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Abstract. A family of algebraic flux correction (AFC) schemes for linear boundary value
problems in any space dimension is studied. These methods’ main feature is that they limit the
fluxes along each one of the edges of the triangulation, and we suppose that the limiters used are
symmetric. For an abstract problem, the existence of a solution, existence and uniqueness of the
solution of a linearized problem, and an a priori error estimate are proved under rather general
assumptions on the limiters. For a particular (but standard in practice) choice of the limiters, it is
shown that a local discrete maximum principle holds. The theory developed for the abstract problem
is applied to convection-diffusion-reaction equations, where in particular an error estimate is derived.
Numerical studies show its sharpness.
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1. Introduction. Many processes from nature and industry can be modeled
using (systems of) partial differential equations (PDEs). Usually, these equations
cannot be solved analytically. Instead, only numerical approximations can be com-
puted, e.g., by using a finite element method (FEM). The Galerkin FEM replaces just
the infinite-dimensional spaces from the variational form of the differential equation
with finite-dimensional counterparts. However, if the considered problem contains
a wide range of important scales, the Galerkin FEM does not give useful numerical
results unless all scales are resolved. For many problems, the resolution of all scales
is not affordable because of the huge computational costs (memory, computing time).
The remedy consists of modifying the Galerkin FEM in such a way that the effect
of small scales is taken into account on grids which do not resolve all scales. This
methodology is usually called stabilization. The most common strategy modifies or
enriches the Galerkin FEM, e.g., such that the new discrete problem provides addi-
tional control of the error in appropriate norms. An alternative approach acts on
the algebraic level; i.e., algebraic representations of discrete operators and vectors are
modified before computing a numerical solution. This paper studies a method of the
latter type.

Applications of algebraically stabilized FEMs can be found in particular for
convection-dominated problems. Their construction, e.g., in [18, 16, 17], is performed
for transport equations, and they are called flux-corrected transport (FCT) schemes
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(see also [7] for their application to compressible flows). These schemes can be used
also for the discretization of time-dependent convection-diffusion equations, e.g., as
in [4, 11], where the convection-diffusion equations are part of population balance
systems. In [11] it is explicitly emphasized that the FCT scheme was preferred over
the popular streamline-upwind Petrov–Galerkin (SUPG) stabilization, which adds an
additional term to the Galerkin FEM, because of a former bad experience with this
stabilization. More precisely, the lack of positivity of the solution provided by SUPG
caused blow ups in finite time for some nonlinear coupled problems in chemical en-
gineering (for details, see [10]). Altogether, the advantages of the FCT methods,
compared with the majority of other stabilized methods, are as follows. First, their
construction relies on the goal of conservation and of satisfying a discrete maximum
principle. Second, since this sort of method acts only at the algebraic level, without
taking into consideration the weak formulation, their implementation is independent
of the space dimension. The importance of these two points for many applications
does not need to be emphasized. However, there are also drawbacks. First, for most
methods, one has to solve a nonlinear discrete problem, even when the PDE to be
solved is linear. This issue is, in our opinion, of minor importance, since in appli-
cations one encounters generally nonlinear problems. Second, the FCT methodology
has, so far, been applied successfully only for lowest order finite elements, which limits
the accuracy of the computed solutions to the best approximation in these spaces (the
only exception of this fact being, to the best of our knowledge, the work [15]).

This paper analyzes algebraic stabilizations for linear steady-state boundary value
problems. These methods are called algebraic flux correction (AFC) schemes. Apart
from the obvious properties of these methods, which are the basis of their construction,
there has been no numerical analysis of them until very recently. The first contribution
in this field is [2], where some preliminary results on the analysis of an AFC scheme
(cf. [14]) for a linear steady-state convection-diffusion-reaction equation in one space
dimension were reported. The discretization studied in [2] is in some sense more
general than the AFC methodology used in practice. In the methodology of [2], one
has to compute limiters αij ∈ [0, 1] (see below), and in contrast to the common
application of AFC schemes, it was not assumed that αij = αji, which may cause a
lack of conservation. Besides other properties, it was proved in [2] that the nonlinear
discrete problem might not even possess a solution. Thus, there is an important
physical as well as a strong mathematical reason for including the symmetry condition
in the scheme, which will be done in this paper.

The first part of the paper (sections 2–6) considers a general linear boundary value
problem in several space dimensions. After introducing a nonlinear AFC scheme in
section 2, the existence of a solution is proved, and then the existence of a unique
solution of the linearized scheme is shown, both in section 3. The symmetry of the
limiters, i.e., αij = αji, the requirement that αij ∈ [0, 1], and a continuity assumption
are the minimal assumptions used in this section. Section 4 considers a concrete
choice of the limiters, which is a standard definition found in the literature. It is
shown that these limiters satisfy the assumptions made in the preceding analysis, so
they lead to discrete problems that have a solution. In section 5 we give a general
proof of the discrete maximum principle, since we have not been able to find it in
the literature, although the AFC family of methods is built to preserve this property.
In section 6, the AFC scheme is formulated in a variational form and an abstract
error estimate is derived, with only the same minimal assumptions on the limiters
as used in section 3. As usual for stabilized methods, the norm for which the error
estimate is given contains a contribution from the stabilization. To the best of our
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knowledge, this is the first error estimate for algebraically stabilized FEMs. In the
second part of the paper (sections 7–8), the abstract theory is applied to steady-state
linear convection-diffusion-reaction equations. In section 7 an error estimate for this
kind of equation is derived. Numerical studies are presented in section 8. It is shown
that within the minimal assumptions on the limiters used in the analysis, the derived
error estimate is sharp. However, applying the definition of the limiters as discussed in
section 5, one can observe a higher order of convergence. The orders of convergence for
standard norms depend on the concrete grid and are sometimes suboptimal. Finally,
in an appendix at the end of the paper a few supplementary results are proved.

2. An algebraic flux correction scheme. Consider a linear boundary value
problem for which the maximum principle holds. Let us discretize this problem by
the FEM. Then the discrete solution can be represented by a vector U ∈ RN of
its coefficients with respect to a basis of the respective finite element space. Let us
assume that the last N −M components of U (0 < M < N) correspond to nodes
where Dirichlet boundary conditions are prescribed, whereas the first M components
of U are computed using the finite element discretization of the underlying PDE. Then
U ≡ (u1, . . . , uN ) satisfies a system of linear equations of the form

N∑
j=1

aij uj = gi , i = 1, . . . ,M ,(1)

ui = ubi , i = M + 1, . . . , N .(2)

We assume that the matrix (aij)
M
i,j=1 is positive definite, i.e.,

(3)

M∑
i,j=1

ui aij uj > 0 ∀ (u1, . . . , uM ) ∈ RM \ {0} .

It is natural to require that the maximum principle also hold for the discrete
problem (1), (2). Due to (3), the diagonal entries of the matrix (aij)

M
i,j=1 are positive,

and hence, locally, the discrete maximum principle corresponds to the statement

(4) ∀ i ∈ {1, . . . ,M} :

N∑
j=1

aij uj ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

uj

or, at least,

(5) ∀ i ∈ {1, . . . ,M} :

N∑
j=1

aij uj ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

u+
j ,

where u+
j = max{0, uj}. It can be shown (cf. the appendix), that (4) holds if and

only if

(6) aij ≤ 0 ∀ i 6= j, i = 1, . . . ,M, j = 1, . . . , N ,

and

(7)

N∑
j=1

aij = 0 , i = 1, . . . ,M .
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The discrete maximum principle (5) holds if and only if (6) is satisfied and

(8)

N∑
j=1

aij ≥ 0 , i = 1, . . . ,M .

While conditions (7) or (8) are often satisfied, the property (6) does not hold
for many discretizations, in particular, of convection-dominated problems. The aim
of the AFC method is to modify the algebraic system (1) in such a way that the
necessary conditions for the validity of the discrete maximum principle are satisfied
and layers are not excessively smeared.

The starting point of the AFC algorithm is the finite element matrix A = (aij)
N
i,j=1

corresponding to the above-mentioned finite element discretization in the case where
homogeneous natural boundary conditions are used instead of the Dirichlet ones. We
introduce a symmetric artificial diffusion matrix D = (dij)

N
i,j=1 possessing the entries

(9) dij = dji = −max{aij , 0, aji} ∀ i 6= j , dii = −
∑
j 6=i

dij .

Then the matrix Ã := A + D satisfies the necessary conditions for the discrete maxi-
mum principle provided that (7) or (8) holds for the matrix A.

Going back to the solution of (1), this system is equivalent to

(10) (ÃU)i = gi + (DU)i , i = 1, . . . ,M .

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑
j 6=i

fij , i = 1, . . . , N ,

where fij = dij (uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . Now the idea of
the AFC schemes is to limit those antidiffusive fluxes fij that would otherwise cause
spurious oscillations. To this end, system (1) (or, equivalently, (10)) is replaced by

(11) (ÃU)i = gi +
∑
j 6=i

αij fij , i = 1, . . . ,M ,

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original
system (1) is recovered. Hence, intuitively, the coefficients αij should be as close to 1
as possible to limit the modifications of the original problem. They can be chosen in
various ways, but their definition is always based on the above fluxes fij ; see [13, 14,
15, 16, 17] for examples. To guarantee that the resulting scheme is conservative, one
should require that the coefficients αij be symmetric, i.e.,

(12) αij = αji , i, j = 1, . . . , N .

Rewriting (11) using the definition of the matrix Ã, one obtains the final form
of the AFC scheme to be investigated in this paper. It is the following system of
nonlinear equations:

N∑
j=1

aij uj +

N∑
j=1

(1− αij) dij (uj − ui) = gi , i = 1, . . . ,M ,(13)

ui = ubi , i = M + 1, . . . , N ,(14)

where αij = αij(u1, . . . , uN ) ∈ [0, 1], i, j = 1, . . . , N , satisfy (12).
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3. Solvability of the algebraic flux correction scheme and of its lin-
earized variant. In this section we prove that the nonlinear problem (13), (14) is
solvable under a continuity assumption on αij . As a consequence, we obtain the
unique solvability of the linearized problem (13), (14) (with αij independent of the
solution), which is useful for computing the solution of (13), (14) numerically using a
fixed-point iteration. The following result will be of great use in the proof of existence
of solutions below.

Lemma 1. Consider any µij = µji ≤ 0, i, j = 1, . . . , N . Then

N∑
i,j=1

vi µij (vj − vi) = −
N∑

i, j = 1
i < j

µij (vi − vj)2 ≥ 0 ∀ v1, . . . , vN ∈ R .

Proof. A quick calculation shows that

N∑
i,j=1

vi µij (vj − vi) =

N∑
i, j = 1
i < j

vi µij (vj − vi) +

N∑
j, i = 1
j > i

vj µji (vi − vj)

= −
N∑

i, j = 1
i < j

µij (vi − vj)2 ≥ 0 ,

and the proof is finished.

For proving the solvability of the nonlinear problem, we use the following conse-
quence of Brower’s fixed-point theorem, whose proof can be found in [20, Lemma 1.4,
p. 164].

Lemma 2. Let X be a finite-dimensional Hilbert space with inner product (·, ·)X
and norm ‖ · ‖X . Let T : X → X be a continuous mapping, and let K > 0 be a real
number such that (Tx, x)X > 0 for any x ∈ X with ‖x‖X = K. Then there exists
x ∈ X such that ‖x‖X < K and Tx = 0.

The following is our main result on existence of solutions for the AFC scheme.

Theorem 3. Let (3) hold. For any i, j ∈ {1, . . . , N}, let αij : RN → [0, 1] be
such that αij(u1, . . . , uN )(uj −ui) is a continuous function of u1, . . . , uN . Finally, let
the functions αij satisfy (12). Then there exists a solution of the nonlinear problem
(13), (14).

Proof. Throughout this proof, we denote by Ṽ ≡ (v1, . . . , vM ) the elements of the
space RM and, if vi with i ∈ {M + 1, . . . , N} occurs, we always assume that vi = ubi .

To any Ṽ ∈ RM we assign V := (v1, . . . , vN ). Furthermore, we set G := (g1, . . . , gM ).
We denote by (·, ·) the usual inner product in RM and by ‖ · ‖ the corresponding
(Euclidean) norm.

It is easy to show by contradiction that, in view of (3),

CM := inf
‖Ṽ‖=1

M∑
i,j=1

vi aij vj > 0 .

Thus, one has

(15)

M∑
i,j=1

vi aij vj ≥ CM ‖Ṽ‖2 ∀ Ṽ ∈ RM .
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Let us define the operator T : RM → RM by

(T Ṽ)i =

N∑
j=1

aij vj +

N∑
j=1

[1− αij(V)] dij (vj − vi)− gi , i = 1, . . . ,M .

Then U is a solution of the nonlinear problem (13), (14) if and only if T Ũ = 0. The
operator T is continuous and, in view of (15), Lemma 1, and Hölder’s and Young’s
inequalities, one derives

(T Ṽ, Ṽ) =

M∑
i,j=1

vi aij vj +

N∑
i,j=1

vi [1− αij(V)] dij (vj − vi)

+

M∑
i=1

vi

N∑
j=M+1

aij u
b
j −

N∑
i=M+1

ubi

N∑
j=1

[1− αij(V)] dij (vj − ubi )− (G, Ṽ)

≥ CM ‖Ṽ‖2 − C0 − C1 ‖Ṽ‖ ≥
CM

2
‖Ṽ‖2 − C2 ,

where C0, C1, and C2 are positive constants that do not depend on Ṽ. Then for any
Ṽ ∈ RM satisfying ‖Ṽ‖ =

√
3C2/CM , one has (T Ṽ, Ṽ) > 0, and hence, according to

Lemma 2, there exists Ũ ∈ RM such that T Ũ = 0.

Corollary 4. Let (3) hold. Consider any αij ∈ [0, 1], i, j = 1, . . . , N , satisfying
(12). Then the system (13), (14) has a unique solution for any g1, . . . , gM ∈ R and
ubM+1, . . . , u

b
N ∈ R.

Proof. According to Theorem 3, for any values of g1, . . . , gM and ubM+1, . . . , u
b
N ,

there exists a solution of the considered linear system. Consequently, the solutions
have to be unique.

Remark 5. The statement of Corollary 4 can be proved directly (without using
Theorem 3) by showing that the homogeneous system

N∑
j=1

aij uj +

N∑
j=1

(1− αij) dij (uj − ui) = 0 , i = 1, . . . ,M ,(16)

ui = 0 , i = M + 1, . . . , N ,(17)

has only the trivial solution. Indeed, if U = (u1, . . . , uN ) solves (16), (17), then
according to Lemma 1, one has

M∑
i,j=1

ui aij uj = −
N∑

i,j=1

ui (1− αij) dij (uj − ui) ≤ 0 .

Therefore, ui = 0, i = 1, . . . ,M , in view of (3).

Finally, let us formulate sufficient conditions on the functions αij , ensuring the
validity of the continuity assumption in Theorem 3 for many particular examples of
the functions αij used in practice (cf., e.g., [13, 16, 17]).

Lemma 6. Consider any i, j ∈ {1, . . . , N}, and let αij : RN → [0, 1] satisfy

(18) αij(U) =
Aij(U)

|uj − ui|+Bij(U)
∀ U ≡ (u1, . . . , uN ) ∈ RN , ui 6= uj ,
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where Aij , Bij : RN → [0,∞) are nonnegative functions that are continuous at any
point U ∈ RN with ui 6= uj. Then Φij(U) := αij(U)(uj −ui) is a continuous function
of u1, . . . , uN on RN . Moreover, if the functions Aij, Bij are Lipschitz-continuous
with the constant L in the sets {U ∈ RN ; ui < uj} and {U ∈ RN ; ui > uj}, then
the function Φij is Lipschitz-continuous on RN , with the constant 2L+

√
2.

Proof. Consider any Ū ≡ (ū1, . . . , ūN ) ∈ RN . If ūi 6= ūj , then there is a neigh-
bourhood of Ū , where the denominator from (18) does not vanish and the functions
Aij , Bij are continuous so that αij is continuous at Ū . If ūi = ūj , we employ the fact
that αij ∈ [0, 1], which implies that |αij(U)(uj − ui)| ≤ |uj − ui| ≤

√
2 ‖U − Ū‖ for

any U ≡ (u1, . . . , uN ) ∈ RN . Thus, αij(U)(uj − ui) is continuous at Ū .
To prove the Lipschitz-continuity of Φij , consider any U , Ū ∈ RN with U =

(u1, . . . , uN ) and Ū = (ū1, . . . , ūN ). Set v = uj − ui, v̄ = ūj − ūi. If v v̄ ≤ 0, then

|Φij(U)− Φij(Ū)| ≤ |v|+ |v̄| = |v − v̄| ≤
√

2 ‖U − Ū‖ .

If v v̄ > 0, then

Φij(U)− Φij(Ū) = (Aij(U)−Aij(Ū))
v̄

|v̄|+Bij(Ū)

+ αij(U)
(Bij(Ū)−Bij(U)) v̄ + (v − v̄)Bij(Ū)

|v̄|+Bij(Ū)
,

and hence

|Φij(U)− Φij(Ū)| ≤ |Aij(U)−Aij(Ū)|+ |Bij(U)−Bij(Ū)|+ |v − v̄| .

This proves the lemma.

4. An example of the choice of αij. In this section we present a concrete
choice of the limiters αij . This choice is often used in computations, and we show
that it satisfies the assumptions of Lemma 6 and hence leads to a solvable nonlinear
problem (13), (14).

The definition of the coefficients αij considered in this section relies on the values
P+
i , P−i , Q+

i , Q−i computed for i = 1, . . . , N in the following way. First, one initializes
all these quantities by zero. Then one goes through all pairs of indices i, j ∈ {1, . . . , N}
and performs the updates

P+
i := P+

i + max{0, fij} , P−i := P−i −max{0, fji} if aji ≤ aij ,
Q+

i := Q+
i + max{0, fji} , Q−i := Q−i −max{0, fij} if i < j ,

Q+
j := Q+

j + max{0, fij} , Q−j := Q−j −max{0, fji} if i < j ,

where we again use the notation fij = dij (uj−ui). After having computed the values
P+
i , P−i , Q+

i , Q−i , i = 1, . . . , N , one defines

R+
i := min

{
1,
Q+

i

P+
i

}
, R−i := min

{
1,
Q−i
P−i

}
, i = 1, . . . , N .

If P+
i or P−i vanishes, we set R+

i := 1 or R−i := 1, respectively. Furthermore,
according to [12], these quantities are set to 1 at Dirichlet nodes, i.e.,

R+
i := 1 , R−i := 1 , i = M + 1, . . . , N .
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Finally, for any i, j ∈ {1, . . . , N} such that aji ≤ aij , one sets

(19) αij :=

 R+
i if fij > 0 ,

1 if fij = 0 ,
R−i if fij < 0 ,

αji := αij .

It is worth mentioning that this algorithm is the one presented in [14] (that originates
from the ideas of [22]) to which, following [12], the symmetry condition αij = αji has
been added.

Note that the quantities P+
i , P−i , Q+

i , Q−i can be expressed in the form

(20) P+
i =

N∑
j = 1

aji ≤ aij

f+
ij , P−i =

N∑
j = 1

aji ≤ aij

f−ij , Q+
i = −

N∑
j=1

f−ij , Q−i = −
N∑
j=1

f+
ij ,

where f+
ij = max{0, fij} and f−ij = min{0, fij}.

The following result shows that the above coefficients αij satisfy the hypotheses
of Theorem 3, and then that they lead to a solvable nonlinear problem (13), (14).

Lemma 7. The above coefficients αij are such that αij(u1, . . . , uN )(uj − ui) are
Lipschitz-continuous functions of u1, . . . , uN on RN .

Proof. Consider any i, j ∈ {1, . . . , N}. It suffices to consider the case αij 6≡ 1
(and hence dij 6= 0). Furthermore, due to (12), one may assume that aji ≤ aij . If
ui > uj , then fij > 0, and hence

αij = R+
i =

min{P+
i , Q

+
i }

|fij |+ P̃+
i

with P̃+
i =

N∑
k = 1

aki ≤ aik, k 6= j

f+
ik .

If ui < uj , then fij < 0 so that

αij = R−i =
min{−P−i ,−Q

−
i }

|fij | − P̃−i
with P̃−i =

N∑
k = 1

aki ≤ aik, k 6= j

f−ik .

Thus, αij is of the form (18), with functions Aij and Bij satisfying

Aij =
1

|dij |

{
min{−P−i ,−Q

−
i } if ui < uj ,

min{P+
i , Q

+
i } if ui > uj ,

Bij =
1

|dij |

{
−P̃−i if ui < uj ,

P̃+
i if ui > uj .

Since the maximum or minimum of two Lipschitz-continuous functions with constant
L is again a Lipschitz-continuous function with constant L, the functions Aij and Bij

are Lipschitz-continuous with constant
√

2 (
∑N

k=1 |dik|)/|dij | in the sets {ui < uj} and
{ui > uj}. Then the hypotheses of Lemma 6 are satisfied, and the result immediately
follows from Lemma 6.

Remark 8. There is an apparent ambiguity in the definition of the coefficients αij

if aij = aji. However, often aij + aji ≤ 0 (cf. assumption (22) in the next section),
and then aij = aji ≤ 0. Thus, if the artificial diffusion matrix is defined by (9), one
obtains dij = 0 so that the respective αij does not occur in the nonlinear problem
(13), (14) and can be defined arbitrarily.
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5. The discrete maximum principle. In this section we prove several versions
of the discrete maximum principle for the case when the coefficients αij are defined
as in the previous section. We start with the main assumptions needed for the proofs,
namely,

aii > 0 ,

N∑
j=1

aij ≥ 0 ∀ i = 1, . . . ,M ,(21)

akl + alk ≤ 0 ∀ k, l = 1, . . . , N , k 6= l , k ≤M, or l ≤M ,(22)

and we recall that dij = dji = −max{aij , 0, aji} for all i, j = 1, . . . , N , i 6= j (cf.
(9)). The first condition in (21) is a consequence of (3), and the second is a necessary
condition for the validity of the discrete maximum principle in the case of linear
problem (1), (2). Note that the row sums are not affected by adding the nonlinear
term in (13). Condition (22) is weaker than (6). In section 7, we present a discrete
problem for which all the assumptions in (21) and (22) are satisfied.

Also, we present some notation that will be useful in what follows. We denote by

Upi = {j ∈ {1, . . . , N} ; j 6= i, aij < 0} , i = 1, . . . ,M ,

the sets of upwind nodes, and by

Doi = {j ∈ {1, . . . , N} ; j 6= i, aij > 0} , i = 1, . . . ,M ,

the sets of downwind nodes. In what follows, we shall tacitly assume that these sets
are not empty.

Thanks to (22), for any i ∈ {1, . . . ,M} and j ∈ {1, . . . , N} such that i 6= j and
dij 6= 0, one derives

aij < aji ⇔ j ∈ Upi , aji ≤ aij ⇔ j ∈ Doi .

Therefore, the sums in (20) defining P+
i and P−i can be written in the form

(23) P+
i =

∑
j∈Doi

f+
ij , P−i =

∑
j∈Doi

f−ij , i = 1, . . . ,M .

Moreover, the second term on the left-hand side of (13) can be written as

N∑
j=1

(1− αij) fij =

N∑
j=1

fij −
N∑

j = 1
aji ≤ aij

αij fij +

N∑
j = 1

aij < aji

αji fji

=

N∑
j=1

fij −
∑

j∈Doi

αij fij +
∑

j∈Upi

αji fji .

Furthermore, αij fij = R+
i f

+
ij + R−i f

−
ij for i ∈ {1, . . . ,M} and j ∈ Doi, and con-

sequently, αji fji = R+
j f

+
ji + R−j f

−
ji if i ∈ {1, . . . ,M} and j ∈ Upi. Then since

f+
ji = −f−ij and f−ji = −f+

ij , one obtains

N∑
j=1

(1− αij) fij =

N∑
j=1

fij −
∑

j∈Doi

(R+
i f

+
ij +R−i f

−
ij )−

∑
j∈Upi

(R+
j f
−
ij +R−j f

+
ij ) .
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Finally, denoting Z+
i := 1−R+

i and Z−i := 1−R−i , it follows that

N∑
j=1

(1− αij) fij =
∑

j∈Doi

(Z+
i f+

ij + Z−i f−ij ) +
∑

j∈Upi

(Z+
j f−ij + Z−j f+

ij ) .

Thus, the AFC scheme (13), (14) can be written in the form

N∑
j=1

aij uj +
∑

j∈Doi

(Z+
i f+

ij + Z−i f−ij ) +
∑

j∈Upi

(Z+
j f−ij + Z−j f+

ij ) = gi ,(24)

i = 1, . . . ,M ,

ui = ubi , i = M + 1, . . . , N .(25)

Next, defining

(26) Ai = ui

N∑
j=1

aij ,

one derives, for any i ∈ {1, . . . ,M},

N∑
j=1

aij uj =

N∑
j=1

aij (uj − ui) +Ai =
∑

j∈Upi

aij (uj − ui) +
∑

j∈Doi

aij (uj − ui) +Ai .

In view of (22), one has aij = −dij for j ∈ Doi, and then

N∑
j=1

aij uj =
∑

j∈Upi

aij (uj − ui)−
∑

j∈Doi

fij +Ai .

Therefore, using that
∑

j∈Doi
fij = P+

i + P−i (cf. (23)), (24) is equivalent to

(27) Ai − P+
i R+

i − P−i R−i +
∑

j∈Upi

(Z+
j f−ij + Z−j f+

ij + aij (uj − ui)) = gi .

The following is a preliminary technical result.

Lemma 9. Consider any i ∈ {1, . . . ,M}, and let ui ≤ uj for all j ∈ Upi . Then

(28) Ai − P−i R−i +R+
i

∑
j∈Doi

aij (uj − ui)− +
∑

j∈Upi

(aij + Z+
j dij) |uj − ui| = gi .

On the other hand, if ui ≥ uj for all j ∈ Upi, then

(29) Ai − P+
i R+

i +R−i
∑

j∈Doi

aij (uj − ui)+ −
∑

j∈Upi

(aij + Z−j dij) |uj − ui| = gi .

Proof. Since f+
ij = dij (uj − ui)−, f−ij = dij (uj − ui)+, and dij = −aij if j ∈ Doi,

the lemma follows immediately from (27).

The following result is a quick consequence of the above lemma, whose implica-
tions will become apparent in Corollary 11.
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Corollary 10. Consider any i ∈ {1, . . . ,M}, and let ui ≤ uj for all j ∈ Upi ∪
Doi . Then

(30) Ai +
∑

j∈Upi

(aij + Z+
j dij) |uj − ui| = gi .

On the other hand, if ui ≥ uj for all j ∈ Upi ∪Doi, then

(31) Ai −
∑

j∈Upi

(aij + Z−j dij) |uj − ui| = gi .

Proof. One has f+
ij = 0 for j = 1, . . . , N, and hence Q−i = 0, which gives P−i R−i =

0. Then (30) follows from (28). To prove (31) it is enough to note that f−ij = 0 for

j = 1, . . . , N , which leads to Q+
i = 0 and P+

i R+
i = 0, and then apply (29).

Finally, the following corollary states that if gi ≤ 0 (≥ 0), then ui cannot be a
strict positive (negative) local maximum (minimum).

Corollary 11. Consider any i ∈ {1, . . . ,M}. Then

gi ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

uj for ui ≥ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

u+
j ,(32)

gi ≥ 0 ⇒ ui ≥ min
j 6=i, aij 6=0

uj for ui ≤ 0 ⇒ ui ≥ min
j 6=i, aij 6=0

u−j .(33)

Proof. Let ui ≥ 0. Then thanks to (21), Ai ≥ 0 (where Ai is defined in (26)). If
ui > uj for all j ∈ Upi ∪ Doi, then (31) holds with a positive left-hand side. Thus,
if gi ≤ 0, then ui ≤ uj for some j ∈ Upi ∪ Doi, which implies (32). The second
statement is proved in an analogous way.

Remark 12. It is worth remarking that, if
∑N

j=1 aij = 0, then the previous results
can be strengthened since Lemma 9 and Corollary 10 hold with Ai = 0. Then Corol-
lary 11 is valid without the restriction on the sign of ui; i.e., for any i ∈ {1, . . . ,M},
one has

gi ≤ 0 ⇒ ui ≤ max
j 6=i, aij 6=0

uj ,

gi ≥ 0 ⇒ ui ≥ min
j 6=i, aij 6=0

uj .

This is in accordance with the corresponding results for PDEs (see, e.g., [6]).

6. Variational form of the algebraic flux correction scheme and error
estimation. In this section we show how the linear system (1), (2) originates from a
variational problem representing a finite element discretization and how, in turn, the
nonlinear algebraic problem (13), (14) can be put into a variational form. Then the
derivation of an error estimate is discussed. It is important to notice that all of the
results of this section, and the following one, are valid for limiters αij that are only
required to belong to [0, 1].

Let Ω ⊂ Rd, d ≥ 1, be a bounded domain and let the boundary ∂Ω of Ω be
Lipschitz-continuous and polyhedral (if d ≥ 2). Let a : H1(Ω) × H1

0 (Ω) → R be a
bilinear form, let ub ∈ H1/2(∂Ω)∩C(∂Ω), let g ∈ H−1(Ω), and consider the following
variational problem:

Find u ∈ H1(Ω) such that u = ub on ∂Ω and

(34) a(u, v) = 〈g, v〉 ∀ v ∈ H1
0 (Ω) .
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An example of such a variational problem will be presented in the next section.
To solve (34) numerically, let us introduce a finite element space Wh ⊂ C(Ω) ∩

H1(Ω) approximating the space H1(Ω), and set Vh := Wh ∩H1
0 (Ω). We denote the

basis functions of Wh by ϕ1, . . . , ϕN and assume that the functions ϕ1, . . . , ϕM (with
0 < M < N) form a basis in Vh. In addition, we assume that there are points
x1, . . . , xN ∈ Ω such that ϕi(xj) = δij , i, j = 1, . . . , N , where δij is the Kronecker
symbol, and that xM+1, . . . , xN ∈ ∂Ω (note that x1, . . . , xM ∈ Ω). Since constant

functions are always required to be contained in Wh, one has
∑N

i=1 ϕi = 1 in Ω. In
what follows, for any uh ∈Wh (or vh, zh, etc.), we shall denote by {ui}Ni=1 (or {vi}Ni=1,
{zi}Ni=1, etc.) the uniquely determined coefficients with respect to the above basis of
Wh, i.e.,

uh =

N∑
i=1

ui ϕi

(
or vh =

N∑
i=1

vi ϕi , zh =

N∑
i=1

zi ϕi , etc.

)
.

Of course, ui = uh(xi) (or vi = vh(xi), zi = zh(xi), etc.) for any i ∈ {1, . . . , N}.
It is sometimes convenient (cf. section 7) to approximate the bilinear form a by a

bilinear form ah : Wh × Vh → R. We assume that ah is elliptic on the space Vh; i.e.,
there is a constant Ca > 0 such that

(35) ah(vh, vh) ≥ Ca ‖vh‖2a ∀ vh ∈ Vh ,

where ‖ ·‖a is a norm on the space H1
0 (Ω) but generally only a seminorm on the space

H1(Ω).
Now an approximate solution of the variational problem (34) can be introduced

as the solution of the following finite-dimensional problem:

Find uh ∈Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

(36) ah(uh, vh) = 〈g, vh〉 ∀ vh ∈ Vh .

We denote

aij = ah(ϕj , ϕi) , i, j = 1, . . . , N ,(37)

gi = 〈g, ϕi〉 , i = 1, . . . ,M ,(38)

ubi = ub(xi) , i = M + 1, . . . , N .(39)

Then uh is a solution of the finite-dimensional problem (36) if and only if it satisfies
the relations (1) and (2). Moreover, the matrix (aij)

M
i,j=1 satisfies (3). We denote

dh(w; z, v) =

N∑
i,j=1

(1− αij(w)) dij (z(xj)− z(xi)) v(xi) ∀ w, z, v ∈ C(Ω) ,

with αij(w) := αij({w(xi)}Ni=1). This implies that

dh(wh; zh, vh) =

N∑
i,j=1

(1− αij(wh)) dij (zj − zi) vi ∀ wh, zh, vh ∈Wh ,

and hence we realize that the corresponding flux correction scheme (13), (14) is equiv-
alent to the following variational problem:

Find uh ∈Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

(40) ah(uh, vh) + dh(uh;uh, vh) = 〈g, vh〉 ∀ vh ∈ Vh .
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For any w ∈ C(Ω), the mapping dh(w; ·, ·) : C(Ω) × C(Ω) → R is a nonnegative
symmetric bilinear form (cf. Lemma 1), and hence it satisfies Schwarz’s inequality

(41) |dh(w; z, v)|2 ≤ dh(w; z, z) dh(w; v, v) ∀ w, z, v ∈ C(Ω) .

Thus, for any w ∈ C(Ω), the functional (dh(w; ·, ·))1/2 is a seminorm on C(Ω).
Now let uh ∈Wh be a solution of (40), and let us derive an estimate of the error

u − uh. A natural norm on Vh corresponding to the left-hand side of (40) is defined
by

‖vh‖h :=
(
Ca ‖vh‖2a + dh(uh; vh, vh)

)1/2

, vh ∈ Vh .

Note that ‖ · ‖h may be only a seminorm on Wh and that it is not defined on the
space H1(Ω). We introduce the set

W b
h = {zh ∈Wh ; zh(xi) = ub(xi), i = M + 1, . . . , N}

and consider any vh ∈ Vh and zh ∈W b
h. Then, according to (34) and (40), one obtains

ah(uh − zh, vh) + dh(uh;uh − zh, vh) = a(u, vh)− ah(zh, vh)− dh(uh; zh, vh) .

Since uh − zh ∈ Vh, using (35) and (41) one derives that

‖uh − zh‖h ≤ sup
vh∈Vh

a(u, vh)− ah(zh, vh)

‖vh‖h
+ (dh(uh; zh, zh))1/2 .

Assuming that u ∈ C(Ω), adding ‖u − zh‖h to both sides of this estimate and using
the triangle inequality, one obtains
(42)

‖u− uh‖h ≤ inf
zh∈W b

h

{
‖u− zh‖h + sup

vh∈Vh

a(u, vh)− ah(zh, vh)

‖vh‖h
+ (dh(uh; zh, zh))1/2

}
.

Let us introduce the Lagrange interpolation operator ih : C(Ω)→Wh by

ihv =

N∑
i=1

v(xi)ϕi , v ∈ C(Ω) .

Then ihu ∈W b
h, and hence using (42) one gets the estimate

(43)

‖u− uh‖h ≤ C1/2
a ‖u− ihu‖a + sup

vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h
+ (dh(uh; ihu, ihu))1/2 .

Thus, as usual, the error of the discrete solution is estimated by an interpolation
error and a consistency error. In the following section we estimate these terms for a
discretization of a convection-diffusion-reaction equation.

7. Application to a convection-diffusion-reaction equation. Let Ω be as
in section 6, and let us consider the steady-state convection-diffusion-reaction equation

(44) − ε∆u+ b · ∇u+ c u = g in Ω , u = ub on ∂Ω ,

where ε ∈ (0, ε0) with ε0 < +∞ is a constant, and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω),

g ∈ L2(Ω), and ub ∈ H
1
2 (∂Ω) ∩ C(∂Ω) are given functions satisfying

∇ · b = 0 , c ≥ σ0 ≥ 0 in Ω ,
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where σ0 is a constant. The weak solution of (44) satisfies (34) with

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) and 〈g, v〉 = (g, v) ,

where (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d. It is well known that the
weak solution of (44) exists, is unique, and satisfies the maximum principle (cf. [6]).

Let Th belong to a regular family of triangulations of Ω consisting of simplices.
We consider a space Wh ⊂ H1(Ω) consisting of continuous piecewise linear functions,
i.e.,

Wh = {vh ∈ C(Ω) ; vh|T ∈ P1(T ) ∀T ∈ Th} .

The points xi assigned to the basis functions ϕi introduced in the previous section
are vertices of the triangulation Th.

The matrix corresponding to the reaction term (c uh, vh) in the Galerkin finite el-
ement discretization of (44) has only nonnegative entries, which may cause a violation
of the condition (6). In order to overcome this, we replace the matrix corresponding
to the reaction term by a simple diagonal approximation:

(45) (c uh, vh) =

M∑
i=1

(c uh, ϕi) vi ≈
M∑
i=1

(c, ϕi)ui vi ∀ uh ∈Wh, vh ∈ Vh .

This has the extra impact of making the matrix D independent of c (see below).
An alternative diagonal approximation of the reaction matrix can be defined using a
low-order nodal quadrature for the reaction term, in which case the estimation of the
associated error follows standard approaches (provided that c has a higher regularity
than the one assumed so far). The error incurred by the use of (45) is estimated in
the next lemma.

Lemma 13. There is a constant C independent of h such that∣∣∣∣∣(c uh, vh)−
M∑
i=1

(c, ϕi)ui vi

∣∣∣∣∣ ≤ C h ‖c‖0,∞,Ω |uh|1,Ω ‖vh‖0,Ω

for all c ∈ L∞(Ω), uh ∈Wh, and vh ∈ Vh.

Proof. Consider any c ∈ L∞(Ω), uh ∈Wh, and vh ∈ Vh. Then

(c uh, vh)−
M∑
i=1

(c, ϕi)ui vi =

M∑
i=1

(c (uh − ui), ϕi) vi =
∑

T∈Th

M∑
i = 1
xi ∈ T

(c (uh − ui), ϕi)T vi

≤ ‖c‖0,∞,Ω

∑
T∈Th

M∑
i = 1
xi ∈ T

‖uh − ui‖0,1,T |vi| .

Next, using the Cauchy–Schwarz inequality one obtains

‖uh − ui‖0,1,T ≤ |T |1/2‖uh − ui‖0,T ≤ h
d/2
T ‖∇uh · (x− xi)‖0,T ≤ h

1+d/2
T |uh|1,T ,

where hT = diam(T ). Consequently,

(c uh, vh)−
M∑
i=1

(c, ϕi)ui vi ≤ h ‖c‖0,∞,Ω

∑
T∈Th

|uh|1,T h
d/2
T

∑
xi∈T

|vh(xi)| .

D
ow

nl
oa

de
d 

09
/0

1/
16

 to
 1

95
.1

13
.3

0.
30

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANALYSIS OF AFC SCHEMES 2441

Since h
d/2
T

∑
xi∈T |vh(xi)| ≤ C ‖vh‖0,T , the lemma follows by applying Hölder’s

inequality.

Using the approximation (45), the bilinear form ah in (36) is given by

ah(uh, vh) = ε (∇uh,∇vh) + (b · ∇uh, vh) +

M∑
i=1

(c, ϕi)ui vi ∀ uh ∈Wh, vh ∈ Vh

and satisfies (35), with
‖v‖2a = ε |v|21,Ω + σ0 ‖v‖20,Ω,

and Ca > 0 independent of h and the data of (44). The bilinear form ah defines the
matrix A = (aij)

N
i,j=1, whose entries are given by (37). The artificial diffusion matrix

D = (dij)
N
i,j=1 is defined using (9), and thus it is independent of c.

Remark 14. It is easy to verify that the matrix A satisfies (21). The assumption
(22) holds if and only if

(46) (∇ϕk,∇ϕl) ≤ 0 ∀ k, l = 1, . . . , N, k 6= l , k ≤M, or l ≤M .

The validity of (46) is guaranteed if the triangulation Th is weakly acute, i.e., if the
angles between faces in Th do not exceed π/2. In the two-dimensional case, it is
sufficient for (46) that Th is a Delaunay triangulation, i.e., that the sum of any pair
of angles opposite a common edge is less than or equal to π.

Now we can discuss the estimation of the terms on the right-hand side of the error
estimate (43). To this end, we assume that u ∈ H2(Ω). Then, standard interpolation
estimates (cf. [5]) give

(47) ‖u− ihu‖a ≤ C (ε+ σ0 h
2)1/2 h |u|2,Ω .

The remaining two terms on the right-hand side of (43) will be estimated in the
following two lemmas.

Lemma 15. Let σ0 > 0. Then there is a constant C independent of h and the
data of problem (44) such that for any u ∈ H2(Ω),

(48) sup
vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h
≤ C (ε+ σ−1

0 {‖b‖20,∞,Ω + ‖c‖20,∞,Ω})1/2 h ‖u‖2,Ω .

If c ≡ 0, then

(49) sup
vh∈Vh

a(u, vh)− ah(ihu, vh)

‖vh‖h
≤ C (ε+ ε−1 ‖b‖20,∞,Ω h

2)1/2 h |u|2,Ω .

Proof. Consider any u ∈ H2(Ω) and vh ∈ Vh. Then, in view of Lemma 13,

a(u, vh)− ah(ihu, vh) = ε (∇(u− ihu),∇vh) + (b · ∇(u− ihu), vh)

+ (c (u− ihu), vh) + (c ihu, vh)−
M∑
i=1

(c, ϕi) (ihu)(xi) vi

≤ C (ε |vh|1,Ω + ‖b‖0,∞,Ω ‖vh‖0,Ω + ‖c‖0,∞,Ω ‖vh‖0,Ω)h ‖u‖2,Ω .

Therefore, if σ0 > 0, one obtains (48). If c ≡ 0, one can employ the fact that

(b · ∇(u− ihu), vh) = −(u− ihu, b · ∇vh) ≤ C h2 |u|2,Ω ‖b‖0,∞,Ω |vh|1,Ω ,

which leads to (49).
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Lemma 15 shows that, if σ0 > 0, one obtains from (43)

(50) ‖u− uh‖h ≤ C h ‖u‖2,Ω + (dh(uh; ihu, ihu))1/2 ,

where C is independent of u, h, and ε. However, if c ≡ 0 (hence σ0 = 0), one
cannot avoid an explicit negative power of ε in the estimate (49) since the seminorm
(dh(uh; vh, vh))1/2 cannot be used for estimating vh due to the possibly vanishing
factors (1 − αij(uh)). The negative power of ε in (49) is somewhat compensated
by the presence of h in the numerator. Still, this estimate can be considered fully
satisfactory only if h . ε1/2.

Finally, let us estimate the last term on the right-hand side of (43).

Lemma 16. Let the matrix D be defined by (9). Then there is a constant C
independent of h and the data of problem (44) such that

(51) dh(wh; ihu, ihu) ≤ C (ε+ ‖b‖0,∞,Ω h) |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) .

Proof. Consider any i, j ∈ {1, . . . , N} such that i 6= j and dij 6= 0. Then

|dij | ≤
∑

T∈Th, xi,xj∈T

(
ε |ϕi|1,T |ϕj |1,T + ‖b‖0,∞,T {|ϕi|1,T ‖ϕj‖0,T + |ϕj |1,T ‖ϕi‖0,T }

)
≤ C

∑
T∈Th, xi,xj∈T

(
ε hd−2

T + ‖b‖0,∞,T h
d−1
T

)
≤ C̃ (ε+ ‖b‖0,∞,Ω h) |xi − xj |d−2 .

Therefore, using Lemma 1, one derives for any wh ∈Wh and u ∈ C(Ω)

dh(wh; ihu, ihu) =

N∑
i, j = 1
i < j

(1− αij(wh)) |dij | [u(xi)− u(xj)]
2

≤
∑

T∈Th

∑
xi,xj∈T

|dij | [u(xi)− u(xj)]
2

≤ C̃ (ε+ ‖b‖0,∞,Ω h)
∑

T∈Th

hd−2
T

∑
xi,xj∈T

[u(xi)− u(xj)]
2 .

Since

hd−2
T

∑
xi,xj∈T

[u(xi)− u(xj)]
2 ≤ C |ihu|21,T ,

one obtains the statement of the lemma.

One observes that if dh(uh; ihu, ihu) in (50) is estimated using Lemma 16, the
convergence order is reduced. As a matter of fact, (47), (48), and (51) lead to the
following global error estimate.

Corollary 17. Let u ∈ H2(Ω) be the solution of (44), and let uh be a solution of
the discrete problem (40). Then if σ0 > 0, there exists a constant C > 0 independent
of h and the data of (44) such that

‖u− uh‖h ≤ C (ε+ σ−1
0 {‖b‖20,∞,Ω + ‖c‖20,∞,Ω}+ σ0h

2)1/2 h ‖u‖2,Ω
+ C (ε+ ‖b‖0,∞,Ω h)1/2 |ihu|1,Ω .
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Remark 18. A careful inspection of the proof of Lemma 16 reveals that the con-
vergence order of the term dh(uh; ihu, ihu) depends on the relation between ε and
‖b‖0,∞,Ω h and on properties of the triangulations Th. For simplicity, the discussion
will be restricted to the two-dimensional case, but the same arguments are valid (with
minor modifications) in the higher-dimensional case. We distinguish the following
cases:
• convection-dominated regime (ε < ‖b‖0,∞,Ω h): the estimate (51) reduces to

(52) dh(wh; ihu, ihu) ≤ C ‖b‖0,∞,Ω h |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) .

This estimate implies an O(
√
h) error estimate in (50), which will be confirmed by

numerical experiments in section 8 for a particular choice of the coefficients αij .
• diffusion-dominated regime (ε ≥ ‖b‖0,∞,Ω h). In this case, the estimate (51)

reduces to

(53) dh(wh; ihu, ihu) ≤ C ε |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) ,

which does not imply any convergence of ‖u − uh‖h. However, this result can be
improved for suitable types of meshes. To characterize the geometry of a triangulation
Th, we introduce a quantity θij for any edge Eij with end points xi, xj . If Eij ⊂ ∂Ω,
then θij is the angle opposite Eij . If Eij 6⊂ ∂Ω, then θij is the average of the pair
of angles opposite Eij . Finally, we denote by θh the maximum of all θij . Then we
consider the following values of θh:

(a) θh ≤ π/2, i.e., Th is a Delaunay triangulation (in particular, Th may
consist of weakly acute triangles, i.e., with all angles ≤ π/2). Then the
off-diagonal entries of the diffusion matrix are all nonpositive, and hence
|dij | ≤ ‖b‖0,∞,Ω h/3 for i 6= j. Thus, the estimate (52) is again valid and

leads to an O(
√
h) in estimate (50).

(b) θh < π/2, a particular case of (a), satisfied, e.g., for Th consisting of
acute triangles (all angles < π/2). Then all off-diagonal entries of the
diffusion matrix are negative, and hence all off-diagonal entries of the ma-
trix A are nonpositive in the strongly diffusion-dominated case (precisely, if
ε ≥ ‖b‖0,∞,Ω h (tan θh)/3). In this case, all entries of the artificial diffusion
matrix D vanish, and hence the AFC method (40) reduces to the original linear
method (36). Consequently, the standard O(h) error estimate of ‖u− uh‖h is
valid.

(c) θh = π/2, again a particular case of (a) which may happen, e.g., if Th consists
of right-angled triangles. Then some off-diagonal entries of the diffusion matrix
vanish, and hence the corresponding entries dij do not vanish in general. Thus,
if θh = π/2 for all Th in the family of triangulations, then, in contrast to the
previous case, the AFC method (40) does not reduce to the original linear
method (36) for h→ 0.

(d) θh > π/2, i.e., Th is not of Delaunay type, which implies that Th contains
obtuse triangles (with an angle > π/2). In this case, some off-diagonal entries
of the diffusion matrix are positive, and hence the estimate (53) cannot be
improved in general. Indeed, if θij > π/2 and ε ≥ ‖b‖0,∞,Ω h | tan θij |, then
|dij | ≥ ε | cot θij |/3. Thus, if the mesh is not of Delaunay type, the results
presented in this work do not prove convergence of the method, which will
be also confirmed by numerical experiments presented in section 8. Note also
that, in this case, the results of section 5 are not valid for the AFC scheme
considered in this section.
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It is worth remarking that these last results are the best that can be obtained
using the general approach described in the previous sections, combined with the
choice for limiters αij from section 4. As a matter of fact, the algebraic construction
of the method has been carried out using a rather general splitting of the stiffness
matrix. Now, for the convection-diffusion equation, the lack of convergence of the
method for non-Delaunay meshes can be overcome by changing the way the matrix D
is built. In fact, if instead of using the whole stiffness matrix to build D, we use only
the convection matrix to build it, that is,

(54) dij = −max{(b · ∇ϕj , ϕi), 0, (b · ∇ϕi, ϕj)} ∀ i 6= j ;

then the estimate (51) in Lemma 16 becomes

dh(wh; ihu, ihu) ≤ C ‖b‖0,∞,Ω h |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) .

This leads to an O(
√
h) estimate of ‖u− uh‖h, even on non-Delaunay meshes in the

diffusion-dominated regime. An alternative way to solve this would be to change
the definition of the limiters αij to make them more suitable for diffusion problems.
Examples of limiters suitable for diffusion problems can be found, e.g., in [8, 19], but
their applicability to convection-dominated problems has yet to be explored.

We finally mention that numerical results in section 8 indicate that the estimates
of dh(wh; ihu, ihu) discussed above are sharp. Note, however, that the only properties
of the coefficients αij used in the proof of Lemma 16 were the fact that their values
are from the interval [0, 1] and that αij = αji. If the coefficients αij are defined
as in section 4, then in the convection-dominated regime, better convergence rates
are observed than those predicted by estimate (52). Some deeper analysis of this
choice of αij might lead to an improved estimate of dh(wh; ihu, ihu) in the convection-
dominated case.

Remark 19. We finish this section by making some comments on the stability of
the nonlinear discretization (40) with Wh defined in section 7. Our objective is to
show that this formulation can be viewed as a way of adding numerical diffusion to
the Galerkin discretization. We restrict our discussion to the two-dimensional case,
but the results can be extended to three space dimensions. First, given uh ∈ Wh,
we divide the triangulation Th as Th = T1 ∪ T2, where T1 and T2 are disjoint and
T ∈ T1 if and only if for at least two edges of T we have (1 − αij(uh))|dij | > 0. We
will denote by αT the minimum value of these nonzero quantities. Typically, T will
belong to T1 if there is an extremum of uh in a vertex of T or if uh has a layer through
T . Then from the proof of Lemma 1, and using a scaling argument, it is not difficult
to realize that for any vh ∈Wh,

dh(uh; vh, vh) =
1

2

N∑
i,j=1

(1− αij(uh)) |dij | (vi − vj)2

≥ 1

12

∑
T∈T1

∑
xi,xj∈T

αT (vi − vj)2 ≥ C
∑
T∈T1

αT |vh|21,T .

Note that for simplicity, we used the inequality

(vi − vj)2 + (vj − vk)2 ≥ 1

3

(
(vi − vj)2 + (vj − vk)2 + (vk − vi)2

)
∀ i, j, k .
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Then, AFC methods add numerical diffusion on certain elements of the triangulation,
namely, the elements which contain extrema of the discrete solution or lie in its layer
regions.

In addition, we can also compare this last result with a parameter-free stabilized
method proposed in [3]. That method is based on rewriting the gradient of the P1

basis functions in terms of the Nédélec edge FEM. More precisely, the stabilization
term added to the Galerkin formulation in [3] reads as follows:

(55) Q(uh, vh) = (Θh(uh),Θh(vh)) ,

with

(56) Θh(uh) =
∑
E∈Eh

θ̃E (uh(xE1)− uh(xE2))NE ,

where Eh stands for the set of edges of the triangulation Th, xE1, xE2 are the end
points of an edge E, and NE stands for the basis function of the Nédélec space
associated to E. In (56), θ̃E is a positive parameter depending on the edge Péclet
number (for details, see [3, eqs. (2.14) and (2.10)]). With these definitions, the term
defined in (55) satisfies

Q(uh, uh) =
∑

E,E′∈Eh

θ̃E θ̃E′ (uh(xE1)− uh(xE2)) (uh(xE′1)− uh(xE′2)) (NE ,NE′)

≈
∑
E∈Eh

|E|d−2
(
θ̃E (uh(xE1)− uh(xE2))

)2
,

where by ≈ we mean that both terms bound each other with constants that do
not depend on h. Then we see that the method from [3] can be seen as well as a
“linearized” version of (40) (where we choose αij in such a way that (1−αij(uh))|dij | =
θ̃2
E |E|d−2 for every edge E). This also explains the fact that only O(

√
h) convergence

has been obtained in Table 1 (where we choose αij(uh) = 0.5 for every edge). As a
matter of fact, that was the order of convergence proven in [3].

8. Numerical results. This section presents numerical results obtained with
the AFC scheme applied to the convection-diffusion-reaction equation (44). For the
sake of brevity, the presentation is restricted to studies of the convergence of the
method for the following example with smooth solution. Results for an example with
layers can be found, e.g., in [1].

Example 20. Problem (44) is considered with Ω = (0, 1)2, with different values of
ε, and with b = (3, 2)T , c = 1, ub = 0, and the right-hand side g chosen such that

u(x, y) = 100x2 (1− x)2 y (1− y) (1− 2y)

is the solution of (44).

In the numerical simulations, P1 finite elements were used on triangular grids.
Mass lumping (cf. (45)) was performed for the reactive term, but only very small
differences could be observed compared to results obtained without mass lumping. If
xi is a Dirichlet node, we set R+

i := 1, R−i := 1, leading to αij = 1 if aji ≤ aij ; see
section 4. Concerning the errors in ‖ · ‖h, qualitatively the same results were obtained
with and without this definition. However, the errors in other norms of interest were
sometimes clearly smaller with this definition, and we decided to present these better
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Fig. 1. Grids 1–5 (left to right), level 0. The differences between grid 4 and grid 5 are described
in the text.

results. The nonlinear discrete equations were solved with a fixed-point iteration with
Anderson acceleration [21]. The iterations were stopped when the Euclidean norm of
the residual vector was smaller than 10−9. All simulations were double-checked by
computing them with two different codes, one of which was MooNMD [9].

Simulations were performed on several structured and unstructured grids; see
Figure 1 for the coarsest grids (level 0). Grids 1, 2, and 3 were refined uniformly.
Grid 4 was obtained from grid 1 by changing the directions of the diagonals in even
rows of squares (from below). Grid 5 was obtained from grid 4 by shifting interior
nodes to the right by a tenth of the horizontal mesh width on each even horizontal
mesh line. Therefore, for any diagonal edge Eij of grid 5, the value θij introduced in
Remark 18 satisfies θij > π/2.

Considering a problem without reaction, i.e., with c = 0 instead of c = 1, and
otherwise the same setup, one obtains qualitatively the same results as below. For
the sake of brevity, we omit the results for c = 0.

8.1. Constant weights αij. The case of constant weights αij = 0.5 (with
the modification at Dirichlet nodes mentioned above) fits into the presented error
analysis. Fixing the weights independently of the approximate solution uh replaces
the nonlinear problem (13), (14) by a linear problem, which is essentially a stabilized
method adding first-order artificial diffusion to the original problem (1), (2). Then,
some suboptimal convergence results are to be expected. Table 1 shows numerical
results obtained in the convection-dominated regime for grid 1. In the first row of

the table, we use the following notation: l is the grid level, eh = u − uh, d
1/2
h (uh) =

dh(uh; ihu, ihu)1/2, and “ord.” denotes experimental convergence orders computed
from values in the preceding column. The results in Table 1 indicate that the estimate
(52) of dh(wh; ihu, ihu) and also the estimate for ‖u− uh‖h given in Corollary 17 are
sharp.

Table 1
Example 20, ε = 10−8, numerical results for grid 5 and constant weights αij .

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.622e−2 0.66 7.668e−1 0.11 2.722e−1 0.43 9.666e−2 0.57
4 1.527e−2 0.78 7.021e−1 0.13 1.975e−1 0.46 6.397e−2 0.60
5 8.260e−3 0.89 6.489e−1 0.11 1.415e−1 0.48 4.274e−2 0.58
6 4.295e−3 0.94 6.149e−1 0.08 1.008e−1 0.49 2.912e−2 0.55
7 2.189e−3 0.97 5.956e−1 0.05 7.150e−2 0.50 2.015e−2 0.53
8 1.105e−3 0.99 5.854e−1 0.02 5.065e−2 0.50 1.408e−2 0.52

8.2. Weights computed with the algorithm from section 4. As already
mentioned, the computation of the weights as presented in section 4 is a standard
choice in practice. For the convection-dominated regime, numerical results are
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presented in Tables 2–6. It can be observed that the order of convergence of ‖u−uh‖h
is around two on grid 1 and around one for all other simulations. The errors ‖u−uh‖0,Ω
and |u−uh|1,Ω behave differently on different grids. For grid 1, which is of Friedrichs–
Keller type (it consists of three sets of parallel lines), one can see the optimal order of
convergence for ‖u−uh‖0,Ω and also the convergence of |u−uh|1,Ω is almost optimal.
For grids 2–5, the orders of convergence of ‖u − uh‖0,Ω and |u − uh|1,Ω are clearly
smaller than the optimal order. Moreover, for grids 4 and 5, the convergence order of
|u− uh|1,Ω tends to zero for h→ 0.

Table 2
Example 20, ε = 10−8, numerical results for grid 1 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 5.457e−3 1.85 2.287e−1 1.10 1.112e−1 0.97 1.163e−2 2.11
4 1.408e−3 1.95 1.074e−1 1.09 5.317e−2 1.06 2.683e−3 2.12
5 3.493e−4 2.01 5.113e−2 1.07 2.472e−2 1.11 6.410e−4 2.07
6 8.652e−5 2.01 2.546e−2 1.01 1.158e−2 1.09 1.633e−4 1.97
7 2.152e−5 2.01 1.321e−2 0.95 5.533e−3 1.07 4.099e−5 1.99
8 5.357e−6 2.01 6.822e−3 0.95 2.685e−3 1.04 1.018e−5 2.01

Table 3
Example 20, ε = 10−8, numerical results for grid 2 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 8.533e−3 1.86 2.901e−1 1.00 1.236e−1 1.03 1.855e−2 1.91
4 2.516e−3 1.76 1.954e−1 0.57 5.884e−2 1.07 6.065e−3 1.61
5 8.369e−4 1.59 1.380e−1 0.50 2.801e−2 1.07 2.640e−3 1.20
6 2.891e−4 1.53 1.031e−1 0.42 1.356e−2 1.05 1.254e−3 1.07
7 1.103e−4 1.39 7.865e−2 0.39 6.638e−3 1.03 5.938e−4 1.08
8 4.136e−5 1.42 6.524e−2 0.27 3.263e−3 1.02 2.924e−4 1.02
9 1.539e−5 1.43 5.768e−2 0.18 1.618e−3 1.01 1.436e−4 1.03

In summary, in the convection-dominated regime, the numerical studies for the
choice of the weights as presented in section 4 show a higher order of error reduction
than in the worst case which was considered in the analysis. The difference with
respect to the numerical studies of section 8.1 is the behavior of the weights. They
do not stay constant but converge in the mean to 1; see Table 7 which shows a
representative result for the arithmetic mean value of {1 − αij(uh)}. This indicates
that the estimate 1−αij(uh) ≤ 1 used in the proof of Lemma 16 is too rough in some
cases.

For the diffusion-dominated regime, numerical results are presented in
Tables 8–10. For grid 1, the convergence orders of ‖u−uh‖0,Ω and |u−uh|1,Ω are again

optimal, but for grid 4 only |u − uh|1,Ω is still optimal, whereas dh(uh; ihu, ihu)1/2

converges with the order 1/2. For grid 5, no convergence is observed. The observa-
tions with respect to convergence orders of dh(uh; ihu, ihu)1/2 on grids 4 and 5 are in
accordance with the discussion in Remark 18. If the matrix D is defined using the
convection matrix only (i.e., by (54)), then on grids 1 and 4 the results qualitatively
do not change, whereas on grid 5, we observe an analogous behavior as on grid 4; see
Table 11.
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Table 4
Example 20, ε = 10−8, numerical results for grid 3 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 6.125e−3 1.61 3.202e−1 0.71 9.189e−2 1.05 1.569e−2 1.81
4 2.216e−3 1.47 2.244e−1 0.51 4.488e−2 1.03 6.502e−3 1.27
5 9.946e−4 1.16 1.821e−1 0.30 2.224e−2 1.01 3.376e−3 0.95
6 4.993e−4 0.99 1.559e−1 0.22 1.124e−2 0.98 1.802e−3 0.91
7 2.519e−4 0.99 1.375e−1 0.18 5.676e−3 0.98 9.649e−4 0.90
8 1.277e−4 0.98 1.231e−1 0.16 2.871e−3 0.98 5.099e−4 0.92

Table 5
Example 20, ε = 10−8, numerical results for grid 4 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 6.383e−3 1.70 4.826e−1 0.31 9.814e−2 1.06 2.143e−2 1.45
4 2.313e−3 1.46 4.543e−1 0.09 4.341e−2 1.18 9.455e−3 1.18
5 1.089e−3 1.09 4.434e−1 0.03 1.830e−2 1.25 4.469e−3 1.08
6 5.527e−4 0.98 4.361e−1 0.02 8.276e−3 1.14 2.176e−3 1.04
7 2.817e−4 0.97 4.320e−1 0.01 3.926e−3 1.08 1.077e−3 1.01
8 1.425e−4 0.98 4.297e−1 0.01 1.915e−3 1.04 5.381e−4 1.00

Table 6
Example 20, ε = 10−8, numerical results for grid 5 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 6.925e−3 1.66 5.638e−1 0.25 9.992e−2 1.06 2.486e−2 1.37
4 2.687e−3 1.37 5.395e−1 0.06 4.405e−2 1.18 1.140e−2 1.12
5 1.304e−3 1.04 5.294e−1 0.03 1.896e−2 1.22 5.491e−3 1.05
6 6.645e−4 0.97 5.225e−1 0.02 8.792e−3 1.11 2.711e−3 1.02
7 3.382e−4 0.97 5.186e−1 0.01 4.235e−3 1.05 1.349e−3 1.01
8 1.708e−4 0.99 5.164e−1 0.01 2.083e−3 1.02 6.755e−4 1.00

Table 7
Example 20, ε = 10−8, grid 1, arithmetic mean of {1− αij(uh)} with αij from section 4.

Level 3 4 5 6 7 8
1− α(uh) 1.09e−1 5.94e−2 3.16e−2 1.73e−2 9.60e−3 5.27e−3

Order 0.83 0.87 0.91 0.87 0.85 0.87

9. Summary and outlook. An algebraic flux correction (AFC) scheme applied
to linear boundary value problems was analyzed. The existence of a solution, existence
and uniqueness of a solution of a linearized problem, and an a priori error estimate
were proved under rather general assumptions on the limiters αij . To the best of
our knowledge, this is the first time that convergence analysis of an AFC scheme
was performed. For a practical choice of the limiters, a local discrete maximum
principle was proved. The theory for the abstract problem was applied to steady-
state convection-diffusion-reaction equations, where in particular an error estimate
was derived. Numerical studies showed that this estimate is sharp for the general
assumptions on the limiters used in the analysis. Using the standard limiters, a
higher order of convergence was observed than predicted.

As a next step we intend to specialize the convergence results to the standard
limiters. This step requires an analysis of the algorithm presented in section 4, which
seems to be intricate due to the dependency of the limiters on the solution of the
discrete problem. From the numerical aspect, the observed dependency of errors in
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Table 8
Example 20, ε = 10, numerical results for grid 1 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.148e−3 1.98 1.757e−1 0.99 1.144e−1 1.00 5.557e−1 0.99
4 5.379e−4 2.00 8.799e−2 1.00 5.643e−2 1.02 2.783e−1 1.00
5 1.345e−4 2.00 4.401e−2 1.00 2.792e−2 1.02 1.392e−1 1.00
6 3.360e−5 2.00 2.201e−2 1.00 1.387e−2 1.01 6.960e−2 1.00
7 8.398e−6 2.00 1.100e−2 1.00 6.912e−3 1.00 3.480e−2 1.00

Table 9
Example 20, ε = 10, numerical results for grid 4 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.187e−3 1.89 1.756e−1 0.99 1.983e−1 0.37 5.554e−1 0.99
4 6.209e−4 1.82 8.800e−2 1.00 1.473e−1 0.43 2.783e−1 1.00
5 1.940e−4 1.68 4.402e−2 1.00 1.069e−1 0.46 1.392e−1 1.00
6 6.899e−5 1.49 2.201e−2 1.00 7.657e−2 0.48 6.961e−2 1.00
7 2.789e−5 1.31 1.101e−2 1.00 5.450e−2 0.49 3.481e−2 1.00
8 1.239e−5 1.17 5.503e−3 1.00 3.867e−2 0.50 1.740e−2 1.00

Table 10
Example 20, ε = 10, numerical results for grid 5 and αij from section 4.

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 1.248e−2 0.48 2.229e−1 0.79 1.317e+0 -0.03 7.211e−1 0.77
4 1.123e−2 0.15 1.558e−1 0.52 1.316e+0 0.00 5.135e−1 0.49
5 1.090e−2 0.04 1.333e−1 0.22 1.313e+0 0.00 4.452e−1 0.21
6 1.080e−2 0.01 1.269e−1 0.07 1.312e+0 0.00 4.259e−1 0.06
7 1.077e−2 0.00 1.252e−1 0.02 1.311e+0 0.00 4.207e−1 0.02
8 1.076e−2 0.00 1.248e−1 0.00 1.310e+0 0.00 4.193e−1 0.00

Table 11
Example 20, ε = 10, numerical results for grid 5, αij from section 4, and dij defined by (54)

instead of (9).

l ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

3 2.319e−3 1.94 1.849e−1 0.98 1.581e−1 0.74 5.846e−1 0.98
4 6.098e−4 1.93 9.275e−2 1.00 1.040e−1 0.60 2.933e−1 1.00
5 1.676e−4 1.86 4.642e−2 1.00 7.244e−2 0.52 1.468e−1 1.00
6 4.979e−5 1.75 2.322e−2 1.00 5.105e−2 0.50 7.343e−2 1.00
7 1.659e−5 1.59 1.161e−2 1.00 3.607e−2 0.50 3.672e−2 1.00
8 6.302e−6 1.40 5.806e−3 1.00 2.550e−2 0.50 1.836e−2 1.00

standard norms on the concrete grid is remarkable. Comprehensive numerical studies
that clarify which types of grids should be used and which types should be avoided
are necessary, and this will be the subject of future research.

Appendix. For completeness, we report the proofs of some classical results on
the relation between M -matrices and discrete maximum principles.

Lemma 21. Let us consider a matrix (aij)
i=1,...,M
j=1,...,N with 0 < M < N, and let

aii > 0 for i = 1, . . . ,M . Then (5) holds for any u1, . . . , uN ∈ R if and only if the
conditions (6) and (8) are satisfied.

Proof. Let us assume that at least one of the conditions (6) and (8) is not valid.
We will construct a counterexample to the validity of (5). If (6) does not hold, i.e., if
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aik > 0 for some i ∈ {1, . . . ,M} and k ∈ {1, . . . , N}, k 6= i, then we set

ui = 1, uk = − aii
aik

, uj = 0 ∀ j ∈ {1, . . . , N}, j 6= i, k .

Then uk < 0, and hence max{u+
j ; j 6= i, aij 6= 0} = 0 < ui, whereas

∑N
j=1 aij uj =

aii ui + aik uk = 0 so that (5) does not hold. If (8) is not valid, i.e., if
∑N

j=1 aij < 0
for some i ∈ {1, . . . ,M}, then we set

ui = 1− 1

aii

N∑
j=1

aij , uj = 1 ∀ j ∈ {1, . . . , N}, j 6= i .

Then max{u+
j ; j 6= i, aij 6= 0} = 1 < ui, whereas

∑N
j=1 aij uj =

∑N
j=1 aij + aii (ui−

1) = 0 so that again (5) does not hold. This proves that the validity of (5) for any
u1, . . . , uN ∈ R implies (6) and (8).

Now let us assume that the conditions (6) and (8) are satisfied. Consider any

i ∈ {1, . . . ,M} and any u1, . . . , uN ∈ R such that
∑N

j=1 aij uj ≤ 0. Setting

c := max
j 6=i, aij 6=0

u+
j ,

one has

aii ui ≤
N∑

j = 1
j 6= i

(−aij)uj =

N∑
j = 1
j 6= i

(−aij) (uj − c) +

N∑
j = 1
j 6= i

(−aij) c(57)

≤ c
N∑

j = 1
j 6= i

(−aij) ≤ c aii ,

which implies that ui ≤ c.
Lemma 22. Let us consider a matrix (aij)

i=1,...,M
j=1,...,N with 0 < M < N, and let

aii > 0 for i = 1, . . . ,M . Then (4) holds for any u1, . . . , uN ∈ R if and only if the
conditions (6) and (7) are satisfied.

Proof. Let us assume that at least one of the conditions (6) and (7) is not valid.
Since the counterexamples from the proof of Lemma 21 can be used also here, it
suffices to consider the case when

∑N
j=1 aij > 0 for some i ∈ {1, . . . ,M}. We set

ui = −1 +
1

aii

N∑
j=1

aij , uj = −1 ∀ j ∈ {1, . . . , N}, j 6= i .

Then max{uj ; j 6= i, aij 6= 0} = −1 < ui, whereas
∑N

j=1 aij uj = −
∑N

j=1 aij +
aii (ui + 1) = 0 so that (4) does not hold. This proves that the validity of (4) for any
u1, . . . , uN ∈ R implies (6) and (7).

Now let us assume that the conditions (6) and (7) are satisfied. Consider any

i ∈ {1, . . . ,M} and any u1, . . . , uN ∈ R such that
∑N

j=1 aij uj ≤ 0. Setting

c := max
j 6=i, aij 6=0

uj ,

statement (57) remains valid (the last ≤ can be changed to =), and hence ui ≤ c.
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Barcelona, 2007, pp. 1–5.

[15] D. Kuzmin, On the design of algebraic flux correction schemes for quadratic finite elements, J.
Comput. Appl. Math., 218 (2008), pp. 79–87.

[16] D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization, J. Com-
put. Phys., 228 (2009), pp. 2517–2534.

[17] D. Kuzmin, Linearity-preserving flux correction and convergence acceleration for constrained
Galerkin schemes, J. Comput. Appl. Math., 236 (2012), pp. 2317–2337.
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