT ) belong

to (Lq(Ω))d and further S(u, p)n ∈ (Lq(∂Ω)) for a.e. t > 0 when 3/q + 2/s = 4.

In writing down an equation like (1), f must be extended off Ω and then (u, p)
must be extended compatible with the extension of f . For f to be computable,
f is extended by zero off Ω. Thus, (u, p) must be extended by zero off Ω, too.
This extension is reasonable since u = 0 on ∂Ω. An extension of u off Ω as an(
H2(Rd)

)d function exists but is unknown, in particular since u is not known.
Using this extension, instead of u ≡ 0 on Rd \ Ω, would make the extension of f
unknowable and hence f uncomputable in (1). Thus, define

u = 0, u0 = 0, p = 0 f = 0 if x /∈ Ω.

The extended functions posses the following regularities

u ∈
(

H1
0 (Rd)

)d

, p ∈ L2
0(R

d) for a.e. t ∈ [0, T ],

u ∈
(

H1((0, T ))
)d

for a.e. x ∈ Rd .
(6)

From (4) and (6) follow that the first order weak derivatives of the extended
velocity ut, ∇u ,∇·u and ∇· (uuT ) are well defined on Rd, taking their indicated
values in Ω and being identically zero off Ω.

Since u 6∈ (
H2(Rd)

)d, p 6∈ H1(Rd), the terms ∇·D (u) and ∇p must be defined
in the sense of distributions. To this end, let ϕ ∈ C∞0 (Rd). Since p ≡ 0 on Rd \Ω,
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we get

(∇p)(ϕ) := −
∫

Rd

p(x)∇ϕ(x)dx =
∫

Ω

ϕ(x)∇p(x)dx−
∫

∂Ω

ϕ(s)p(s)n(s)ds. (7)

In the same way, one obtains

∇ · D (u) (ϕ) := −
∫

Rd

D (u) (x)∇ϕ(x)dx (8)

=
∫

Ω

ϕ(x)∇ · D (u) (x)dx−
∫

∂Ω

ϕ(s)D (u) (s)n(s)ds.

Both distributions have compact support. From (7) and (8) it follows that the
extended functions (u, p) fulfill the following distributional form of the momentum
equation

ut−2ν∇·D (u)+∇·(uuT )+∇p = f+
∫

∂Ω

(
2νD (u) (s)n(s)−p(s)n(s)

)
ϕ(s)ds. (9)

The correct space averaged Navier–Stokes equations are now derived by con-
volving (9) with a filter function g(x) ∈ C∞(Rd). Let H(ϕ) be a distribution with
compact support which has the form

H(ϕ) = −
∫

Rd

f(x)∂αϕ(x)dx,

where ∂α is the derivative of ϕ with the multi-index α. Then, H ∗ g ∈ C∞(Rd),
see Rudin [22, Theorem 6.35], where

H(x) = (H ∗ g)(x) := H(g(x− ·)) = −
∫

Rd

f(y)∂αg(x− y)dy. (10)

Applying the convolution with g to (9), using the fact that convolution and dif-
ferentiation commute on Rd, Hörmander [14, Theorem 4.1.1], and convolving the
extra term on the right hand side accordingly to (10), we obtain the space averaged
momentum equation

ut − 2ν∇ · D (u) +∇ · (uuT ) +∇p

= f +
∫

∂Ω

g(x− s) [2νD (u) (s)n(s)− p(s)n(s)] ds in (0, T ]× Rd. (11)

Remark 2.2. If the viscous term in the Navier–Stokes equations is written as
ν∆u instead of 2ν∇ · D (u), the resulting space averaged equation is given by
replacing 2νD (u) in (11) by ν∇u.

Definition 2.1. The commutation error Aδ(S(u, p)) in the space averaged Navier–
Stokes equations is defined to be

Aδ(S(u, p)) :=
∫

∂Ω

g(x− s)(S(u, p)n)(s)ds.
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The correct space averaged Navier–Stokes equations arising from the Navier–
Stokes equations on a bounded domain thus posses an extra boundary integral,
Aδ(S(u, p)). Omitting this integral results in a commutation error. Including this
integral in (1) introduces a new modeling question since it depends on the unknown
normal stress on ∂Ω of (u, p) and not of (u, p).

3. The Gaussian filter

We will present the results in the following sections for the Gaussian filter. This
filter fits into the framework of Section 2. We shall briefly present the filter’s
properties that are used in the subsequent analysis in this section.

−2 −1 0 1 2

0

1

2

3
δ = 1  
δ = 0.5

Fig. 1. The Gaussian filter function in one dimension for different δ

The Gaussian filter function has the form

gδ(x) =
(

6
δ2π

)d/2

exp
(
− 6

δ2
‖x‖22

)
,

see Figure 1, where ‖ · ‖2 denotes the Euclidean norm of x ∈ Rd and δ is a
user-chosen positive length scale. The Gaussian filter has the following properties,
which are easy to verify:

– regularity: gδ ∈ C∞(Rd),

– positivity: 0 < gδ(x) ≤ (
6

δ2π

) d
2 ,

– integrability: ‖gδ‖Lp(Rd) < ∞, 1 ≤ p ≤ ∞, ‖gδ‖L1(Rd) = 1,
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– symmetry: gδ(x) = gδ(−x),
– monotonicity: gδ(x) ≥ gδ(y) if ‖x‖2 ≤ ‖y‖2.

Lemma 3.1.

i) Let ϕ ∈ Lp(Rd), then for 1 ≤ p < ∞
lim
δ→0

‖gδ ∗ ϕ− ϕ‖Lp(Rd) = 0.

ii) Let ϕ ∈ L∞(Rd) and if ϕ is uniformly continuous on a set ω, then gδ ∗ϕ →
ϕ uniformly on ω as δ → 0.

iii) If ϕ ∈ C∞0 (Rd), then for 1 ≤ p < ∞, 0 ≤ r < ∞
lim
δ→0

‖gδ ∗ ϕ− ϕ‖W r,p(Rd) = 0.

Proof. The proof of the first two statements can be found, e.g. in Folland [8,
Theorem 0.13]. The third statement is an immediate consequence of the first one.

¤

For convenience, the Gaussian filter function with a scalar argument x is un-
derstood in the following to be

gδ(x) :=
(

6
δ2π

) d
2

exp
(
−6x2

δ2

)
.

4. Error estimates in the (Lp(Rd))d-norm of the commutation er-
ror term

In this section, it is shown that the commutation error Aδ(S(u, p)) belongs to
(Lp(Rd))d. We show that Aδ(S(u, p)) vanishes as δ → 0 if and only if the normal
stress is identically zero a.e. on ∂Ω. As noted earlier, this condition means the wall
have zero influence on the wall-bounded turbulent flow. Thus, it is not expected
to be satisfied in any interesting flow problem!

In view of Definition 2.1 and Lemma 2.1, it is necessary to study terms of the
form ∫

∂Ω

gδ(x− s)ψ(s)ds (12)

with ψ ∈ Lq(∂Ω), 1 ≤ q ≤ ∞. We will first show, that (12) belongs to Lp(Rd), 1 ≤
p ≤ ∞.

Proposition 4.1. Let ψ ∈ Lq(∂Ω), 1 ≤ q ≤ ∞, then (12) belongs to Lp(Rd), 1 ≤
p ≤ ∞.
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Proof. By the Cauchy–Schwarz inequality, one obtains with r−1 + q−1 = 1, q > 1,∣∣∣∣∫
∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣ ≤ (∫

∂Ω

gr
δ(x− s)ds

)1/r

‖ψ‖Lq(∂Ω)

=

(∫
∂Ω

(
6

δ2π

)rd/2

exp
(
−6r

δ2
‖x− s‖22

)
ds

)1/r

‖ψ‖Lq(∂Ω).

As 2‖x− s‖22 ≥ ‖x‖22 − 2‖s‖22, it follows that

exp
(
−6r‖x− s‖22

δ2

)
≤ exp

(
3r
−‖x‖22 + 2‖s‖22

δ2

)
,

and ∣∣∣∣∫
∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣

≤
(

6
δ2π

)d/2

‖ψ‖Lq(∂Ω)

(∫
∂Ω

exp
(

6r‖s‖22
δ2

)
ds

)1/r

exp
(
−3‖x‖22

δ2

)
(13)

< ∞,

since ∂Ω is compact and the exponential is a bounded function. This proves the
statement for L∞(Rd). The proof for p ∈ [1,∞) is obtained by raising both sides
of (13) to the power p, integrating on Rd and using∫

Rd

exp
(
−3p‖x‖22

δ2

)
dx < ∞.

If q = 1, we have for 1 ≤ p < ∞∫
Rd

∣∣∣∣∫
∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣p dx ≤

∫
Rd

sup
s∈∂Ω

gp
δ (x− s)dx ‖ψ‖p

L1(∂Ω)

=
∫

Rd

gp
δ (d(x, ∂Ω))dx ‖ψ‖p

L1(∂Ω).

We choose a ball B(0, R) with radius R such that d(x, ∂Ω) > ‖x‖2/2 for all
x 6∈ B(0, R). Then, the integral on Rd is split into a sum of two integrals. The first
integral is computed on B(0, R). This is finite since the integrand is a continuous
function on B(0, R). The second integral on Rd \B(0, R) is also finite because∫

Rd\B(0,R)

gp
δ (d(x, ∂Ω))dx ≤

∫
Rd

gp
δ

(‖x||2
2

)
dx

and the integrability of the Gaussian filter. This concludes the proof for p < ∞.
For p = ∞, we have

ess sup
x∈Rd

∣∣∣∣∫
∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣

≤ ess sup
x∈Rd

ess sup
s∈∂Ω

gδ(x− s)‖ψ‖L1(∂Ω) ≤ gδ(0)‖ψ‖L1(∂Ω) < ∞. ¤
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In the next proposition, we study the behaviour of the Lp(Rd)-norm of (12) for
δ → 0.

Proposition 4.2. Let ψ ∈ Lp(∂Ω), 1 ≤ p ≤ ∞. A necessary and sufficient
condition for

lim
δ→0

∥∥∥∥∫
∂Ω

gδ(x− s)ψ(s)ds
∥∥∥∥

Lp(Rd)

= 0, (14)

1 ≤ p ≤ ∞, is that ψ vanishes almost everywhere on ∂Ω.

Proof. It is obvious that the condition is sufficient.
Let (14) hold. From Hölder’s inequality, we obtain for an arbitrary function

ϕ ∈ C∞0 (Rd)

lim
δ→0

∣∣∣∣∫
Rd

ϕ(x)
(∫

∂Ω

gδ(x− s)ψ(s)ds
)

dx
∣∣∣∣

≤ lim
δ→0

‖ϕ‖Lq(Rd)

∥∥∥∥∫
∂Ω

gδ(x− s)ψ(s)ds
∥∥∥∥

Lp(Rd)

= 0 (15)

where p−1 + q−1 = 1. By Fubini’s theorem and the symmetry of the Gaussian
filter, we have

lim
δ→0

∫
Rd

ϕ(x)
(∫

∂Ω

gδ(x− s)ψ(s)ds
)

dx

= lim
δ→0

∫
∂Ω

ψ(s)
(∫

Rd

gδ(x− s)ϕ(x)dx
)

ds =
∫

∂Ω

ψ(s)ϕ(s)ds.

The last step is a consequence of Lemma 3.1 since ϕ ∈ L∞(Rd) and ϕ is uniformly
continuous on the compact set ∂Ω. Thus, from (15) follows

0 =
∣∣∣∣∫

∂Ω

ψ(s)ϕ(s)ds
∣∣∣∣

for every ϕ ∈ C∞0 (Rd). This is true if and only if ψ(s) vanishes almost everywhere
on ∂Ω. ¤

We will now bound the Lp(Rd)-norm of (12) in terms of δ. The next lemma
proves a geometric property which is needed later.

Lemma 4.1. Let Ω ⊂ Rd, d = 2, 3 be a bounded domain with Lipschitz boundary
∂Ω. Then there exists a constant C > 0 such that∣∣{x ∈ Rd|d(x, ∂Ω) ≤ y}∣∣ ≤ C(y + yd) (16)

for every y ≥ 0, where | · | denotes the measure in Rd.
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Proof. For simplicity, we present the proof for Ω being a simply connected domain.
The analysis can be extended to the case that ∂Ω consists of a finite number of
non-connected parts.

∂Ω

x0 x1

x2

xN

Fig. 2. Mesh on ∂Ω for d = 2

We will start with the case d = 2. We fix a point x0 on ∂Ω and an orientation
of the boundary. Next, we construct x1 such that the length of the curve between
x0 and x1 is y. Continuing this construction, we obtain a sequence (xi)0≤i≤N such
that for every 0 ≤ i < N the length of curve between xi and xi+1 is y. The length
of the curve between xN and x0 is less or equal than y, see Figure 2. The number
of intervals is N + 1 with N < |∂Ω|/y ≤ N + 1. Obviously, we have

{x ∈ Rd|d(x, ∂Ω) ≤ y} =
⋃

x∈∂Ω

B(x, y).

But for every x in ∂Ω, there exists an i such that x is on the part of the curve from
xi to xi+1 or from xN to x0. By the triangle inequality, this implies B(x, y) ⊂
B(xi, 2y). Thus

{x ∈ Rd|d(x, ∂Ω) ≤ y} ⊂
⋃

0≤i≤N

B(xi, 2y),

from which

|{x ∈ Rd|d(x, ∂Ω) ≤ y}| ≤
N∑

i=0

|B(xi, 2y)| <
( |∂Ω|

y
+ 1

)
4πy2

= 4π|∂Ω|y + 4πy2

follows.
In the case d = 3, ∂Ω is a compact manifold. Then, for every x ∈ ∂Ω, there

exists a neighborhood Ux ⊂ ∂Ω such that its closure Ux is homeomorphic to
a closed square V x ⊂ R2 through the homeomorphism φx : V x → Ux. The
homeomorphism is Lipschitz continuous with a constant L. We cover the manifold
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by
∂Ω =

⋃
x∈∂Ω

Ux

and, because ∂Ω is compact, we can choose a finite cover (Uxi
)0≤i≤N which will

be fixed. Let the length of the sides of V xi
be equal to ai. We create a mesh

z

V xi

ai

zk

y/L

φ

φ−1

Fig. 3. Homeomorphic map to the square V xi , d = 3

over on V xi
of cells of size y/L (or smaller). On this mesh, there are less than

(aiL/y + 2)2 vertices and we denote them by (zj)0≤j≤Pi
where Pi < (aiL/y + 2)2.

The order of the vertices is not important. Next, we consider z ∈ Uxi
. Then, we

find the closest vertex on the mesh to φ−1(z) and denote it by zk. It is easy to see
that

||zk − φ−1(z)||2 ≤ y

L

and the Lipschitz continuity of φ gives

||φ(zk)− z||2 ≤ L||zk − φ−1(z)||2 ≤ y.

By the triangle inequality follows now

B(z, y) ⊂ B(φ(zk), 2y). (17)

Because z ∈ Uxi
was chosen arbitrary, for every z ∈ Uxi

there exists zk ∈ V xi

such that (17) holds. Combining (17) for Uxi
, 0 ≤ i ≤ N , gives

{x ∈ R3|d(x, ∂Ω) ≤ y} ⊂
⋃

0≤i≤N

⋃
0≤k≤Pi

B(φ(zk), 2y).

By the sub-additivity and monotonicity of Lebesgue measure, we obtain

|{x ∈ R3|d(x, ∂Ω) ≤ y}| ≤
N∑

i=0

Pi∑
k=0

|B(φ(zk), 2y)| ≤
N∑

i=0

(
aiL

y
+ 2

)2 4
3
πy3

≤ C(y3 + y)
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for an appropriately chosen positive constant C. Note, the quadratic term in y
can be absorbed into the linear term for y ≤ 1 and into the cubic term for y > 1.

¤

Proposition 4.3. Let Ω be a bounded domain in Rd with Lipschitz boundary ∂Ω,
ψ ∈ Lp(∂Ω) for some p > 1 and p−1 + q−1 = 1. Then for every α ∈ (0, 1) and
k ∈ (0,∞) there exist constants C > 0 and ε > 0 such that∫

Rd

∣∣∣∣∫
∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣k dx ≤ Cδ1+k( (d−1)α

q −d)‖ψ‖k
Lp(∂Ω) (18)

for every δ ∈ (0, ε) where C and ε depend on α, k and |∂Ω|.

Proof. We fix an α ∈ (0, 1). From Hölder’s inequality, we obtain∫
Rd

∣∣∣∣∫
∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣k dx ≤

∫
Rd

(∫
∂Ω

gq
δ(x− s)ds

)k/q

dx ‖ψ‖k
Lp(∂Ω).

Let B(x, δα) be the ball centered at x ∈ Rd and with radius δα. Then, the term
containing the Gaussian filter function can be estimated by the triangle inequality∫

Rd

(∫
∂Ω

gq
δ(x− s)ds

)k/q

dx ≤ C(k)
(∫

Rd

Bk
δ (x)dx +

∫
Rd

Ck
δ (x)dx

)
(19)

where

Bδ(x) =

(∫
∂Ω∩B(x,δα)

gq
δ(x− s)ds

)1/q

, Cδ(x) =

(∫
∂Ω\B(x,δα)

gq
δ(x− s)ds

)1/q

with the constant C(k) depending only on k. We estimate the terms in (19)
separately.

Using the monotonicity of the Gaussian filter, one can obtain the following
inequality

Ck
δ (x) ≤ C

{
gk

δ (δα) if d(x, ∂Ω) < δα,
gk

δ (d(x, ∂Ω)) if d(x, ∂Ω) ≥ δα,

where C = C(|∂Ω|). We refer to the function behind the brace as bounding
function, see Figure 4 for a sketch in a special situation.

Let C(t) = {(z, t)|d(z, ∂Ω) ≤ y, t = gk
δ (y), δα ≤ y < ∞} be the cross section of

the bounding function at the function value t and A(t) = |C(t)| the area of the
cross section. Then ∫

Rd

Ck
δ (x)dx ≤ C

∫ gk
δ (δα)

0

A(t)dt.

From Lemma 4.1, we know A(t) ≤ C(yd + y), with C depending only on Ω. Using
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Fig. 4. Bounding function of Ck
δ (x), d = 2, ∂Ω = B(0, 1), δ = 0.1, α = 0.99, k = 1, C = 2π

gk
δ (y) = t, changing variables and integrating by parts yield∫ gk

δ (δα)

0

A(t)dt ≤ C

∫ gk
δ (δα)

0

(yd + y)dt = C

∫ δα

∞
(yd + y)

d
dy

(gk
δ (y))dy

= C

(
(δdα + δα)gk

δ (δα)− d

∫ δα

∞
yd−1gk

δ (y)dy −
∫ δα

∞
gk

δ (y)dy

)
.

The integrals on the last line will be estimated using the change of variables y =
δ/t and by monotonicity considerations of the arising integrand. For δ sufficiently
small, one obtains∫

Rd

Ck
δ (x)dx ≤ C

(
δd(α−k) + δα−kd

)
exp

(
− 6k

δ2(1−α)

)
,

from what follows, since α < 1,

lim
δ→0

∫
Rd

Ck
δ (x)dx = 0.

Now we will bound the second term in (19). The function Bk
δ (x) can be esti-

mated from above in the following way

Bk
δ (x) ≤

{
|∂Ω ∩B(x, δα)| k

q gk
δ (d(x, ∂Ω)) if d(x, ∂Ω) < δα,

0 if d(x, ∂Ω) ≥ δα,

see Figure 5 for an illustration of the bounding function in a special situation. The
bounding function is discontinuous, having a jump from the value 0 to the value
Cgk

δ (δα) at {x ∈ Rd | d(x, ∂Ω) = δα}.
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Fig. 5. Bounding function of Bk
δ (x), d = 2, ∂Ω = B(0, 1), δ = 0.1, α = 0.99, k = 1, C = δα

Since ∂Ω is smooth, we have |∂Ω ∩ B(x, δα)| ≤ Cδ(d−1)α if δ is small enough.
It follows ∫

Rd

Bk
δ (x)dx ≤ C

∫
{d(x,∂Ω)<δα}

δ
(d−1)αk

q gk
δ (d(x, ∂Ω))dx.

We will estimate the integral by integrating over the cross sections of the function
in the integral. For the function values t, 0 ≤ t ≤ gk

δ (δα), all cross sections have
the same form. For function values t = gk

δ (y), 0 ≤ y < δα, the cross section
is {x ∈ Rd | d(x, ∂Ω) ≤ y}. We denote the area of the cross sections by A(t).
Integration of the areas gives∫

{d(x,∂Ω)<δα}
gk

δ (d(x, ∂Ω))dx =
∫ gk

δ (δα)

0

A(t)dt +
∫ gk

δ (0)

gk
δ (δα)

A(t)dt

= A(gk
δ (δα))gk

δ (δα) +
∫ gk

δ (0)

gk
δ (δα)

A(t)dt.

We will use now the estimate of the areas of the cross sections given in Lemma
4.1. If y is small enough, the term yd can be absorbed into the term y in this
estimate. Thus, if δ is small enough, we have |{x ∈ Rd | d(x, ∂Ω) ≤ y}| ≤ Cy,
0 ≤ y < δα. We obtain, changing variables and applying integration by parts∫ gk

δ (0)

gk
δ (δα)

A(t)dt ≤ −C

∫ δα

0

y
d
dy

gk
δ (y)dy = C

(
−δαgk

δ (δα) +
∫ δα

0

gk
δ (y)dy

)
.

The last integral can be estimated further with the substitution y = δs∫ δα

0

gk
δ (y)dy ≤ Cδ1−kd. (20)
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with C depending on k. Collecting estimates, using A(gδ(δα)) ≤ Cδα, which
results in the cancellation of the terms δαgk

δ (δα), we obtain∫
Rd

Bk
δ (x)dx ≤ Cδ1−kd+

(d−1)αk
q .

The estimate for Cδ(x) converges exponentially for δ → 0. Thus, for δ suffi-
ciently small, the estimate of Bδ(x) will dominate. This proves the proposition.

¤

5. Error estimates in the (H−1(Ω))d-norm of the commutation er-
ror term

The main result of this section is that the commutation error tends to zero in
H−1(Ω) as δ → 0, see Proposition 5.1. The order of convergence is at least
O(δ1/2).

Lemma 5.1. There exists a constant C, which depends only on d, such that

‖v − v‖H1/2(Rd) ≤ Cδ1/2‖v‖H1(Rd) (21)

for any v ∈ H1(Rd) and any δ > 0.

Proof. By using the definition of ‖ · ‖H1/2(Rd), we have

‖v − v‖2H1/2(Rd) =
∫

Rd

(1 + ‖x‖22)1/2|1− ĝδ|2|v̂|2dx

=
∫
{‖x‖2>π/δ}

(1 + ‖x‖22)1/2|1− ĝδ|2|v̂|2dx

+
∫
{‖x‖2≤π/δ}

(1 + ‖x‖22)1/2|1− ĝδ|2|v̂|2dx,

where v̂ denotes the Fourier transform of v and the Fourier transform of the Gaus-
sian filter is given by

ĝδ(x) = exp
(
− δ2

24
‖x‖22

)
. (22)

First, we prove a bound for the first integral. There exists a constant C > 0,
which does not depend on δ and v, such that (1+‖x‖22)−1/2 < Cδ for ‖x‖2 > π/δ.
From (22) follows the pointwise estimate |1 − ĝδ(x)| ≤ 1 for any x ∈ Rd. Thus,
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the first integral can be bounded by∣∣∣∣∣
∫
{‖x‖2>π/δ}

(1 + ‖x‖22)1/2|1− ĝδ|2|v̂|2dx
∣∣∣∣∣

≤
∫
{‖x‖2>π/δ}

(1 + ‖x‖22)(1 + ‖x‖22)−1/2|v̂|2dx

≤ Cδ

∫
{‖x‖2>π/δ}

(1 + ‖x‖22)|v̂|2dx. (23)

A Taylor series expansion of (22) at ‖x‖2 = 0 and for fixed δ gives

ĝδ(x) = 1− δ2‖x‖22
24

+ O(δ4‖x‖42),

such that we have the pointwise bound

|1− ĝδ(x)|2 ≤ Cδ‖x‖2
for any ‖x‖2 ≤ π/δ where C does not depend on δ or x. In addition, ‖x‖2 ≤
(1 + ‖x‖22)1/2 and consequently the second integral can be bounded as follows∣∣∣∣∣

∫
{‖x‖2≤π/δ}

(1 + ‖x‖22)1/2|1− ĝδ|2|v̂|2dx
∣∣∣∣∣ ≤ Cδ

∫
{‖x‖2≤π/δ}

(1+‖x‖22)|v̂|2dx. (24)

Combining (23) and (24) gives

‖v − v‖2H1/2(Rd) ≤ Cδ

∫
Rd

(1 + ‖x‖22)|v̂|2dx = Cδ‖v‖H1(Rd). ¤

Let H−1(Ω) be the dual space of H1
0 (Ω) equipped with the norm

‖w‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈v, w〉
‖v‖H1(Ω)

,

where 〈·, ·〉 denotes the dual pairing.

Proposition 5.1. Let ψ ∈ L2(∂Ω), then there exists a constant C > 0 which
depends only on Ω such that∥∥∥∥∫

∂Ω

gδ(x− s)ψ(s)ds
∥∥∥∥

H−1(Ω)

≤ Cδ1/2‖ψ‖L2(∂Ω)

for every δ > 0.

Proof. Let v ∈ H1
0 (Ω). Extending v by zero outside Ω, applying Fubini’s theorem,

using that v vanishes on ∂Ω, applying the Cauchy–Schwarz inequality, the trace
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theorem and Lemma 5.1, give∫
Ω

(∫
∂Ω

gδ(x− s)ψ(s)ds
)

v(x) dx =
∫

∂Ω

ψ(s)v(s)ds

=
∫

∂Ω

ψ(s) (v(s)− v(s)) ds

≤ ‖v − v‖L2(∂Ω)‖ψ‖L2(∂Ω)

≤ C‖v − v‖H1/2(Ω)‖ψ‖L2(∂Ω)

≤ Cδ1/2‖v‖H1(Ω)‖ψ‖L2(∂Ω).

Division by ‖v‖H1(Ω) and using the definition of the H−1(Ω) norm gives the desired
result. ¤

Let
H =

{
v ∈ H1(Rd) : v|∂Ω = 0

}
and let the assumption of Proposition 5.1 be fulfilled. An inspection of the proof
shows that then also

∥∥∥∥∫
∂Ω

gδ(x− s)ψ(s)ds
∥∥∥∥

H−1
H (Rd)

≤ sup
v∈H

〈
v,

∫
∂Ω

gδ(x− s)ψ(s)ds
〉

‖v‖H1(Rd)

≤ Cδ1/2‖ψ‖L2(∂Ω).

6. Error estimates for a weak form of the commutation error term

In this section, we consider a weak form of the commutation error term, Aδ(S(u, p)),
multiplied with a suitable test function v(x) and integrated on Rd. The following
proposition shows that this weak form converges to zero as δ tends to zero for
fixed v(x). For d = 2, Corollary 6.1 and Remark 6.1 show that the convergence is
(at least) almost of order one if ψ is sufficiently smooth.

Lemma 6.1. Let v ∈ H1(Rd) such that v|Ω ∈ H1
0 (Ω) ∩ H2(Ω) and v(x) = 0 if

x /∈ Ω and let ψ ∈ Lp(∂Ω), 1 ≤ p ≤ ∞. Then

lim
δ→0

∫
Rd

v(x)
(∫

∂Ω

gδ(x− s)ψ(s)ds
)

dx = 0,

where v(x) = (gδ ∗ v)(x).

Proof. By Fubini’s theorem and the symmetry of gδ, we obtain

lim
δ→0

∫
Rd

v(x)
(∫

∂Ω

gδ(x− s)ψ(s)ds
)

dx

= lim
δ→0

∫
∂Ω

ψ(s)
(∫

Rd

gδ(s− x)v(x)dx

)
ds.
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By a Sobolev imbedding theorem, we get v ∈ L∞(Ω) from what follows by the
construction of v that v ∈ L∞(Rd). Hölder’s inequality for convolutions gives
v ∈ L∞(Rd). In addition, v is uniformly continuous on the compact set ∂Ω. The
same holds for v since v ∈ C0(Ω) by a Sobolev imbedding theorem. Applying
twice Lemma 3.1 gives

lim
δ→0

∫
Rd

v(x)
(∫

∂Ω

gδ(x− s)ψ(s)ds
)

dx =
∫

∂Ω

ψ(s)v(s)ds = 0,

since v vanishes on ∂Ω. ¤

With the result of Proposition 4.3, we want to study the order of convergence
with respect to δ of the weak form of the commutation error term.

Proposition 6.1. Let v and ψ be defined as in Lemma 6.1 and let the assumption
of Proposition 4.3 be fulfilled. Then, there exists an ε > 0 such that for δ ∈ (0, ε)∫

Rd

∣∣∣∣v(x)
∫

∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣k dx ≤ Cδ1+(−d+

(d−1)α
q +βα)k‖ψ‖k

Lp(∂Ω)‖v‖k
H2(Ω),

where k ∈ [1,∞), β ∈ (0, 1) if d = 2 and β = 1/2 if d = 3, p−1 + q−1 = 1, p > 1,
and C and ε depend on α, k and |∂Ω|.

Proof. Analogously to the begin of the proof of Proposition 4.3, one obtains∫
Rd

∣∣∣∣v(x)
∫

∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣k dx

≤ C(k)
[∫

Rd

|v(x)Bδ(x)|k dx +
∫

Rd

|v(x)Cδ(x)|k dx
]
‖ψ‖k

Lp(∂Ω),

where Bδ(x) and Cδ(x) are defined in the proof of Proposition 4.3. The terms on
the right hand side are treated separately.

In Proposition 4.3, it is proven that Ck
δ ∈ L1(Rd) for every k ∈ (0,∞). This

implies (
Ck

δ

)p
= Ckp

δ = Ck′
δ ∈ L1(Rd),

since k′ ∈ (0,∞). That means Ck
δ ∈ Lp(Rd) for p ∈ [1,∞). From the bounding

function of Ck
δ it is obvious that Ck

δ ∈ L∞(Rd), too. Using Hölder’s inequality for
convolutions, see Adams [1, Theorem 4.30], and ‖gδ‖L1(Rd) = 1, it follows

‖v‖Lq(Rd) ≤ ‖gδ‖L1(Rd)‖v‖Lq(Rd) = ‖v‖Lq(Rd)

where 1 ≤ q < ∞. With the same argument, we get for qk ≥ 1

‖vk‖Lq(Rd) = ‖v‖k
Lqk(Rd) ≤ ‖v‖k

Lqk(Rd).

By the regularity assumptions on v, it follows v ∈ C0(Rd). This implies, together
with v = 0 outside Ω, that v ∈ Lp(Rd) for every 1 ≤ p ≤ ∞. Consequently,
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‖v‖Lqk(Rd) < ∞. Applying Hölder’s inequality, we obtain∫
Rd

|v(x)Cδ(x)|kdx ≤ ‖v‖k
Lqk(Rd)‖Ck

δ (x)‖Lp(Rd).

For the second factor, we can use the bound obtained in the proof of Proposition
4.3, replacing k by kp. Thus if δ is small enough, we obtain∫

Rd

|v(x)Cδ(x)|kdx ≤ Cδ−kd
(
δdα + δα

)1/p
exp

(
− 6k

δ2(1−α)

)
‖v‖k

Lqk(Rd) (25)

for every test function v which satisfies the regularity assumptions stated in Lemma
6.1.

The estimate of the second term starts by noting that the domain of integration
can be restricted to a small neighbourhood of ∂Ω∫

Rd

|v(x)Bδ(x)|kdx =
∫
{d(x,∂Ω)≤δα}

|v(x)Bδ(x)|kdx

≤ ‖v‖k
L∞({d(x,∂Ω)≤δα})

∫
{d(x,∂Ω)≤δα}

Bk
δ (x)dx

≤ ‖v‖k
L∞({d(x,∂Ω)≤δα})δ

1+(−d+
(d−1)α

q )k, (26)

where α ∈ (0, 1) and p−1 + q−1 = 1. The last estimate is taken from the proof of
Proposition 4.3. It remains to estimate the norm of v. By the triangle inequality,
we obtain

‖v‖L∞({d(x,∂Ω)≤δα}) ≤ ‖v − v‖L∞({d(x,∂Ω)≤δα}) + ‖v‖L∞({d(x,∂Ω)≤δα}). (27)

Since v ∈ H2(Ω), we have v ∈ C0,β(Ω) with β ∈ (0, 1) if d = 2 and β = 1/2 if
d = 3. That means, there exists a constant CH ≥ 0 such that

|v(x)− v(y)| ≤ CH‖x− y‖β
2 for all x,y ∈ Ω.

By the Sobolev imbedding theorem, this constant can be estimated by CH ≤
C(Ω)‖v‖H2(Ω). We fix an arbitrary x ∈ {d(x, ∂Ω) ≤ δα} and we take y ∈ ∂Ω with
‖x − y‖2 = d(x,y). Since v vanishes on ∂Ω, we obtain ‖v(x)‖2 ≤ CHd(x, ∂Ω)β .
It follows

‖v‖L∞({d(x,∂Ω)≤δα}) ≤ CHδαβ .

The first term on the right hand side of (27) is, using that the L1(Rd) norm of the
Gaussian filter is equal to one,

‖v − v‖L∞({d(x,∂Ω)≤δα}) = ess sup
x∈{d(x,∂Ω)≤δα}

∣∣∣∣∫
Rd

gδ(x− y)(v(x)− v(y))dy
∣∣∣∣ .

Since v vanishes outside Ω, it can be easily proven that

|v(x)− v(y)| ≤ CH‖x− y‖β
2
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holds for all x,y ∈ Rd. We obtain, using the symmetry of the Gaussian filter,∣∣∣∣∫
Rd

gδ(x− y)(v(x)− v(y))dy
∣∣∣∣

≤ CH

∫
Rd

gδ(x− y)‖x− y‖β
2dy = CH

∫
Rd

gδ(δz)δβ+d‖z‖β
2dz

= CCHδβ

∫
Rd

exp(−6‖z‖22)‖z‖β
2dz.

The last integral is finite. Thus, we can conclude

‖v − v‖L∞({d(x,∂Ω)≤δα}) ≤ CCHδβ .

Since δβ decays faster for small δ than δβα, we obtain the estimate

‖v‖k
L∞({d(x,∂Ω)≤δα}) ≤ Ck

Hδβαk.

Combining this estimate with (26) and using the estimate for CH , we get∫
Rd

|v(x)Bδ(x)|kdx ≤ Cδ1+(−d+
(d−1)α

q +βα)k‖v‖k
H2(Ω).

This dominates estimate (25) for small δ. Collecting terms, gives the final result.
¤

An easy consequence of Proposition 6.1 is the following

Corollary 6.1. Let the assumptions of Proposition 6.1 be fulfilled. Then, the weak
form of the commutation error is bounded:∣∣∣∣∫

Rd

v(x)
∫

∂Ω

gδ(x− s)ψ(s)ds
∣∣∣∣ dx ≤ Cδ1−d+

(d−1)α
q +βα‖ψ‖Lp(∂Ω)‖v‖H2(Ω). (28)

Remark 6.1. Let d = 2 and p < ∞ arbitrary large. Then q is arbitrary close to
one. Choosing α and β also arbitrary close to one leads to the following power of
δ in (28)

1 + (−2 + (1− ε1) + (1− ε2)) = 1− (ε1 + ε2) = 1− ε3

for arbitrary small ε1, ε2, ε3 > 0. In this case, the convergence is almost of first
order.

The result of Proposition 6.1 does not provide an order of convergence for
d = 3. Lemma 2.1 suggests choosing p = 4, i.e. q = 4/3. Then, the power of δ in
(28) becomes 2(α− 1), which is negative for α < 1.
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7. The boundedness of the kinetic energy for u in some LES mod-
els

The space averaged Navier–Stokes equations

ut − ν∆u +∇ · (uuT ) +∇p (29)

= f +
∫

∂Ω

g(x− s) [ν∇u(t, s)n(s)− p(t, s)n(s)] ds in (0, T )× Rd

∇ · u = 0 in (0, T )× Rd (30)
u |t=0 = u0 in Rd (31)

are not yet a closed system since the tensor uuT is a priori not related to u and
p. One central issue in LES is closure: modeling this tensor in terms of u and p.

In this section, we will apply the results of Section 6 to show that the kinetic
energy of u is bounded for a number of LES models including the previously
omitted Aδ(S(u, p)) commutation error term if δ is sufficiently small.

7.1. The Smagorinsky model

We consider first one of the simplest LES model which goes back to Smagorinsky
[24]. This model is obtained by

uuT ≈ uuT − Cνδ2‖∇u‖F∇u + terms absorbed into ∇p,

where Cν > 0 and ‖∇u‖F = (∇u : ∇u)1/2 is the Frobenius norm of ∇u.
The existence and uniqueness of a weak solution of the Smagorinsky model

posed in a bounded domain, with homogeneous Dirichlet boundary conditions
and without the boundary integral in (29) has been proven by Ladyzhenskaya
[17, 18] and Du and Gunzburger [7].

The momentum equation of the Smagorinsky model has the form

ut −∇ ·
((

ν + Cνδ2‖∇u‖F

)∇u
)

+∇ · (uuT ) +∇p

= f +
∫

∂Ω

gδ(x− s)ψ(t, s)ds in (0, T )× Rd (32)

with ψ(t, s) = ν∇u(t, s)n(s)−p(t, s)n(s). We assume, there exists a solution (u, p)
of (32), (30), (31) Multiplying 32 by u and integrating on Rd give

∂

∂t

‖u‖2(L2(Rd))d

2
−

∫
Rd

∇ · ((ν + Cνδ2‖∇u‖F

)∇u
) · udx

+
∫

Rd

∇ · (uuT ) · udx +
∫

Rd

∇p · udx

=
∫

Rd

f · udx +
∫

Rd

u(t,x) ·
(∫

∂Ω

gδ(x− s)ψ(t, s)ds
)

dx. (33)
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Next, the terms on the left hand side are studied. Using the definition of u, chang-
ing variables, noting that u vanishes outside Ω and applying Fubini’s theorem, we
obtain∫

Rd

∇p(x) · u(x)dx

=
∫

Rd

u(y) ·
(∫

Rd

∇p(y + z)gδ(z)dz
)

dy

=
∫

Rd

gδ(z)
(∫

Ω

∇p(y + z) · u(y)dy
)

dz

=
∫

Rd

gδ(z)
(
−

∫
Ω

p(y + z)(∇ · u)(y)dy +
∫

∂Ω

p(s + z)u(s) · n(s)ds
)

dz

= 0,

since u is divergence free and vanishes on ∂Ω. With an index calculation, using
that u is divergence free in Rd, and applying the same arguments as for the pressure
term, one obtains∫

Rd

∇ · (uuT ) · udx =
1
2

∫
Rd

∇(u · u) · udx = 0.

By applying the Fubini’s theorem in the same way as before, follows that

−
∫

Rd

∇ · ((ν + Cνδ2‖∇u‖F )∇u) · udx

=
∫

Rd

((ν + Cνδ2‖∇u‖F )∇u) : ∇udx

≥ 0.

The first term on the right hand side of (33) is estimated by the Cauchy–Schwarz
inequality and Young’s inequality

∫
Rd

f · udx ≤ ‖f‖(L2(Rd))d‖u‖(L2(Rd))d ≤
‖f‖2(L2(Rd))d

2
+
‖u‖2(L2(Rd))d

2
.

We obtain

∂

∂t

‖u‖2(L2(Rd))d

2

≤
‖f‖2(L2(Rd))d

2
+
‖u‖2(L2(Rd))d

2
+

∫
Rd

u(t,x) ·
(∫

∂Ω

gδ(x− s)ψ(t, s)ds
)

dx.
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Assuming f ∈ L2(0, T ; (L2(Rd))d), so that Gronwall’s lemma can be applied, gives

‖u(T )‖2(L2(Rd))d

2

≤ exp(T )
‖u0‖2(L2(Rd))d

2
+

∫ T

0

exp(T − t)
‖f(t)‖2(L2(Rd))d

2
dt (34)

+
∫ T

0

exp(T − t)
(∫

Rd

u(t,x) ·
(∫

∂Ω

gδ(x− s)ψ(t, s)ds
)

dx
)

dt.

Thus, the kinetic energy of u at time T is bounded by the kinetic energy of the
initial data, by the right hand side and by a third term, which vanishes as δ → 0 by
Proposition 6.1. For d = 2, it follows from Remark 6.1, (5) and Young’s inequality

‖u(T )‖2(L2(R2))2

2

≤ exp(T )
‖u0‖2(L2(R2))2

2
+

∫ T

0

exp(T − t)
‖f(t)‖2(L2(R2))2

2
dt (35)

+Cδ1−ε3

∫ T

0

exp(T − t)
(
‖u(t)‖2(H2(Ω))2 + ‖p(t)‖2H1(Ω)

)
dt

with arbitrary ε3 > 0.

Remark 7.1. One obtains the same result for the deformation tensor formulation
of the momentum equation and a Smagorinsky model of the form

uuT ≈ uuT − Cνδ2‖D(u)‖F D(u) + terms absorbed into ∇p.

7.2. The Taylor LES model

The second model which we will discuss is called variously gradient method of the
Taylor LES model developed by Leonard [19] and Clark et al. [4]. In the mixed
Taylor LES model, a Smagorinsky model for the turbulent fluctuations is included
in the model of the non-linear convective term given by

uuT ≈ uuT − Cνδ2‖∇u‖F∇u +
δ2

12
∇u∇uT .

The existence and uniqueness of a weak solution of the Taylor LES model in a
bounded domain, equipped with homogeneous Dirichlet boundary conditions and
without the boundary integral in (29) has been proven for Cν large enough by
Coletti [5]. We study the energy balance of the Taylor LES model including the
term Aδ(S(u, p)).

Inserting the Taylor LES model into (29), multiplying by u and integrating
by parts, the non-linear convective term and the pressure term vanish as in the
Smagorinsky model. The bilinear viscous term is obviously non-negative. The
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non-linear viscous term is treated in connection with the third term in the Taylor
LES model. Using the same arguments as in the Smagorinsky model, one finds∫

Rd

∇ ·
(
−Cνδ2‖∇u‖F∇u +

δ2

12
∇u∇uT

)
· udx

=
∫

Rd

Cνδ2‖∇u‖F∇u : ∇u− δ2

12
(∇u∇uT ) : ∇udx. (36)

By norm equivalence in Rd × Rd,(
d∑

i=1

|aij |3
) 1

3

≤ ‖A‖F ≤ C(d)

(
d∑

i=1

|aij |3
) 1

3

,

we get ∫
Rd

Cνδ2‖∇u‖F∇u : ∇udx

=
∫

Rd

Cνδ2‖∇u‖3F dx ≥ Cνδ2‖∇u‖3L3(Rd).

The second term in (36) is estimated in a similar way. Using twice the Cauchy–
Schwarz inequality, one obtains∫

Rd

δ2

12
(∇u∇uT ) : ∇udx ≤

∫
Rd

δ2

12
‖∇u‖3F dx ≤ C(d)

δ2

12
‖∇u‖3L3(Rd).

We get finally

−
∫

Rd

(
−Cνδ2‖∇u‖F∇u +

δ2

12
∇u∇uT

)
: ∇udx

≥ Cνδ2‖∇u‖3L3(Rd) − C(d)
δ2

12
‖∇u‖3L3(Rd) ≥ 0

if Cν is sufficiently large.
Now, we can continue as for the Smagorinsky model and obtain also the esti-

mates (34) and (35) for the kinetic energy of u if Cν is chosen large enough and
if δ is sufficiently small.

7.3. The rational LES model

The rational LES model was proposed in [11]. Including the Smagorinsky model
for the effects of turbulent fluctuations, there are two variants of this model, one
of them has the form

uuT ≈ uuT − Cνδ2‖∇u‖F∇u +
δ2

12
gδ ∗

(∇u∇uT
)
.
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The existence and uniqueness of generalized solutions of the rational LES model in
the space periodic case for small data and small times has been proven by Berselli
et al. [3].

Proceeding as in the Taylor LES model, the only difference is the term∫
Rd

Cνδ2‖∇u‖3F −
δ2

12
gδ ∗

(∇u∇uT
)

: ∇udx.

The application of Fubini’s theorem and the symmetry of the Gaussian filter yield∫
Rd

gδ ∗ (∇u∇uT ) : ∇udx =
∫

Rd

∇u∇uT : (gδ ∗ ∇u)dx.

It follows with the same arguments as in the estimate for the Taylor LES model,
using in addition Hölder’s inequality for convolutions,∫

Rd

gδ ∗
(∇u∇uT

)
: ∇udx ≤

∫
Rd

‖∇u‖2F ‖gδ ∗ ∇u‖F dx

≤ ‖∇u‖2L3(Rd)‖gδ ∗ ∇u‖L3(Rd)

≤ ‖∇u‖3L3(Rd)‖gδ‖L1(Rd) = ‖∇u‖3L3(Rd).

This gives the estimate∫
Rd

Cνδ2‖∇u‖3F −
δ2

12
gδ ∗

(∇u∇uT
)

: ∇udx

≥
(

Cνδ2 − C3
KC(d)

δ2

12

)
‖∇u‖3L3(Rd) ≥ 0

if Cν is large enough.
That means, also for the rational LES model, the kinetic energy of u can be

estimated in form (34) and (35) if Cν is chosen sufficiently large and δ sufficiently
small.
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