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A LOCAL PROJECTION STABILIZATION FINITE ELEMENT METHOD
WITH NONLINEAR CROSSWIND DIFFUSION FOR
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Abstract. An extension of the local projection stabilization (LPS) finite element method for
convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the
transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is
introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be
proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates
are derived which are supported by numerical studies. These studies demonstrate also the reduction of
the spurious oscillations.
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1. Introduction

The solution of convection-dominated convection-diffusion-reaction equations with finite element methods
constitutes a very challenging (and open) problem. Over the last three decades, the amount of work devoted
to this problem is impressive. The usual way of treating dominating convection, at least in the context of finite
element methods, consists in adding extra terms to the standard Galerkin formulation, aimed at enhancing the
stability of the discrete solution by means of introducing artificial diffusion. These new terms vary according
to the method, and can be residual-based, as in the SUPG/GLS/SDFEM family (see [6,13,14,16,29]), or edge
based, such as the CIP method (see [7,9]). For an up-to-date and thorough review of these and other techniques,
see [31]. It is striking to notice that, despite the impressive amount of work that has been devoted to this topic,
up to now there is not a method that ‘ticks all the boxes’, i.e., a method that produces sharp layers while
avoiding oscillations, see [1] for a recent review and a numerical assessment.
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Among the various stabilized finite element methods, the local projection stabilization (LPS) method has
received some attention over the last decade. Originally proposed for the Stokes problem in [2], and extended
to the Oseen equations in [4] (see also [5,30]), the LPS method has been also used recently to treat convection-
diffusion equations (see [15,24–26]). The basic idea of this method consists in restricting the direct application of
the stabilization to so-called fluctuations or resolved small scales, which are defined by local projections. It has
several attractive features, such as adding symmetric terms to the formulation and avoiding the computation
of second derivatives of the basis functions (thus using only information that is needed for the assembly of
the matrices from the standard Galerkin method). Unfortunately, the solutions obtained with the LPS method
possess the same deficiency like solutions computed, e.g., with the SUPG method: non-negligible spurious
oscillations are often present in a vicinity of layers.

Motivated by the wish of recovering the monotonicity properties of the continuous problem, which might
be crucial in applications, a number of so-called Spurious Oscillations at Layers Diminishing (SOLD) methods
were proposed. SOLD methods add an extra term to the already stabilized formulation, which usually depends
on the discrete solution in a nonlinear way, vanishes for small residuals (thus acting mostly at layers), and
adds some extra, but different, diffusivity to the formulation. In particular, methods that add crosswind diffu-
sion, like the one proposed in [11], have been proved to belong to the best SOLD methods in comprehensive
studies [17, 18]. Although these methods diminish oscillations considerably, no single method succeeds to fully
eliminate them [17,18, 23]. Also, from a purely mathematical point of view, it is unknown if these methods lead
to well-posed problems. In fact, existence of solutions is usually possible to prove, but, to our best knowledge,
there is no nonlinear SOLD method that is known to produce a unique solution, see [7, 27] for a discussion of
this topic.

Based on the previous considerations, this paper has three major objectives, namely:

• to improve the quality of the LPS solution (especially in the vicinity of layers);
• to explore the applicability of SOLD-type strategies within a LPS context; and
• to contribute to the mathematical understanding of nonlinear stabilization techniques for the convection-

diffusion equation.

Hence, in this work we propose a LPS method with nonlinear crosswind diffusion for convection-diffusion-
reaction equations. Two ways for choosing the parameter in the crosswind diffusion term will be studied. The
first choice uses global information obtained from the data of the problem, whereas the second proposal is
completely local, employing information of the computed solution instead of the data. For the first approach,
which is the simpler one, the existence and the uniqueness of the solution can be proved for the steady-state
and time-dependent equations, where the latter is discretized in time with an implicit one-step θ-scheme. To our
best knowledge, this is the first nonlinear discretization for convection-diffusion-reaction equations for which
both, existence and uniqueness of a solution can be shown. The form of the crosswind term resembles the
Smagorinsky Large Eddy Simulation (LES) model which was analyzed in [28]. It involves fluctuations of a term
mimicking a p-Laplacian. The crucial analytical property for proving the uniqueness of the solution is the strong
monotonicity of the corresponding operator. For the more complicated local definition of the parameter, the
analysis will show the existence of a solution and its uniqueness for the time-dependent discretization in the
case of sufficiently small time steps.

The analysis is performed for the model problems of linear steady-state and time-dependent convection-
diffusion-reaction equations. Applying a nonlinear discretization scheme to a linear problem leads certainly to
a considerable complication of the solution process and to an additional numerical cost. This latter aspect
can be overcome in the transient regime by using a semi-implicit (linearized) approach that computes the
stabilization parameter with the solution from the previous discrete time. With respect to the former aspect,
it has to be mentioned that the most important motivation for studying discretizations that reduce spurious
oscillations comes from the need to address applications that lead to nonlinear coupled systems of convection-
diffusion-reaction equations as in [21]. It was demonstrated in [21] that the locally large spurious oscillations
of the SUPG method might lead to a fast blow-up of the simulations, and hence the reduction of the spurious
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oscillations is essential to perform simulations at all. Thus, the reduction of the oscillations at layers becomes a
priority, even over computational cost. It should be noted that in many applications, like in [21], only interior
or characteristic layers are present, such that a method for reducing the oscillations has to work properly in
particular for these types of layers. Finally, it is worth mentioning that our final aim is to address applications
that lead to such coupled problems. Since these problems are nonlinear, the use of a nonlinear stabilization
usually does not result in a notable complication of the solution procedure.

The plan of the paper is as follows. In the remaining part of this introduction, the problems of interest are
stated and some basic notations are given. Section 2 will summarize the main abstract hypothesis imposed on
the different partitions of the domain and the finite element spaces considered. Section 3 presents the method
for the steady-state case, for which well-posedness is analyzed in Section 3.1 and error estimates are proved
in Section 3.2. In Section 4, the method for the time-dependent problem is presented. Well-posedness and
stability are proved in Section 4.1 and error estimates in Section 4.2. Since the analysis is based on the abstract
framework from Section 2, Section 5 presents some concrete examples that fit into this framework. Finally,
numerical illustrations that support the analytical results and which demonstrate the reduction of spurious
oscillations are presented in Section 6.

Throughout the paper, standard notations are used for Sobolev spaces and corresponding norms, see, e.g., [10].
In particular, given a measurable set D ⊂ R

d, the inner product in L2(D) or L2(D)d is denoted by (·, ·)D and
the notation (·, ·) is used instead of (·, ·)Ω . The norm (seminorm) in Wm,p(D) will be denoted by ‖ · ‖m,p,D

(| · |m,p,D), with the convention ‖ · ‖m,D = ‖ · ‖m,2,D, and the same notation is used for scalar and vector-valued
functions.

1.1. The problems of interest

Let Ω ⊂ R
d, d ∈ {2, 3}, be a bounded polygonal (polyhedral) domain with a Lipschitz-continuous boundary

∂Ω and let us consider the steady-state convection-diffusion-reaction equation

−ε Δu + b · ∇u + c u = f in Ω, u = ub on ∂Ω. (1)

It is assumed that ε is a positive constant and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), f ∈ L2(Ω), and ub ∈ H1/2(∂Ω) are
given functions satisfying

σ := c − 1
2
∇ · b ≥ σ0 > 0 in Ω, (2)

where σ0 is a constant. Then the boundary value problem (1) has a unique solution in H1(Ω).
The condition σ0 > 0 is often used in the analysis of stabilized finite element methods for the numerical

solution of (1), see, e.g., [31], but it limits the applications of the theory since many problems of interest involve
solenoidal convective velocities and no zero-order terms, which leads to σ0 = 0. Unfortunately, it is not known
how to prove optimal convergence results even for the underlying linear local projection stabilization without
assuming σ0 > 0, although numerical results do not indicate any deterioration of the convergence rates when
σ0 = 0. The analysis of the nonlinear term introduced in this paper does not require this assumption.

Besides the steady-state case, also the time-dependent convection-diffusion-reaction equation

ut − ε Δu + b · ∇u + c u = f in (0, T ]× Ω,

u = ub in [0, T ]× ∂Ω,

u(0, ·) = u0 in Ω,

⎫⎬⎭ (3)

will be considered. In (3), [0, T ] is a finite time interval, ε is assumed to be a positive constant, b ∈
L∞(0, T ; W 1,∞(Ω)d), c ∈ L∞(0, T ; L∞(Ω)), f ∈ L2(0, T ; L2(Ω)), ub ∈ L2(0, T ; H1/2(∂Ω)), and u0 ∈ H1(Ω)
denotes the initial condition. The function σ is defined analogously to (2) and the inequality (2) is assumed to
hold for all t ∈ [0, T ]. In this case, the condition σ0 > 0 can be circumvented by considering instead of (3) an
equivalent problem for v = u e−α t which satisfies σ0 > 0 for sufficiently large α.
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2. Assumptions on approximation spaces and the set Mh

From now on, C, C̃ or C̄ denote generic constants which may take different values at different occurrences
but are always independent of the data ε, b, c, f , and ub, the constant σ0, and the discretization parameters (h
and δt in the following).

Given h > 0, let Wh ⊂ W 1,∞(Ω) be a finite-dimensional space approximating the space H1(Ω) and set
Vh = Wh ∩ H1

0 (Ω). Next, let Mh be a set consisting of a finite number of open subsets M of Ω such that
Ω = ∪M∈Mh

M . It will be supposed that, for any M ∈ Mh,

card{M ′ ∈ Mh ; M ∩ M ′ 	= ∅} ≤ C, (4)
hM := diam(M) ≤ C h, (5)
hM ≤ C hM ′ ∀ M ′ ∈ Mh, M ∩ M ′ 	= ∅, (6)
hd

M ≤ C measd(M). (7)

The space Wh is assumed to satisfy the local inverse inequality

|vh|1,M ≤ C h−1
M ‖vh‖0,M ∀ vh ∈ Wh, M ∈ Mh. (8)

For any M ∈ Mh, a finite-dimensional space DM ⊂ L∞(M) is introduced. It is assumed that there exists a
positive constant βLP independent of h such that

sup
v∈VM

(v, q)M

‖v‖0,M

≥ βLP ‖q‖0,M ∀ q ∈ DM , M ∈ Mh, (9)

where VM = {vh ∈ Vh ; vh = 0 in Ω \ M}. This hypothesis will be needed in what follows for the construction
of a special interpolation operator (see Lemma 3.7 below). Concrete examples of spaces Wh and DM satisfying
the assumptions formulated here will be presented in Section 5.

Furthermore, for any M ∈ Mh, a finite-dimensional space GM ⊂ L∞(M) with GM ⊃ DM is introduced such
that

∂vh

∂xi

∣∣∣∣
M

∈ GM ∀ vh ∈ Wh, i = 1, . . . , d,

and it is assumed that, for any p ∈ [1,∞], there is a constant C such that

‖q‖0,p,M ≤ C h
d
p− d

2
M ‖q‖0,M ∀ q ∈ GM , M ∈ Mh. (10)

To characterize the approximation properties of the spaces Wh and DM , it is assumed that there exist
interpolation operators ih ∈ L (C(Ω), Wh)∩L (C(Ω)∩H1

0 (Ω), Vh) and jM ∈ L (H1(M), DM ), M ∈ Mh, such
that, for some constants l ∈ N and C > 0 and for any set M ∈ Mh, it holds

|v − ihv|1,M + h−1
M ‖v − ihv‖0,M ≤ C hk

M |v|k+1,M ∀ v ∈ Hk+1(M), k = 1, . . . , l, (11)

‖q − jMq‖0,M ≤ C hk
M |q|k,M ∀ q ∈ Hk(M), k = 1, . . . , l. (12)

In addition, it is assumed that, for any p ∈ [1, 6],

|v − ihv|1,p,M ≤ C h
k+ d

p− d
2

M |v|k+1,M ∀ v ∈ Hk+1(M), k = 1, . . . , l. (13)

3. A local projection discretization of the steady-state problem

The weak form of problem (1) is: find u ∈ H1(Ω) such that u = ub on ∂Ω and

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω), (14)
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where the bilinear form a is given by

a(u, v) := ε (∇u,∇v) + (b · ∇u, v) + (c u, v).

As it was mentioned in the introduction, the most often used approach to cure the instabilities of the Galerkin
method consists in adding extra terms to the formulation. To build these additional terms for the method studied
here, for any M ∈ Mh, a continuous linear projection operator πM is introduced which maps the space L2(M)
onto the space DM . It is assumed that

‖πM‖L (L2(M),L2(M)) ≤ C ∀ M ∈ Mh. (15)

E.g., if πM is the orthogonal L2 projection, then C = 1. Using this operator, the fluctuation operator κM :=
id − πM is defined, where id is the identity operator on L2(M). Then, clearly

‖κM‖L (L2(M),L2(M)) ≤ C ∀ M ∈ Mh. (16)

Since κM vanishes on DM , it follows from (16) and (12) that

‖κM q‖0,M ≤ C hk
M |q|k,M ∀ q ∈ Hk(M), M ∈ Mh, k = 0, . . . , l. (17)

An application of κM to a vector-valued function means that κM is applied component-wise.
For any M ∈ Mh, a constant bM ∈ R

d is chosen such that

|bM | ≤ ‖b‖0,∞,M , ‖b − bM‖0,∞,M ≤ C hM |b|1,∞,M , (18)

where | · | denotes the Euclidean norm in R
d. A typical choice for bM is the value of b at one point of M , or the

integral mean value of b over M . In addition, a function ũbh ∈ Wh is introduced such that its trace approximates
the boundary condition ub.

We are now ready to present the finite element method to be studied: find uh ∈ Wh such that uh − ũbh ∈ Vh

and

a(uh, vh) + sh(uh, vh) + dh(uh; uh, vh) = (f, vh) ∀ vh ∈ Vh, (19)

where

sh(u, v) =
∑

M∈Mh

τM (κM (bM · ∇u), κM (bM · ∇v))M ,

dh(w; u, v) =
∑

M∈Mh

(
τ sold
M (w)κM (PM∇u), κM (PM∇v)

)
M

,

and PM : R
d → R

d is the projection onto the line (plane) orthogonal (crosswind) to the vector bM defined by

PM =

⎧⎨⎩ I − bM ⊗ bM

|bM |2 if bM 	= 0,

0 if bM = 0,

I being the identity tensor. The stabilization parameters are given by

τM = τ0 min

{
hM

‖b‖0,∞,M

,
h2

M

ε

}
, (20)

τ sold
M (uh) = τ̃M (uh) |κM (PM∇uh)|,
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where τ0 is a positive constant and τ̃M is a non-negative function of uh and the data of (1). Note that the
crosswind stabilization term is of p-Laplacian type with p = 3.

It remains to specify the function τ̃M . First, inspired by the definition of sh, where each term in the sum
is bounded by τ0 hM |bM | ‖κM∇u‖0,M ‖κM∇v‖0,M , we set τ̃M (uh) = γM (uh)hM |bM | with a function γM still
depending on uh and/or the data of (1). Second, the function γM has to be chosen in such a way that the
discrete problem preserves the following scaling properties of the problem (1):

• if the data ε, b, c, and f are replaced by α ε, α b, α c, and α f , respectively, with some constant α 	= 0, then
the solution of (1) does not change;

• if f and ub are replaced by α f and α ub, respectively, then u changes to α u;
• if Ω is transformed to F−1(Ω) with F (x) = x/α, then u ◦F solves an analog of (1) in F−1(Ω) with the data

α2 ε, α b ◦ F , c ◦ F , f ◦ F , and ub ◦ F .

Note that the discrete problem (19) without the nonlinear term dh preserves these properties. To preserve the
properties also when using the nonlinear term, the function γM has to satisfy

γM (ε, b, c, f, ub, Ω, uh) = γM (α ε, α b, α c, α f, ub, Ω, uh)
= α γM (ε, b, c, α f, α ub, Ω, α uh)

= α−1 γF−1(M)(α2 ε, α b ◦ F, c ◦ F, f ◦ F, ub ◦ F, F−1(Ω), uh ◦ F )

for any admissible data, α 	= 0, and uh ∈ Wh. We shall consider two choices of the scaling function γM : a global
one independent of uh and a local one depending on uh. In the former case, one may set

γM = γ0 diam(Ω)d/2

(
‖f‖0,Ω diam(Ω)

ε + ‖b‖0,∞,Ω diam(Ω) + ‖c‖0,∞,Ω diam(Ω)2
+

‖ub‖0,∂Ω

diam(Ω)1/2

)−1

(21)

with a positive constant γ0. The local scaling can be defined by setting γM = β h
d/2
M /|uh|1,M with a positive

constant β if |uh|1,M 	= 0. Thus, we arrive at the following two formulas for the function τ̃M :

τ̃M = β hM |bM |, (22)

and

τ̃M (uh) =

⎧⎪⎨⎪⎩
β h

1+d/2
M |bM |
|uh|1,M

if |uh|1,M 	= 0,

0 if |uh|1,M = 0,
(23)

where β is a positive real number independent of uh and h. The parameter β depends on the data of (1) in case
of (22) (e.g., like γM in (21)), but it is independent of the data of (1) in case of (23). For these two choices
of τ̃M , we shall investigate the properties of the discrete problem (19). Although the local scaling is likely to
lead to better numerical results than the global one, we consider both variants since the choice (22) turns out
to be more appealing for the analysis.

Remark 3.1.

• If d = 2 and bM 	= 0, one has PM = b⊥M ⊗ b⊥M where b⊥M is a vector satisfying b⊥
M · bM = 0 and |b⊥

M | = 1.
Thus, in this case, the nonlinear stabilization term can be written in the form

dh(w; u, v) =
∑

M∈Mh

(τ sold
M (w)κM (b⊥M · ∇u), κM (b⊥

M · ∇v))M .

• It is useful for the analysis of the discrete problem to note that κM (bM ·∇u) = bM ·κM∇u and κM (PM∇u) =
PMκM∇u. Note also that ‖PM‖2 = 1.
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• Finally, if τ̃M is defined by (23), then, using the stability of κM and bM (18) and (16), respectively, and
‖PM‖2 = 1, one obtains

‖τ sold
M (v)‖0,M ≤ C h

1+d/2
M ‖b‖0,∞,M ∀ v ∈ H1(Ω), M ∈ Mh. (24)

In the analysis, the error will be measured using the following mesh-dependent norm

‖v‖LPS :=
(
ε |v|21,Ω + ‖σ1/2 v‖2

0,Ω + sh(v, v)
)1/2

,

and a term involving the crosswind derivative of the error. Note that integrating by parts gives

a(v, v) + sh(v, v) = ‖v‖2
LPS ∀ v ∈ H1

0 (Ω). (25)

3.1. Well-posedness of the nonlinear discrete problem

This section studies the existence and uniqueness of solutions for the nonlinear discrete problem (19). The
results of this section are valid also for σ0 = 0.

Let us define the nonlinear operator Th : Vh → Vh by

(Thzh, vh) = a(zh + ũbh, vh) + sh(zh + ũbh, vh) + dh(zh + ũbh; zh + ũbh, vh) − (f, vh) (26)

for any zh, vh ∈ Vh. Then uh ∈ Wh is a solution of (19) if and only if uh|∂Ω = ũbh|∂Ω and

Th(uh − ũbh) = 0,

or, equivalently, uh = ũh + ũbh ∈ Wh is a solution of (19) if ũh ∈ Vh and Th(ũh) = 0. Thus, our aim is to prove
that the operator Th has a zero in Vh. To this end, the properties of the form dh shall be investigated first. As
these properties are different with respect to the definition of τ̃M , we start supposing that τ̃M is given by (22).

Lemma 3.2. Let τ̃M be defined by (22). Consider any u, v, z ∈ W 1,3(Ω) and set w := u − v. Then

dh(u; u, w) − dh(v; v, w) ≥ 1
7

∑
M∈Mh

τ̃M ‖κM (PM∇w)‖3
0,3,M =

1
7

dh(w; w, w), (27)

|dh(u; u, z)− dh(v; v, z)| ≤
∑

M∈Mh

τ̃M (‖κM (PM∇u)‖0,3,M + ‖κM (PM∇v)‖0,3,M )

× ‖κM (PM∇w)‖0,3,M ‖κM (PM∇z)‖0,3,M . (28)

Proof. Let us denote
dh(u; u, z)− dh(v; v, z) =

∑
M∈Mh

NM (u, v, z), (29)

where
NM (u, v, z) :=

(
τ sold
M (u)κM (PM∇u) − τ sold

M (v)κM (PM∇v), κM (PM∇z)
)
M

.

For t ∈ [0, 1], let ut := tu + (1 − t)v and set

g(t) := τ̃M |κM (PM∇ut)|κM (PM∇ut), t ∈ [0, 1].

Then

NM (u, v, z) =
(
g(1) − g(0), κM (PM∇z)

)
M

=
(∫ 1

0

g′(t) dt, κM (PM∇z)
)

M

.

Since

g′(t) = τ̃M
κM (PM∇ut)
|κM (PM∇ut)| κM (PM∇ut) · κM (PM∇w) + τ̃M |κM (PM∇ut)|κM (PM∇w), (30)
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one has

|g′(t)| ≤ 2 τ̃M |κM (PM∇ut)| |κM (PM∇w)|
≤ 2 τ̃M (t |κM (PM∇u)| + (1 − t) |κM (PM∇v)|) |κM (PM∇w)|,

which implies (28). On the other hand, since multiplication of the first term on the right-hand side of (30) by
κM (PM∇w) gives a non-negative expression, one obtains

NM (u, v, w) ≥
(

τ̃M

∫ 1

0

|κM (PM∇ut)| dt κM (PM∇w), κM (PM∇w)
)

M

. (31)

Next, clearly ∫ 1

0

|κM (PM∇ut)| dt ≥ max
i=1,...,d

∫ 1

0

|t κM (PM∇u)i + (1 − t)κM (PM∇v)i| dt.

Denoting

I(a, b) =
∫ 1

0

|ta + (1 − t)b| dt, a, b ∈ R,

a direct computation gives

I(a, b) =
|a| + |b|

2
if a b ≥ 0, I(a, b) =

1
2

a2 + b2

|a| + |b| if a b < 0.

Thus, for any a, b ∈ R, it follows

I(a, b) ≥ |a| + |b|
4

≥ |a − b|
4

.

Consequently,∫ 1

0

|κM (PM∇ut)| dt ≥ 1
4

max
i=1,...,d

|κM (PM∇w)i| ≥ 1
4
√

d
|κM (PM∇w)| ≥ 1

7
|κM (PM∇w)|.

Combining this estimate with (31) and using (29) gives (27). �

Next, the properties of dh are explored for the case that τ̃M is defined by (23).

Lemma 3.3. Let τ̃M be defined by (23). Consider any u, v, z ∈ W 1,4(Ω). Then

|dh(u; v, z)| ≤ C
∑

M∈Mh

h
1+d/2
M ‖b‖0,∞,M ‖κM (PM∇v)‖0,4,M ‖κM (PM∇z)‖0,4,M , (32)

|dh(u; u, z)− dh(v; v, z)| ≤ C
∑

M∈Mh

h
1+d/2
M ‖b‖0,∞,M ζM (u, v)×

× (‖κM (PM∇u)‖0,4,M + ‖κM (PM∇v)‖0,4,M ) ‖κM (PM∇z)‖0,4,M , (33)

where

ζM (u, v) =

⎧⎨⎩
|u − v|1,M

|u|1,M + |v|1,M

if |u|1,M 	= 0 or |v|1,M 	= 0,

0 if |u|1,M = |v|1,M = 0.
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Proof. Denoting
dM (u; v, z) =

(
τ sold
M (u)κM (PM∇v), κM (PM∇z)

)
M

,

it is easy to realize that
dh(u; v, z) =

∑
M∈Mh

dM (u; v, z).

Applying Hölder’s inequality yields

|dM (u; v, z)| ≤ ‖τ sold
M (u)‖0,M ‖κM (PM∇v)‖0,4,M ‖κM (PM∇z)‖0,4,M ,

which, using (24), gives

|dM (u; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M ‖κM (PM∇v)‖0,4,M ‖κM (PM∇z)‖0,4,M , (34)

thus proving (32). Now it will be shown that

|dM (u; u, z)− dM (v; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M ζM (u, v)

× (‖κM (PM∇u)‖0,4,M + ‖κM (PM∇v)‖0,4,M ) ‖κM (PM∇z)‖0,4,M . (35)

If |u|1,M = 0 or |v|1,M = 0, then (35) is a particular case of (34). Thus, it suffices to consider the case |u|1,M 	= 0,
|v|1,M 	= 0. Denoting ξ(x) = |x|x, one obtains

dM (u; u, z) − dM (v; v, z) =
β h

1+d/2
M |bM |
|u|1,M

(
ξ(κM (PM∇u)) − ξ(κM (PM∇v)), κM (PM∇z)

)
M

+ β h
1+d/2
M |bM |

(
1

|u|1,M

− 1
|v|1,M

)(
ξ(κM (PM∇v)), κM (PM∇z)

)
M

. (36)

The integral terms on M possess the same structure as the term NM (u, v, z) in the proof of Lemma 3.2 (the
second term corresponds to NM (0, v, z)). They are estimated using the same technique, only with a different
Hölder inequality. Then, (16) is applied to ‖κM (PM∇(u − v))‖0,M resp. ‖κM (PM∇v)‖0,M . Furthermore, the
first inequality from (18) is employed. To finish the estimate of the second term in (36), the triangle inequality
is used. One obtains

|dM (u; u, z)− dM (v; v, z)| ≤ C h
1+d/2
M ‖b‖0,∞,M

|u − v|1,M

|u|1,M

× (‖κM (PM∇u)‖0,4,M + ‖κM (PM∇v)‖0,4,M ) ‖κM (PM∇z)‖0,4,M .

The same type of inequality follows by interchanging u and v. Then, using the sharper of these two estimates
and min{|u|−1

1,M , |v|−1
1,M} ≤ 2/(|u|1,M + |v|1,M ) gives (35). �

The properties of the operator Th, namely its monotonicity and local Lipschitz continuity, follow now by the
results of the two previous lemmas and the representation of the LPS norm (25).

Lemma 3.4. If τ̃M is defined by (22), then the operator Th defined in (26) is locally Lipschitz-continuous and
strongly monotone, i.e., it satisfies

(Thwh − Thzh, wh − zh) ≥ ‖wh − zh‖2
LPS +

1
7

∑
M∈Mh

τ̃M ‖κM (PM∇(wh − zh))‖3
0,3,M (37)

for all wh, zh ∈ Vh. If τ̃M is defined by (23), then the operator Th is Lipschitz-continuous and it satisfies

(Thzh, zh) ≥ ε

2
|zh|21,Ω − C0 (‖ũbh‖2

1,Ω + ‖f‖2
0,Ω) (38)

for all zh ∈ Vh, where C0 > 0 depends on ε, b, and c, but not on zh, h, and σ0.
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Proof. Let us define the operators Ah, Nh : Vh → Vh by

(Ahzh, vh) = a(zh, vh) + sh(zh, vh) ∀ zh, vh ∈ Vh,

(Nhzh, vh) = dh(zh + ũbh; zh + ũbh, vh) ∀ zh, vh ∈ Vh.

Then, for any wh, zh ∈ Vh, there holds

Thwh − Thzh = Ah(wh − zh) + Nhwh − Nhzh.

The operator Ah is linear on a finite-dimensional space and hence it is Lipschitz continuous. Thus, the (local)
Lipschitz-continuity of Th follows from (28), (33), and the equivalence of norms on finite-dimensional spaces.
The strong monotonicity (37) follows from (25) and (27). Finally, let τ̃M be defined by (23). In view of (25), it
holds

(Thzh, zh) = ‖zh‖2
LPS + dh(zh + ũbh; zh, zh)

+ a(ũbh, zh) + sh(ũbh, zh) + dh(zh + ũbh; ũbh, zh) − (f, zh). (39)

Applying (32), (10), (16), (18), (4), and (5), one obtains

|dh(zh + ũbh; ũbh, zh)| ≤ C h ‖b‖0,∞,Ω |ũbh|1,Ω |zh|1,Ω.

The same estimate also holds for sh(ũbh, zh). Using the fact that dh(zh + ũbh; zh, zh) ≥ 0 and applying the
Cauchy-Schwarz inequality to the third and last term on the right-hand side of (39), one derives

(Thzh, zh) ≥ ε |zh|21,Ω − (ε + C ‖b‖0,∞,Ω + ‖c‖0,∞,Ω) ‖ũbh‖1,Ω ‖zh‖1,Ω − ‖f‖0,Ω ‖zh‖0,Ω.

Now, employing the Poincaré and Young inequalities, one obtains (38). �

To prove that the discrete problem (19) has at least one solution, we shall use the following simple consequence
of Brouwer’s fixed-point theorem, whose proof can be found in [32], p. 164, Lemma 1.4.

Lemma 3.5. Let X be a finite-dimensional Hilbert space with inner product (·, ·) and norm ‖·‖. Let P : X → X
be a continuous mapping and K > 0 a real number such that (Px, x) > 0 for any x ∈ X with ‖x‖ = K. Then
there exists x ∈ X such that ‖x‖ ≤ K and Px = 0.

Collecting the previous results, the main result of this section can be stated now, namely, the well-posedness
of the problem (19).

Theorem 3.6. If τ̃M is defined by (22) or (23), then the problem (19) has a solution. If τ̃M is defined by (22),
the solution of (19) is unique.

Proof. If τ̃M is defined by (22), then it follows from the strong monotonicity (37) that, for any zh ∈ Vh,

(Thzh, zh) ≥ ‖zh‖2
LPS + (Th0, zh) ≥ ε |zh|21,Ω − ‖Th0‖0,Ω ‖zh‖0,Ω.

Thus, using Young’s inequality and the equivalence of norms in the space Vh one gets

(Thzh, zh) ≥ C1 ‖zh‖2
0,Ω − C2,

where C1, C2 are positive constants that depend on h and the data of (1), but not on zh and σ0. According
to (38), the same inequality holds if τ̃M is defined by (23). Thus, in view of Lemma 3.5 with any K >

√
C2/C1,

the operator Th has a zero and hence the problem (19) has a solution. The uniqueness in the case that τ̃M is
defined by (22) follows from the strong monotonicity (37). �
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3.2. Error estimates

For the analysis of the methods introduced in Section 3, we will need an appropriate interpolation operator.
An important tool for the construction of such an operator is provided by the following result, whose proof can
be found in [25], Lemma 1.

Lemma 3.7. Let us suppose the inf-sup condition (9) to be satisfied. Then, there exists an operator �h :
L2(Ω) → Vh such that, for any v, w ∈ L2(Ω), the estimates

|(v − �hv, w)| ≤ C
∑

M∈Mh

‖v‖0,M ‖κMw‖0,M , (40)

|�hv|21,M + h−2
M ‖�hv‖2

0,M ≤ C
∑

M ′ ∈ Mh,

M ∩ M ′ �= ∅

h−2
M ′ ‖v‖2

0,M ′ ∀ M ∈ Mh (41)

are valid. Consequently, for any α ∈ R, it holds∑
M∈Mh

hα
M (|�hv|21,M + h−2

M ‖�hv‖2
0,M ) ≤ C

∑
M∈Mh

hα−2
M ‖v‖2

0,M , (42)

where the constant C is independent of v and h but can depend on α.

With the operators ih and �h, an operator rh ∈ L (C(Ω), Wh) ∩ L (C(Ω) ∩ H1
0 (Ω), Vh) is defined by

rhv := ihv + �h(v − ihv). (43)

To formulate the interpolation properties of rh, it is convenient to introduce the mesh dependent norm

‖v‖1,h =

( ∑
M∈Mh

{|v|21,M + h−2
M ‖v‖2

0,M}
)1/2

.

Then, using (41), the geometrical hypotheses (4) and (5), and the approximation property of ih (11), one obtains

‖v − rhv‖1,h ≤ C ‖v − ihv‖1,h ≤ C̃ hk |v|k+1,Ω ∀ v ∈ Hk+1(Ω), k = 1, . . . , l, (44)

and consequently

|v − rhv|1,Ω + h−1 ‖v − rhv‖0,Ω ≤ C hk |v|k+1,Ω ∀ v ∈ Hk+1(Ω), k = 1, . . . , l. (45)

The derivation of the error estimates will be based on the following two lemmas. The first one states an
interpolation error estimate and the second one states a bound on the nonlinear form dh.

Lemma 3.8. Let u ∈ Hk+1(Ω) for some k ∈ {1, . . . , l}, and let η := u− rhu. Then, for any vh ∈ Vh \ {0}, the
following estimate holds

‖η‖LPS +
a(η, vh) + sh(η, vh) − sh(u, vh)

‖vh‖LPS

≤ C
(
ε + h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω. (46)

Proof. Since, in view of (5), (16), (18), and the definition of τM (20)

‖v‖LPS ≤ C
(
ε + h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω

)1/2 ‖v‖1,h ∀ v ∈ H1(Ω),
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it follows from (44) that

‖η‖LPS ≤ C
(
ε + h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω

)1/2
hk |u|k+1,Ω.

Next, for any vh ∈ Vh \ {0}, integration by parts gives

(b · ∇η, vh) = −(η, b · ∇vh) − ((∇ · b) η, vh).

Thus, applying the Cauchy-Schwarz inequality and (45), it follows that

a(η, vh) + sh(η, vh) ≤
(
‖η‖LPS + C |b|1,∞,Ω σ

−1/2
0 hk+1 |u|k+1,Ω

)
‖vh‖LPS − (η, b · ∇vh).

The use of (40), the approximation property of ih (11), (4), and (5) lead to

(η, b · ∇vh) ≤ C
∑

M∈Mh

‖u − ihu‖0,M ‖κM (b · ∇vh)‖0,M

≤ C hk |u|k+1,Ω

( ∑
M∈Mh

h2
M ‖κM (b · ∇vh)‖2

0,M

)1/2

.

Applying (16), (18), (20), and the inverse inequality (8), one derives

‖κM (b · ∇vh)‖0,M ≤ ‖κM ((b − bM ) · ∇vh)‖0,M + ‖κM (bM · ∇vh)‖0,M

≤ C |b|1,∞,M ‖vh‖0,M + τ
−1/2
0 (ε + hM ‖b‖0,∞,M )1/2 h−1

M τ
1/2
M ‖κM (bM · ∇vh)‖0,M ,

which leads to the estimate

(η, b · ∇vh) ≤ C
(
ε + h ‖b‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω ‖vh‖LPS.

Finally, using (17), (18), (20), and the geometrical hypotheses (4) and (5), one obtains

sh(u, u) ≤
∑

M∈Mh

τM |bM |2 ‖κM∇u‖2
0,M ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω,

and hence
sh(u, vh) ≤

√
sh(u, u)

√
sh(vh, vh) ≤ C ‖b‖1/2

0,∞,Ω hk+1/2 |u|k+1,Ω ‖vh‖LPS,

which completes the proof. �
Lemma 3.9. For any wh ∈ Wh and u, v ∈ Hk+1(Ω) with k ∈ {1, . . . , l}, it holds

dh(wh; rhu, rhv) ≤ C h2 k−d/2

(
max

M∈Mh

‖τ sold
M (wh)‖0,M

)
|u|k+1,Ω |v|k+1,Ω . (47)

Proof. The application of Hölder’s inequality and (10) lead to

dh(wh; rhu, rhv) ≤
∑

M∈Mh

‖τ sold
M (wh)‖0,M ‖κM (PM∇(rhu))‖0,4,M ‖κM (PM∇(rhv))‖0,4,M

≤ C
∑

M∈Mh

‖τ sold
M (wh)‖0,M h

−d/2
M ‖κM (PM∇(rhu))‖0,M ‖κM (PM∇(rhv))‖0,M

≤ C

(
max

M∈Mh

‖τ sold
M (wh)‖0,M

)( ∑
M∈Mh

h
−d/2
M ‖κM (PM∇(rhu))‖2

0,M

)1/2

×
( ∑

M∈Mh

h
−d/2
M ‖κM (PM∇(rhv))‖2

0,M

)1/2

. (48)
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Let us estimate the term with u; the term with v can be treated analogously. Using (16) and (17), for u ∈
Hk+1(Ω) with k ∈ {1, . . . , l} there holds

‖κM (PM∇(rhu))‖0,M ≤ ‖κM (PM∇u)‖0,M + ‖κM (PM∇(u − rhu))‖0,M

≤ C hk
M |u|k+1,M + C |u − rhu|1,M . (49)

According to (42), one has for any α ∈ R∑
M∈Mh

hα
M |u − rhu|21,M ≤ 2

∑
M∈Mh

hα
M |u − ihu|21,M + 2

∑
M∈Mh

hα
M |�h(u − ihu)|21,M

≤ C
∑

M∈Mh

hα
M (|u − ihu|21,M + h−2

M ‖u − ihu‖2
0,M ),

and hence it follows from the approximation property of ih (11), (4), and (5) that, for α ≥ −2,∑
M∈Mh

hα
M ‖κM (PM∇(rhu))‖2

0,M ≤ C h2 k+α |u|2k+1,Ω. (50)

Inserting (50) with α = −d/2 into (48), the statement of the lemma is proved. �

We are now in position to prove the first error estimate. The following theorem states the error estimate in
the case τ̃M is given by (22).

Theorem 3.10. Let τ̃M be defined by (22). Let the weak solution of (1) satisfy u ∈ Hk+1(Ω) for some k ∈
{1, . . . , l}. Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb. Then the solution uh of the local projection
discretization (19) satisfies the error estimate

‖u − uh‖LPS +

( ∑
M∈Mh

τ̃M ‖κM (PM∇(u − uh))‖3
0,3,M

)1/2

≤ C
{
ε + h ‖b‖0,∞,Ω (1 + β hk−d/2 |u|k+1,Ω) + h2

(‖σ‖0,∞,Ω + |b|21,∞,Ω σ−1
0

)}1/2

hk |u|k+1,Ω .

If u ∈ W k+1,∞(Ω) with k ∈ {1, . . . , l}, then

‖u − uh‖LPS +

( ∑
M∈Mh

τ̃M ‖κM (PM∇(u − uh))‖3
0,3,M

)1/2

≤ C
{
ε + h ‖b‖0,∞,Ω (1 + β hk |u|k+1,∞,Ω) + h2

(‖σ‖0,∞,Ω + |b|21,∞,Ω σ−1
0

)}1/2

hk |u|k+1,Ω .

Proof. The error u− uh is split into the interpolation error η := u− rhu and the discrete error eh := uh − rhu.
Then eh ∈ Vh and also rhu − ũbh ∈ Vh. From the monotonicity (37) it follows with the discrete problem (19)
and the continuous problem (14) that

‖eh‖2
LPS +

1
7

∑
M∈Mh

τ̃M ‖κM (PM∇eh)‖3
0,3,M ≤ (Th(uh − ũbh) − Th(rhu − ũbh), eh)

= a(uh, eh) + sh(uh, eh) + dh(uh; uh, eh) − (Th(rhu − ũbh), eh)

= (f, eh) − (Th(rhu − ũbh), eh)
= a(u, eh) − a(rhu, eh) − sh(rhu, eh) − dh(rhu; rhu, eh)
= a(η, eh) + sh(η, eh) − sh(u, eh) − dh(rhu; rhu, eh).
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The first three terms on the right-hand side can be estimated using (46). To bound the nonlinear term, Hölder’s
and Young’s inequalities are applied to conclude

dh(rhu; rhu, eh) ≤ {dh(rhu; rhu, rhu)} 2
3 {dh(eh; eh, eh)} 1

3

≤ 2 dh(rhu; rhu, rhu) +
3
70

dh(eh; eh, eh). (51)

Then (47), (49), the bound of hM (5), (18), and (45) yield

dh(rhu; rhu, rhu) ≤ C β ‖b‖0,∞,Ω h3 k+1−d/2 |u|3k+1,Ω. (52)

Therefore,

‖eh‖2
LPS +

∑
M∈Mh

τ̃M ‖κM (PM∇eh)‖3
0,3,M

≤ C
{

ε + h ‖b‖0,∞,Ω (1 + β hk−d/2 |u|k+1,Ω) + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1
0

}
h2 k |u|2k+1,Ω . (53)

Next, to estimate the interpolation error, for any p ∈ [1, 6], it follows from the commutation property of κM

and PM , the estimate of the Lp(M) norm by the L2(M) norm (10), (15), and (13) that

‖κM (PM∇η)‖0,p,M ≤ ‖∇η − πM∇η‖0,p,M

≤ ‖∇(u − ihu)‖0,p,M + ‖∇(ihu − rhu) − πM∇η‖0,p,M

≤ |u − ihu|1,p,M + C h
d
p−d

2
M ‖∇(ihu − rhu) − πM∇η‖0,M

≤ |u − ihu|1,p,M + C̃ h
d
p−d

2
M

(|�h(u − ihu)|1,M + |u − ihu|1,M

)
≤ C̄ h

k+ d
p− d

2
M |u|k+1,M + C̃ h

d
p− d

2
M |�h(u − ihu)|1,M . (54)

Then, applying (54), (22), (5), (18), (41), (11), (4), and (6), one derives∑
M∈Mh

τ̃M ‖κM (PM∇η)‖3
0,3,M ≤ C β h ‖b‖0,∞,Ω

∑
M∈Mh

h
3 k−d/2
M |u|3k+1,M . (55)

Thus, combining (53), (55), and (46), the first estimate of the theorem follows.
If u ∈ W k+1,∞(Ω) with k ∈ {1, . . . , l}, then local norms of Sobolev spaces with p = 2 can be estimated

with norms of Sobolev spaces with p = ∞, thereby gaining powers of h from the smallness of the local domain:
|u|k+1,M ≤ C h

d/2
M |u|k+1,∞,M for any M ∈ Mh. Hence, it follows from (55) and the geometrical hypotheses (4)

and (5) that ∑
M∈Mh

τ̃M ‖κM (PM∇η)‖3
0,3,M ≤ C β ‖b‖0,∞,Ω h3 k+1 |u|k+1,∞,Ω |u|2k+1,Ω .

Furthermore, using (41), (11), and (4), one gets

|u − rhu|1,M ≤ C
∑

M ′ ∈ Mh,

M ∩ M ′ �= ∅

hk
M ′ |u|k+1,M ′ ≤ C̃ hk+d/2 |u|k+1,∞,Ω ∀ M ∈ Mh.

Therefore, according to (47) and (49),

dh(rhu; rhu, rhu) ≤ C β ‖b‖0,∞,Ω h3 k+1 |u|k+1,∞,Ω |u|2k+1,Ω , (56)

which implies the second estimate of the theorem. �
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Remark 3.11. Theorem 3.10 implies, in particular, the following convergence estimates in the convection-
dominated case ε < h: If u ∈ H2(Ω), then

‖u − uh‖LPS ≤ C0 h2−d/4 (h(d−2)/4 + |u|1/2
2,Ω) |u|2,Ω,

where C0 depends on the data of the problem. If u ∈ W 2,∞(Ω), then

‖u − uh‖LPS ≤ C0 h3/2 (1 + h1/2 |u|1/2
2,∞,Ω) |u|2,Ω.

If u ∈ Hk+1(Ω) with k ∈ {2, . . . , l}, then

‖u − uh‖LPS ≤ C0 hk+1/2 (1 + h(2 k−d)/4 |u|1/2
k+1,Ω) |u|k+1,Ω .

Remark 3.12. A situation of practical interest is that the convective field b arises from a finite element
approximation of the Navier-Stokes equations. In this case, a necessary condition for a uniform convergence of
‖b‖1,∞,Ω with respect to h is that the exact velocity is sufficiently regular. This condition might not be fulfilled,
e.g., if the domain possesses re-entrant corners, and therefore estimates involving weaker norms of b are also of
interest. Changing the arguments in the proof of Lemma 3.8 slightly, one obtains, e.g., the following result

‖u − uh‖LPS +

( ∑
M∈Mh

τ̃M ‖κM (PM∇(u − uh))‖3
0,3,M

)1/2

≤ C
{

ε + ‖b‖2
0,∞,Ω σ−1

0 + h ‖b‖0,∞,Ω (1 + β hk−d/2 |u|k+1,Ω)

+ h2−d
2 max

M∈Mh

‖∇ · b‖2
0,4,M σ−1

0 + h2 ‖σ‖0,∞,Ω

}1/2

hk |u|k+1,Ω. (57)

If the norms of b in (57) are still too strong, one can use the discrete character of a computed convection field b
and apply inverse inequalities to derive estimates involving the weaker norms ‖b‖1,Ω and ‖∇ · b‖0,Ω. However,
the relaxation of the regularity assumption on b in the error bounds is accompanied with a reduction of the
order of convergence, e.g., the order of convergence of (57) is reduced by 1/2 compared with the orders given
in the previous remark.

Remark 3.13. The right-hand sides of the estimates in Theorem 3.10 can be stated in terms of local
(semi)norms of the data and of the solution on macro-elements multiplied by diameters of the macro-elements.
However, due to the use of the interpolation operator rh, such estimates are more complicated than usually. For
example, a counterpart of (52) using local quantities has the form

dh(rhu; rhu, rhu) ≤ C β
∑

M∈Mh

‖b‖0,∞,M h
1−d/2
M

⎛⎜⎜⎝ ∑
M ′ ∈ Mh,

M ∩ M ′ �= ∅

h2k
M ′ |u|2k+1,M ′

⎞⎟⎟⎠
3/2

.

Therefore, for clarity, we decided to state the estimates in terms of global quantities.

We end this section by presenting the error estimate in the case τ̃M is defined by (23).

Theorem 3.14. Let τ̃M be defined by (23). Let the weak solution of (1) satisfy u ∈ Hk+1(Ω) for some k ∈
{1, . . . , l}. Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb. Then the solution uh of the local projection
discretization (19) satisfies the error estimate

‖u − uh‖LPS + (dh(uh; u − uh, u − uh))1/2

≤ C
(
ε + h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω.



1350 G.R. BARRENECHEA ET AL.

Proof. Set again η := u − rhu and eh := uh − rhu. From (19) and (14), it follows that

a(eh, eh) + sh(eh, eh) + dh(uh; uh, eh)
= a(uh, eh) + sh(uh, eh) + dh(uh; uh, eh) − a(rhu, eh) − sh(rhu, eh)
= a(η, eh) + sh(η, eh) − sh(u, eh).

Thus, in view of the representation of the LPS norm (25), one gets

‖eh‖2
LPS + dh(uh; eh, eh) = a(η, eh) + sh(η, eh) − sh(u, eh) − dh(uh; rhu, eh).

The first three terms on the right-hand side can be estimated using (46). To bound the nonlinear term, Hölder’s
and Young’s inequalities are again applied

dh(uh; rhu, eh) ≤
√

dh(uh; rhu, rhu)
√

dh(uh; eh, eh) ≤ dh(uh; rhu, rhu) +
1
4

dh(uh; eh, eh). (58)

Using (47), (24), and (5), one obtains

dh(uh; rhu, rhu) ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω. (59)

Therefore,

‖eh‖2
LPS + dh(uh; eh, eh) ≤ C

(
ε + h ‖b‖0,∞,Ω + h2 ‖σ‖0,∞,Ω + h2 |b|21,∞,Ω σ−1

0

)
h2 k |u|2k+1,Ω .

Note that an application of the triangle inequality gives

dh(uh; u − uh, u − uh) ≤ 2 dh(uh; η, η) + 2 dh(uh; eh, eh). (60)

It follows from Hölder’s inequality, (24), (54), (42) with α = 0, (11), (4), and (5), that

dh(uh; η, η) ≤
∑

M∈Mh

‖τ sold
M (uh)‖0,M ‖κM (PM∇η)‖2

0,4,M ≤ C ‖b‖0,∞,Ω h2 k+1 |u|2k+1,Ω . (61)

Finally, using the triangle inequality and the estimate (46), the statement of the theorem follows. �

Remark 3.15. Theorems 3.10 and 3.14 prove the convergence of the method in the LPS norm plus an extra
term involving the crosswind derivative of the error. Hence, these estimates give, essentially, an extra control of
the whole gradient of the error.

4. The time-dependent problem

We now move on to the study of the time-dependent problem (3). A weak form of problem (3) reads as
follows: find u ∈ L2(0, T ; H1(Ω)) ∩ H1(0, T ; L2(Ω)) such that u = ub on [0, T ]× ∂Ω, u(0, ·) = u0 and

(ut, v) + a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω), for almost every t ∈ (0, T ]. (62)

To avoid technicalities in the analysis, it is assumed that the boundary condition does not depend on time,
ub(t, ·) = ub. The initial condition u0 is assumed to satisfy u0|∂Ω = ub and it is approximated by a function
u0

h ∈ Wh such that u0
h − ũbh ∈ Vh.

To perform the discretization of the time derivative, the time interval [0, T ] is divided into NT equidistant
strips of length δt = T/NT . The constant time step is used only for simplicity of presentation; for variable
time steps the same techniques can be applied leading to essentially the same results. The nodes are denoted
by tn = n δt for n = 0, 1, . . . , NT and the abbreviations un := u(tn, ·), fn := f(tn, ·), etc. are used. Since this
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section studies the LPS method with nonlinear crosswind diffusion in combination with a one-step θ-scheme as
temporal discretization, from now on, the superscript n + θ denotes for all functions which are defined in [0, T ]
the values at time tn+θ := θ tn+1 + (1− θ) tn with any n ∈ {0, . . . , NT − 1} and θ ∈ [0, 1], e.g. bn+θ = b(tn+θ, ·).
For functions, which are defined only at the discrete times tn and tn+1, it denotes the linear interpolation, e.g.
un+θ

h = θ un+1
h + (1 − θ)un

h. Finally, it is convenient to introduce the interpolation operator r̃n+θ
h satisfying

r̃n+θ
h u = θ rhun+1 + (1 − θ) rhun (63)

with rh from (43). Thus, writing α instead of n + θ, functions uα, uα
h , r̃α

hu, etc. are defined for any α ∈ [0, NT ].
Then, given θ ∈ (0, 1], the fully discrete problem reads as follows: for n = 0, 1, . . . , NT − 1, find un+1

h ∈ Wh

such that un+1
h − ũbh ∈ Vh and(

un+1
h − un

h

δt
, vh

)
+ an+θ(un+θ

h , vh) + sn+θ
h (un+θ

h , vh) + dn+θ
h (un+θ

h ; un+θ
h , vh) = (fn+θ, vh) ∀ vh ∈ Vh. (64)

For θ = 1/2, the Crank-Nicolson scheme is recovered and for θ = 1, the implicit Euler scheme is obtained.

Remark 4.1. To simplify the notation, we will not explicitly indicate at which time instant the functions b
and σ in the definition of the norm ‖ · ‖LPS are evaluated. This will be implicitly determined from the context
or by the argument of the norm. Thus, if we write, e.g., ‖un+θ

h ‖LPS, the norm ‖ · ‖LPS is defined using bn+θ

and σn+θ.

4.1. Well-posedness and stability

The well-posedness of (64) can be traced back to the well-posedness of the LPS scheme with crosswind
diffusion for the steady-state problem. The discretization of the temporal derivative can be written in the form(

un+1
h − un

h

δt
, vh

)
=

1
θ

(
un+θ

h − un
h

δt
, vh

)
.

The first part of this term has the form of a reaction term for un+θ
h . Thus, given un

h, the equation at the discrete
time tn+1 is an equation for un+θ

h which has the same form as (19) with the data of the problem at tn+θ and
with a reaction coefficient which has a contribution from the temporal derivative. Thus, defining the operator
T̃ n+θ

h : Vh → Vh by

(T̃ n+θ
h zh, vh) = (T n+θ

h zh, vh) +
1

θ δt
(zh + ũbh, vh) − 1

θ δt
(un

h, vh) ∀ zh, vh ∈ Vh,

it follows that T̃ n+θ
h (un+θ

h − ũbh) = 0. Therefore, the existence and uniqueness of a solution un+θ
h can be proved

in the same way as in the steady-state case, see Section 3.1. This fact is stated in the next result.

Corollary 4.2. Let n ∈ {0, 1, . . . , NT − 1} and un
h ∈ Wh with un

h|∂Ω = ũbh be given. If τ̃M is defined by (22)
or (23), then the problem (64) possesses a solution un+1

h . In the case that τ̃M is defined by (22), the solution
of (64) is unique. Furthermore, there is a constant C > 0 such that the solution of the scheme (64) with τ̃M

given by (23) is unique if δt ‖bn+θ‖0,∞,M ≤ C hM for any M ∈ Mh.

Proof. The only point remaining to prove is the uniqueness in the case τ̃M is given by (23). For this, let vh, wh ∈
Wh and zh := vh − wh. Then, applying (33), the estimate of the Lp(M) norm by the L2(M) norm (10), (16),
‖Pn+θ

M ‖2 = 1, and the inverse inequality (8), one arrives at

|dn+θ
h (vh; vh, zh) − dn+θ

h (wh; wh, zh)| ≤ C
∑

M∈Mh

h−1
M ‖bn+θ‖0,∞,M ‖zh‖2

0,M .
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Thus, if vh, wh ∈ Vh, one obtains

(T̃ n+θ
h vh − T̃ n+θ

h wh, zh) ≥
∑

M∈Mh

(
C̃

θ δt
− C ‖bn+θ‖0,∞,M

hM

)
‖zh‖2

0,M + ‖zh‖2
LPS.

Consequently, for δt small enough, the operator T̃ n+θ
h is strongly monotone and hence the solution to the discrete

problem (64) is unique. �

The next result states the stability of the method.

Lemma 4.3. Let θ ∈ [1/2, 1] be given. Let ũα
h := uα

h − ũbh for any α ∈ [0, NT ]. Then any solution of (64)
satisfies the following stability estimate for all N = 1, 2, . . . , NT :

‖ũN
h ‖2

0,Ω + (2 θ − 1)
N−1∑
n=0

‖ũn+1
h − ũn

h‖2
0,Ω + δt

N−1∑
n=0

‖ũn+θ
h ‖2

LPS

+ δt

N−1∑
n=0

dn+θ
h (ūn+θ

h ; ũn+θ
h , ũn+θ

h ) ≤ ‖ũ0
h‖2

0,Ω + C δt

N−1∑
n=0

{
σ−1

0 ‖fn+θ‖2
0,Ω

+
[
ε + σ−1

0 (‖bn+θ‖2
0,∞,Ω + ‖cn+θ‖2

0,∞,Ω) + h ‖bn+θ‖0,∞,Ω

]
‖ũbh‖2

1,Ω + μh

}
, (65)

where

ūn+θ
h = ũn+θ

h , μh = β h ‖bn+θ‖0,∞,Ω |ũbh|31,3,Ω if τ̃M is given by (22), (66)

ūn+θ
h = un+θ

h , μh = 0 if τ̃M is given by (23). (67)

Proof. The proof starts in the usual way by setting vh = ũn+θ
h ∈ Vh in (64) and using that un+1

h −un
h = ũn+1

h −ũn
h,

which leads to

(ũn+1
h − ũn

h, ũn+θ
h ) + δt ‖ũn+θ

h ‖2
LPS + δt dn+θ

h (un+θ
h ; un+θ

h , ũn+θ
h )

= δt (fn+θ, ũn+θ
h ) − δt an+θ(ũbh, ũn+θ

h ) − δt sn+θ
h (ũbh, ũn+θ

h ). (68)

A straightforward computation gives

(ũn+1
h − ũn

h, ũn+θ
h ) =

1
2

(‖ũn+1
h ‖2

0,Ω − ‖ũn
h‖2

0,Ω) +
2 θ − 1

2
‖ũn+1

h − ũn
h‖2

0,Ω. (69)

Next, the application of the Cauchy-Schwarz inequality, the Young inequality, (16), (18), the definition of
τM (20), and the geometrical hypotheses (4) and (5) yield

(fn+θ, ũn+θ
h ) ≤ 1

σ0
‖fn+θ‖2

0,Ω +
1
4
‖ũn+θ

h ‖2
LPS,

an+θ(ũbh, ũn+θ
h ) ≤ 6

[
ε + σ−1

0 (‖bn+θ‖2
0,∞,Ω + ‖cn+θ‖2

0,∞,Ω)
] ‖ũbh‖2

1,Ω +
1
8
‖ũn+θ

h ‖2
LPS,

sn+θ
h (ũbh, ũn+θ

h ) ≤ C h ‖bn+θ‖0,∞,Ω |ũbh|21,Ω +
1
8
‖ũn+θ

h ‖2
LPS.

If τ̃M is given by (22), then, from (27) and an analog of (51), one obtains

dn+θ
h (un+θ

h ; un+θ
h , ũn+θ

h ) ≥ 1
7

dn+θ
h (ũn+θ

h ; ũn+θ
h , ũn+θ

h ) + dn+θ
h (ũbh; ũbh, ũn+θ

h )

≥ 1
10

dn+θ
h (ũn+θ

h ; ũn+θ
h , ũn+θ

h ) − 2 dn+θ
h (ũbh; ũbh, ũbh).



LPS WITH NONLINEAR CROSSWIND DIFFUSION 1353

Furthermore, the use of (10), (16), (18), ‖Pn+θ
M ‖2 = 1, (4), and (5) leads to

dn+θ
h (ũbh; ũbh, ũbh) ≤ C β

∑
M∈Mh

h
1−d/2
M ‖bn+θ‖0,∞,M |ũbh|31,M ≤ C̃ β h ‖bn+θ‖0,∞,Ω |ũbh|31,3,Ω.

If τ̃M is given by (23), then, using an inequality like (58), one gets

dn+θ
h (un+θ

h ; un+θ
h , ũn+θ

h ) = dn+θ
h (un+θ

h ; ũn+θ
h , ũn+θ

h ) + dn+θ
h (un+θ

h ; ũbh, ũn+θ
h )

≥ 1
2

dn+θ
h (un+θ

h ; ũn+θ
h , ũn+θ

h ) − 1
2

dn+θ
h (un+θ

h ; ũbh, ũbh).

Applying the Hölder inequality, (24), the estimate of the Lp(M) norm by the L2(M) norm (10), (16), ‖Pn+θ
M ‖2 =

1, (4), and (5), one deduces that

dn+θ
h (un+θ

h ; ũbh, ũbh) ≤ C
∑

M∈Mh

h
1+d/2
M ‖bn+θ‖0,∞,M ‖κM (Pn+θ

M ∇ũbh)‖2
0,4,M

≤ C̃ h ‖bn+θ‖0,∞,Ω |ũbh|21,Ω.

Now, inserting the above relations into (4.1) and using the notation (66) and (67), one obtains

1
2

(‖ũn+1
h ‖2

0,Ω − ‖ũn
h‖2

0,Ω) +
2 θ − 1

2
‖ũn+1

h − ũn
h‖2

0,Ω +
δt

2
‖ũn+θ

h ‖2
LPS +

δt

6
dn+θ

h (ūn+θ
h ; ũn+θ

h , ũn+θ
h )

≤ δt σ−1
0 ‖fn+θ‖2

0,Ω + C δt
{
ε + σ−1

0 (‖bn+θ‖2
0,∞,Ω + ‖cn+θ‖2

0,∞,Ω) + h ‖bn+θ‖0,∞,Ω

} ‖ũbh‖2
1,Ω

+ C δt μh,

and (65) follows by summing up from n = 0 to N − 1. �
Remark 4.4. The inequality (65) is a proper stability result provided that ‖u0

h‖0,Ω, ‖ũbh‖1,Ω and, if τ̃M is
given by (22), also |ũbh|1,3,Ω are bounded when h → 0. One may set u0

h = Ihu0 and ũbh = Ihũb, where
Ih : H1(Ω) → Wh is the Scott-Zhang interpolation operator (cf., e.g., [12]) and ũb ∈ H1(Ω) is an extension
of ub. Then ‖u0

h‖0,Ω ≤ C ‖u0‖1,Ω and ‖ũbh‖1,Ω ≤ C ‖ũb‖1,Ω. If ũb ∈ W 1,3(Ω) (requiring the stronger assumption
ub ∈ W 2/3,3(∂Ω)), then also |ũbh|1,3,Ω ≤ C ‖ũb‖1,3,Ω. It is important that Ih preserves homogeneous boundary
conditions since one has to assure that u0

h and ũbh coincide on the boundary of Ω. If u0 ∈ H2(Ω) and ub ∈
H3/2(∂Ω), which are the minimal regularity assumptions for deriving the error estimates in the next section,
one may use the operator ih from Section 2 instead of Ih. Now ũb ∈ H2(Ω) and, according to the approximation
properties of ih (11) and (13), one has ‖u0

h‖0,Ω ≤ C ‖u0‖2,Ω and ‖ũbh‖1,Ω + |ũbh|1,3,Ω ≤ C ‖ũb‖2,Ω.

Remark 4.5. It is worth remarking that, for the homogeneous case ub = 0, instead of the direct proof presented
in this manuscript, an analysis completely analogous to the one given in [8], Corollary 7, leads to the following
stability result for θ ∈ [1/2, 1] and N < NT

1
2
‖uN

h ‖2
0,Ω + δt

N−1∑
n=0

{‖un+θ
h ‖2

LPS + dn+θ
h (un+θ

h ; un+θ
h , un+θ

h )
} ≤ e

T
T−δt

{
T δt

N−1∑
n=0

‖fn+θ‖2
0,Ω +

1
2
‖u0

h‖2
0,Ω

}
.

(70)
This result, very similar in form to the one in [8] (with the extra control on the nonlinear term, and a slightly
smaller right-hand side), is independent of σ0, and hence represents an improvement over the way Lemma 4.3
is presented. The reason to present the direct proof here lies in the non-homogeneous case, where the presence
of ub is responsible for the dependency of the constant on the right-hand side on σ−1

0 . In the non-homogeneous
case, both proofs lead to essentially equivalent results, the direct proof presented in this work being more
straightforward.

Finally, if ub would be supposed time dependent, then in the first line of the proof of stability there holds
un+1

h − un
h = ũn+1

h − ũn
h + ũn+1

bh − ũn
bh, thus creating an extra right-hand side depending on the time derivative

of ub.
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4.2. Error estimates

In this section, error estimates are derived for the solution of the discrete problem (64) with θ ∈ [1/2, 1]. The
error will be analyzed essentially in the quantity which is given by the stability estimate (65). Let us denote the
error by eα := uα − uα

h with α ∈ [0, NT ]. Furthermore, to simplify the presentation of our results, we introduce
the quantities

EN = ‖eN‖0,Ω +

(
δt

N−1∑
n=0

‖en+θ‖2
LPS

)1/2

,

QN = h
(
|u0|k+1,Ω + |uN |k+1,Ω + σ

−1/2
0 ‖ut‖L2(0,tN ;Hk+1(Ω))

)
+

(
δt

N−1∑
n=0

(
ε + h ‖bn+θ‖0,∞,Ω

+ h2 ‖σn+θ‖0,∞,Ω + h2 σ−1
0 |bn+θ|21,∞,Ω

)(
|un|2k+1,Ω + |un+1|2k+1,Ω

))1/2

,

RN =

(
δt

N−1∑
n=0

hk+1−d/2 ‖bn+θ‖0,∞,Ω

(
|un|3k+1,Ω + |un+1|3k+1,Ω

))1/2

,

SN =

(
δt

N−1∑
n=0

hk+1 ‖bn+θ‖0,∞,Ω

(
|un|k+1,∞,Ω + |un+1|k+1,∞,Ω

)(
|un|2k+1,Ω + |un+1|2k+1,Ω

))1/2

,

XN = max
n=0,...,N−1

(
ε + h ‖bn+θ‖0,∞,Ω + ‖σn+θ‖0,∞,Ω + σ−1

0 ‖bn+θ‖2
0,∞,Ω + σ−1

0 ‖cn+θ‖2
0,∞,Ω

)1/2
,

Y N = h1/2 max
n=0,...,N−1

‖bn+θ‖1/2
0,∞,Ω,

where N = 1, 2, . . . , NT .

Theorem 4.6. Let θ ∈ [1/2, 1] be given. Let the weak solution of (3) satisfy u, ut ∈ L2(0, T ; Hk+1(Ω)) for some
k ∈ {1, . . . , l} and assume utt ∈ L2(0, T ; L2(Ω)). Let ũb ∈ H2(Ω) be an extension of ub and let ũbh = ihũb.
Assume u0 ∈ Hk+1(Ω) and let u0

h = ihu0. Let {un
h}NT

n=0 be the solution of the local projection discretization (64).
If τ̃M is defined by (22) and ut ∈ L3(0, T ; W 1,3(Ω)), then the error estimate

EN +

(
δt

N−1∑
n=0

∑
M∈Mh

τ̃M‖κM (Pn+θ
M ∇en+θ)‖3

0,3,M

)1/2

≤ C hk QN + C β hk RN + C δt XN ‖ut‖L2(0,tN ;H1(Ω))

+ C β (δt)3/2 Y N ‖ut‖3/2
L3(0,tN ;W 1,3(Ω)) + C δt σ

−1/2
0 ‖utt‖L2(0,tN ;L2(Ω)) (71)

is satisfied for N = 1, 2, . . . , NT . Moreover, if θ = 1/2, utt ∈ L3(0, T ; W 1,3(Ω)), and uttt ∈ L2(0, T ; L2(Ω)),
then

EN +

(
δt

N−1∑
n=0

∑
M∈Mh

τ̃M‖κM (Pn+θ
M ∇en+θ)‖3

0,3,M

)1/2

≤ C hk QN + C β hk RN + C (δt)2 XN ‖utt‖L2(0,tN ;H1(Ω))

+ C β (δt)3 Y N ‖utt‖3/2

L3(0,tN ;W 1,3(Ω))
+ C (δt)2 σ

−1/2
0 ‖uttt‖L2(0,tN ;L2(Ω)).

If u ∈ L2(0, T ; W k+1,∞(Ω)), then, in both estimates, RN can be replaced by SN .
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If τ̃M is defined by (23) and ut ∈ L4(0, T ; W 1,4(Ω)), then the following error estimate holds

EN +

(
δt

N−1∑
n=0

dn+θ
h (un+θ

h ; en+θ, en+θ)

)1/2

≤ C hk QN + C δt XN ‖ut‖L2(0,tN ;H1(Ω))

+ C δt T 1/4 Y N ‖ut‖L4(0,tN ;W 1,4(Ω)) + C δt σ
−1/2
0 ‖utt‖L2(0,tN ;L2(Ω)) . (72)

Moreover, if θ = 1/2, utt ∈ L4(0, T ; W 1,4(Ω)), and uttt ∈ L2(0, T ; L2(Ω)), then

EN +

(
δt

N−1∑
n=0

dn+θ
h (un+θ

h ; en+θ, en+θ)

)1/2

≤ C hk QN + C (δt)2 XN ‖utt‖L2(0,tN ;H1(Ω))

+ C (δt)2 T 1/4 Y N ‖utt‖L4(0,tN ;W 1,4(Ω)) + C (δt)2 σ
−1/2
0 ‖uttt‖L2(0,tN ;L2(Ω)) .

Proof. Analogously to the steady-state case, the error will be split into an interpolation error and a remainder
which belongs to the finite element space. The decomposition of the error eα with any α ∈ [0, NT ] has the form

eα = ηα − eα
h with ηα := uα − r̄α

h , eα
h := uα

h − r̄α
h ∈ Vh,

where we use the abbreviation r̄α
h = r̃α

hu with r̃α
h given by (63). Using this decomposition, one obtains with the

triangle inequality and with (60)

‖eN‖2
0,Ω + δt

N−1∑
n=0

‖en+θ‖2
LPS + δt

N−1∑
n=0

dn+θ
h (γn+θ

0 ; en+θ, en+θ)

≤ 4

[
‖ηN‖2

0,Ω + δt

N−1∑
n=0

‖ηn+θ‖2
LPS + δt

N−1∑
n=0

dn+θ
h (γn+θ

1 ; ηn+θ, ηn+θ)

]

+ 4

[
‖eN

h ‖2
0,Ω + δt

N−1∑
n=0

‖en+θ
h ‖2

LPS + δt

N−1∑
n=0

dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h )

]
, (73)

where γn+θ
0 = en+θ, γn+θ

1 = ηn+θ, γn+θ
2 = en+θ

h if τ̃M is defined by (22) and γn+θ
0 = γn+θ

1 = γn+θ
2 = un+θ

h if τ̃M

is defined by (23).
First let us estimate the interpolation errors. The starting point is the identity

ηn+θ = un+θ − θ un+1 − (1 − θ)un + θ (un+1 − rhun+1) + (1 − θ) (un − rhun). (74)

One has

un+θ − θ un+1 − (1 − θ)un = (1 − θ)
∫ tn+θ

tn

ut(t) dt − θ

∫ tn+1

tn+θ

ut(t) dt, (75)

which, in view of (45), leads to

‖ηn+θ‖0,Ω ≤ C hk+1 (|un|k+1,Ω + |un+1|k+1,Ω) +
√

δt ‖ut‖L2(tn,tn+1;L2(Ω)),

|ηn+θ|1,Ω ≤ C hk (|un|k+1,Ω + |un+1|k+1,Ω) +
√

δt ‖ut‖L2(tn,tn+1;H1(Ω)).

Using Taylor’s formula with integral remainder or applying successively integration by parts gives

un = un+θ − θ δt un+θ
t +

∫ tn

tn+θ

utt(t) (tn − t) dt, (76)

un+1 = un+θ + (1 − θ) δt un+θ
t +

∫ tn+1

tn+θ

utt(t) (tn+1 − t) dt. (77)
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This may be used to derive improved interpolation estimates with respect to the time step provided that
utt ∈ L2(0, T ; H1(Ω)). Indeed,

un+θ − θ un+1 − (1 − θ)un = −(1 − θ)
∫ tn+θ

tn

utt(t) (t − tn) dt − θ

∫ tn+1

tn+θ

utt(t) (tn+1 − t) dt, (78)

which leads to

‖ηn+θ‖0,Ω ≤ C hk+1 (|un|k+1,Ω + |un+1|k+1,Ω) + (δt)3/2 ‖utt‖L2(tn,tn+1;L2(Ω)),

|ηn+θ|1,Ω ≤ C hk (|un|k+1,Ω + |un+1|k+1,Ω) + (δt)3/2 ‖utt‖L2(tn,tn+1;H1(Ω)).

Now let us estimate the norms of the interpolation error in (73). In view of (63), (45), (16), (18), and the
geometrical hypotheses (5) and (4), one has

‖ηN‖0,Ω = ‖uN − rhuN‖0,Ω ≤ C hk+1 |uN |k+1,Ω ,

‖ηn+θ‖LPS ≤
(
ε + C h ‖bn+θ‖0,∞,Ω

)1/2

|ηn+θ|1,Ω + ‖σn+θ‖1/2
0,∞,Ω ‖ηn+θ‖0,Ω.

Furthermore, analogously as in (54), for any p ∈ [2, 6], one obtains

‖κM (Pn+θ
M ∇ηn+θ)‖0,p,M ≤ C |un+θ − θ ihun+1 − (1 − θ) ihun|1,p,M

+ C h
d
p− d

2
M

(|�h(un − ihun)|1,M + |�h(un+1 − ihun+1)|1,M

)
. (79)

If τ̃M is defined by (22), this inequality implies that

dn+θ
h (ηn+θ; ηn+θ, ηn+θ) ≤ C β (I + II),

where

I := h ‖bn+θ‖0,∞,Ω

∑
M∈Mh

|un+θ − θ un+1 − (1 − θ)un|31,3,M ,

II := h ‖bn+θ‖0,∞,Ω

∑
M∈Mh

(|un+1 − ihun+1|31,3,M + |un − ihun|31,3,M

)
+ h ‖bn+θ‖0,∞,Ω

∑
M∈Mh

h
− d

2
M

(|�h(un − ihun)|31,M + |�h(un+1 − ihun+1)|31,M

)
.

Using (75) and (78), one obtains

I ≤ C h (δt)2 ‖bn+θ‖0,∞,Ω ‖ut‖3
L3(tn,tn+1;W 1,3(Ω)),

resp.
I ≤ C h (δt)5 ‖bn+θ‖0,∞,Ω ‖utt‖3

L3(tn,tn+1;W 1,3(Ω)).

Furthermore, it follows from (13), (41), (11), (6), and (4) that

II ≤ C h ‖bn+θ‖0,∞,Ω

∑
M∈Mh

h
3 k−d/2
M (|un|3k+1,M + |un+1|3k+1,M ), (80)

which implies in view of (4) and (5) that

II ≤ C h3 k+1−d/2 ‖bn+θ‖0,∞,Ω (|un|3k+1,Ω + |un+1|3k+1,Ω).
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If u ∈ L2(0, T ; W k+1,∞(Ω)), the inequality (80) together with (4) and (5) implies that

II ≤ C h3 k+1 ‖bn+θ‖0,∞,Ω (|un|k+1,∞,Ω |un|2k+1,Ω + |un+1|k+1,∞,Ω |un+1|2k+1,Ω).

If τ̃M is defined by (23), then, proceeding analogously as when deriving (61), but with (79) instead of (54), and
applying (13) in addition, one gets

dn+θ
h (un+θ

h ; ηn+θ, ηn+θ) ≤ C Ĩ + C ‖bn+θ‖0,∞,Ω h2 k+1 (|un|2k+1,Ω + |un+1|2k+1,Ω),

where
Ĩ := h ‖bn+θ‖0,∞,Ω

∑
M∈Mh

h
d/2
M |un+θ − θ un+1 − (1 − θ)un|21,4,M .

Similarly as above, one obtains

Ĩ ≤ C h (δt)3/2 ‖bn+θ‖0,∞,Ω ‖ut‖2
L4(tn,tn+1;W 1,4(Ω)),

resp.
Ĩ ≤ C h (δt)7/2 ‖bn+θ‖0,∞,Ω ‖utt‖2

L4(tn,tn+1;W 1,4(Ω)).

Now let us estimate the norms of the discrete part of the error on the right-hand side of (73). To derive
an equation for this part of the error, the weak formulation (62) at t = tn+θ is subtracted from (64) with
v = vh = en+θ

h . Then, using the fact that uα
h = eα

h + r̄α
h , one deduces that

(en+1
h − en

h, en+θ
h ) + δt ‖en+θ

h ‖2
LPS + δt dn+θ

h (un+θ
h ; un+θ

h , en+θ
h )

= δt

[(
un+θ

t − r̄n+1
h − r̄n

h

δt
, en+θ

h

)
+ an+θ(ηn+θ, en+θ

h ) − sn+θ
h (r̄n+θ

h , en+θ
h )

]
. (81)

Furthermore, one obtains

dn+θ
h (un+θ

h ; un+θ
h , en+θ

h ) ≥ 1
7

dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h ) + dn+θ
h (γn+θ

3 ; r̄n+θ
h , en+θ

h ), (82)

where γn+θ
3 = r̄n+θ

h if τ̃M is defined by (22) and γn+θ
3 = un+θ

h if τ̃M is defined by (23) (γn+θ
2 was defined

below (73)). This estimate follows from (27) if τ̃M is defined by (22) and simply by writing the second argument
of dn+θ

h as en+θ
h + r̄n+θ

h and using the fact that dn+θ
h (un+θ

h ; en+θ
h , en+θ

h ) ≥ 0 if τ̃M is defined by (23). Since θ ≥ 1/2,
it follows from (69) with ũ replaced by e that

(en+1
h − en

h, en+θ
h ) ≥ 1

2
(‖en+1

h ‖2
0,Ω − ‖en

h‖2
0,Ω). (83)

Substituting (82) and (83) into (81) and summing up over the discrete times yields an upper bound for the
discrete part of the estimate (73)

‖eN
h ‖2

0,Ω + δt

N−1∑
n=0

‖en+θ
h ‖2

LPS + δt

N−1∑
n=0

dn+θ
h (γn+θ

2 ; en+θ
h , en+θ

h )

≤ 7
2
‖e0

h‖2
0,Ω + 7 δt

N−1∑
n=0

[(
un+θ

t − r̄n+1
h − r̄n

h

δt
, en+θ

h

)
+ an+θ(ηn+θ, en+θ

h )

− sn+θ
h (r̄n+θ

h , en+θ
h ) − dn+θ

h (γn+θ
3 ; r̄n+θ

h , en+θ
h )

]
. (84)
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Using (42), the approximation property of ih (11), (5), and (4), one obtains

‖e0
h‖0,Ω = ‖ihu0 − rhu0‖0,Ω = ‖�h(u0 − ihu0)‖0,Ω ≤ C hk+1 |u0|k+1,Ω.

Applying the Cauchy-Schwarz and Young inequalities gives(
un+θ

t − r̄n+1
h − r̄n

h

δt
, en+θ

h

)
≤ 1

σ0

∥∥∥∥un+θ
t − r̄n+1

h − r̄n
h

δt

∥∥∥∥2

0,Ω

+
1
4
‖en+θ

h ‖2
LPS.

The last term can be hidden in the left-hand side of (84). The first term is a mixture of discretization errors in
time and space. Elimination of un+θ from (76) and (77) yields

un+θ
t =

un+1 − un

δt
− 1

δt

∫ tn+θ

tn

utt(t) (tn − t) dt − 1
δt

∫ tn+1

tn+θ

utt(t) (tn+1 − t) dt.

Since interpolation in space and differentiation in time commute, one has

un+1 − r̄n+1
h − (un − r̄n

h) =
∫ tn+1

tn

(ut − rhut)(t) dt.

Thus, applying the Cauchy-Schwarz inequality, one derives∥∥∥∥un+θ
t − r̄n+1

h − r̄n
h

δt

∥∥∥∥2

0,Ω

≤ 2
δt

‖ut − rhut‖2
L2(tn,tn+1;L2(Ω)) + 2 δt ‖utt‖2

L2(tn,tn+1;L2(Ω)).

The first term on the right-hand side can be bounded using (45).
Assuming uttt ∈ L2(0, T ; L2(Ω)) and replacing (76) and (77) by

un = un+θ − θ δt un+θ
t +

θ2

2
(δt)2 un+θ

tt +
1
2

∫ tn

tn+θ

uttt(t) (tn − t)2 dt,

un+1 = un+θ + (1 − θ) δt un+θ
t +

(1 − θ)2

2
(δt)2 un+θ

tt +
1
2

∫ tn+1

tn+θ

uttt(t) (tn+1 − t)2 dt,

one obtains

un+θ
t =

un+1 − un

δt
+

δt

2
[θ2 − (1 − θ)2] un+θ

tt

− 1
2 δt

∫ tn+θ

tn

uttt(t) (tn − t)2 dt − 1
2 δt

∫ tn+1

tn+θ

uttt(t) (tn+1 − t)2 dt,

which shows that an improved estimate with respect to δt follows for θ = 1/2, i.e., for the Crank-Nicolson
scheme. Indeed, one gets∥∥∥∥u

n+1/2
t − r̄n+1

h − r̄n
h

δt

∥∥∥∥2

0,Ω

≤ 2
δt

‖ut − rhut‖2
L2(tn,tn+1;L2(Ω)) + (δt)3 ‖uttt‖2

L2(tn,tn+1;L2(Ω)).

Now let us consider the remaining three terms on the right-hand side of (84). According to (74) and (63),
one has

an+θ(ηn+θ, en+θ
h ) − sn+θ

h (r̄n+θ
h , en+θ

h ) = an+θ(un+θ − θ un+1 − (1 − θ)un, en+θ
h )

+ θ
[
an+θ(un+1 − rhun+1, en+θ

h ) − sn+θ
h (rhun+1, en+θ

h )
]

+ (1 − θ)
[
an+θ(un − rhun, en+θ

h ) − sn+θ
h (rhun, en+θ

h )
]
.
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The last two terms can be estimated by (46) and the estimation of the first term on the right-hand side is
performed using

‖un+θ − θ un+1 − (1 − θ)un‖2
1,Ω ≤ δt ‖ut‖2

L2(tn,tn+1;H1(Ω)),

resp.
‖un+θ − θ un+1 − (1 − θ)un‖2

1,Ω ≤ (δt)3 ‖utt‖2
L2(tn,tn+1;H1(Ω)),

which follows from (75), resp. (78). Finally, the last term on the right-hand side of (84) can be estimated
analogously as (52), (56), and (59): if τ̃M is defined by (22), one derives

dn+θ
h (r̄n+θ

h ; r̄n+θ
h , r̄n+θ

h ) ≤ C β ‖bn+θ‖0,∞,Ω h3 k+1−d/2 (|un|3k+1,Ω + |un+1|3k+1,Ω),

if, in addition, u ∈ L2(0, T ; W k+1,∞(Ω)), then

dn+θ
h (r̄n+θ

h ; r̄n+θ
h , r̄n+θ

h )

≤ C β ‖bn+θ‖0,∞,Ω h3 k+1 (|un|k+1,∞,Ω + |un+1|k+1,∞,Ω)(|un|2k+1,Ω + |un+1|2k+1,Ω),

and, if τ̃M is defined by (23), then

dn+θ
h (un+θ

h ; r̄n+θ
h , r̄n+θ

h ) ≤ C ‖bn+θ‖0,∞,Ω h2 k+1 (|un|2k+1,Ω + |un+1|2k+1,Ω).

These estimates together with analogs of (51) and (58) lead to an estimate of the term dn+θ
h (γn+θ

3 ; r̄n+θ
h , en+θ

h ).
Collecting all the above estimates proves the theorem. �

At the end of this section, a semi-implicit (linearized) variant of the method (64) will be discussed: for
n = 0, 1, . . . , NT − 1, find un+1

h ∈ Wh such that un+1
h − ũbh ∈ Vh and(

un+1
h − un

h

δt
, vh

)
+ an+θ(un+θ

h , vh) + sn+θ
h (un+θ

h , vh) + dn+θ
h (un

h; un+θ
h , vh) = (fn+θ, vh) ∀ vh ∈ Vh. (85)

The advantages of this linearized scheme over (64) in terms of computational complexity are clear. Indeed,
for (85) only one linear system needs to be solved per time step. Moreover, the linearized problem is uniquely
solvable for any non-negative integrable stabilization parameter τ sold

M . If the parameter τ̃M is defined by (23),
the results of Lemma 4.3 and Theorem 4.6 remain essentially valid; the only difference is that in these results
the first argument of dn+θ

h is now un
h. The proofs of Lemma 4.3 and Theorem 4.6 can be repeated without any

changes for τ̃M defined by (23) since the estimates of the nonlinear term dn+θ
h are based on (24) and hence are

independent of the first argument of dn+θ
h . This is not the case if τ̃M is defined by (22) and, therefore, we were

able to prove only suboptimal convergence results and a stability result depending on T in a similar way as
in (70). Details of this analysis will be omitted here.

5. Examples of spaces and partitions satisfying the hypotheses

This section is devoted to the presentation of some examples of spaces Wh and DM and partitions Mh

satisfying the hypotheses from Section 2. For simplicity, the discussion is restricted to the two-dimensional case.
In three dimensions, the spaces can be constructed analogously (for details, see [30]). Throughout this section,
{Th}h>0 stands for a regular family of triangulations of Ω. This family is formed either by closed triangles or
by closed convex quadrilaterals K with diameters hK and one has h = maxK∈Th

hK . Note that the hypotheses
from Section 2, e.g., (4), (6), and (7), do not allow the application of the analysis to anisotropic triangulations.
In what follows, K̂ stands for a reference mesh cell, which is either a triangle or a square, depending on the
type of elements in Th. For any K ∈ Th, there exists a bijective mapping FK : K̂ → K that maps K̂ onto K
and is affine if K̂ is a triangle and bilinear if K̂ is a square. For any integer l ≥ 0, we denote by Pl the space of
polynomials of total degree at most l and by Ql the space of polynomials of degree at most l in each variable.
Finally, we set Rl(K̂) = Pl(K̂) if K̂ is a triangle and Rl(K̂) = Ql(K̂) if K̂ is a square.
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i) The two-level approach. This is the approach considered in the original local projection stabilization method
(cf. [2,3]). The starting point is {Mh}h>0, a shape regular family of triangulations of Ω. Then, each triangle
is divided into three triangles by connecting its vertices with the barycenter and each quadrilateral is divided
into four quadrilaterals by connecting midpoints of opposite edges. The resulting triangulation is denoted
by Th. Finally, given an integer l ≥ 1, the spaces Wh and DM are given by

Wh := {vh ∈ C(Ω) ; vh|K ◦ FK ∈ Rl(K̂) ∀K ∈ Th}, DM := Pl−1(M). (86)

The inf-sup condition (9) is proved for this pair in [30].
Alternatively, for the quadrilateral case, the space DM could be defined as the space of mapped polyno-

mials. More precisely, we can present the following two alternative definitions for DM :

D1
M := {v ∈ L2(M) ; v ◦ FM ∈ Pl−1(M̂)},

D2
M := {v ∈ L2(M) ; v ◦ FM ∈ Ql−1(M̂)},

where M̂ is a reference macro-cell and FM is the analog of FK . Both definitions lead to different methods
(both different from the one presented so far) and have the advantage that the computations can be done
directly on the reference element, leading to simpler implementations. All the approximation and stability
assumptions hold for D2

M , but for D1
M the approximation property (12) holds only on uniformly refined

meshes (see [31], pp. 345-346 for a discussion on the topic).
ii) The one-level approach. This alternative was introduced in [30] and assumes Mh = Th. Introducing a

polynomial bubble function bK̂ ∈ H1
0 (K̂) \ {0} (cubic if K̂ is a triangle and biquadratic if K̂ is a square),

the spaces are given by

Wh := {vh ∈ C(Ω) ; vh|K ◦ FK ∈ Rl(K̂) + bK̂ · Rl−1(K̂) ∀K ∈ Th}, DM := Pl−1(M).

The inf-sup condition (9) is proved for this pair in [30].
iii) The overlapping method. Let x1, . . . , xNh

be the inner vertices of the triangulation Th, introduce the neigh-
borhoods Mi := int

⋃
K∈Th,xi∈K K (where ‘int’ denotes the interior of the respective set), and define

Mh := {Mi}Nh

i=1. The spaces Wh and DM are given by (86). The inf-sup condition (9) is proved for this pair
in [24].

In all of the examples above, ih can be chosen to be the Lagrange interpolation operator and jM to be the
orthogonal L2 projection of L2(M) onto DM (see, e.g., [12]). The validity of the geometrical hypotheses (4)-(7)
follows from the mesh regularity. The inverse inequality (8) arises from a local inverse inequality (cf. [12]) and
the mesh regularity. Finally, if FK is linear for any K ∈ Th, then the space GM consists of functions that are
polynomial on the mesh cells included in M and the inverse inequality (10) is standard (cf. [12]).

Note that if the set Mh consists of nonoverlapping sets M , which is the case for both the one-level and two-
level methods, then (significantly) more degrees of freedom are used for constructing the space Wh than in case
of the method with overlapping sets M . This increase of the number of degrees of freedom is either due to an
enrichment by bubble functions (in the one-level method) or due to a refinement of the given triangulation (in
the two-level method). On the other hand, given a triangulation Th of Ω and using Mh consisting of overlapping
sets M , the space Wh can be defined as a standard finite element space consisting of piecewise polynomials of
degree l on Th, like in the Galerkin discretization.

6. Numerical illustrations

In this section, the theory of this paper is illustrated by results of numerical computations performed for
both the steady-state problem (1) and the time-dependent problem (3). In addition, the reduction of spurious
oscillations by applying the nonlinear crosswind diffusion is demonstrated. From the three possibilities for spaces
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Figure 1. Type of the triangulations used in numerical computations (left) and solution for
Example 6.1 (right).

and partitions proposed in the preceding section, we have chosen the overlapping version of the LPS method.
This is mainly due to the fact that, as shown in [24], the overlapping version is more robust with respect to
the stabilization parameter than both the one- and two-level approaches. The overlapping version was applied
with triangular meshes and conforming piecewise linear approximation spaces Wh (thus l = 1). Both possible
definitions (22) and (23) of τ̃M (uh) were considered. The solution of the nonlinear system was performed using
a fixed point iteration: given an initial approximation u0

h ∈ Wh of the solution of (19) satisfying u0
h − ũbh ∈ Vh,

compute a sequence {uk
h} ⊂ Wh defined by

uk
n = uk−1

h + ω (ũk
h − uk−1

h ), k = 1, 2, . . . ,

where ω ∈ (0, 1] is a damping factor and ũk
h ∈ Wh satisfies ũk

h − ũbh ∈ Vh and

a(ũk
h, vh) + sh(ũk

h, vh) + dh(uk−1
h ; ũk

h, vh) = (f, vh) ∀ vh ∈ Vh.

The analysis of the convergence of this scheme remains an open problem. Its proof, based on the properties of
the nonlinear operator from Section 3, does not seem an easy task. The actual behavior of the iteration in our
numerical studies will be discussed in Example 6.2.

In all examples, Ω = (0, 1)2 and Friedrichs-Keller triangulations of the type depicted in Figure 1 were used.
It is worth mentioning that the mesh is not aligned with the considered convection fields.

Example 6.1. Smooth polynomial solution [20], support of error estimates. We considered problem (1) with
ε = 10−8, b = (3, 2)T , c = 2, and ub = 0. The right-hand side f was chosen such that

u(x, y) = 100 x2 (1 − x)2 y (1 − y) (1 − 2 y)

is the solution of (1), see Figure 1.

In the stabilization parameters, the values τ0 = 0.02 and β = 0.1 were used. Table 1 shows errors of the discrete
solutions measured in various norms for various mesh sizes. The notation ‖ · ‖0,∞,h is used for the discrete L∞

norm defined as the maximum of the errors at the vertices of the respective triangulation. The convergence
orders were computed using values from the two finest triangulations. One can observe that the convergence
order with respect to the LPS norm is 3/2, as predicted by the theory, and that in other norms one obtains the
usual optimal convergence orders.
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Table 1. Example 6.1, errors of the discrete solutions.

parameter (22) parameter (23)

h ‖ · ‖LPS ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,∞,h ‖ · ‖LPS ‖ · ‖0,Ω | · |1,Ω ‖ · ‖0,∞,h

8.84−2 4.74−2 1.83−2 4.20−1 6.46−2 4.30−2 1.47−2 4.00−1 5.04−2
4.42−2 1.48−2 3.54−3 1.88−1 1.52−2 1.41−2 2.93−3 1.84−1 1.13−2
2.21−2 5.02−3 7.24−4 9.02−2 3.40−3 4.93−3 6.57−4 8.96−2 2.44−3
1.10−2 1.76−3 1.58−4 4.45−2 7.63−4 1.75−3 1.57−4 4.44−2 5.57−4
5.52−3 6.19−4 3.63−5 2.21−2 1.77−4 6.18−4 3.83−5 2.21−2 1.44−4
order 1.50 2.12 1.01 2.11 1.50 2.03 1.01 1.95
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Figure 2. Example 6.2: solutions for the parameter (23) with τ0 = 0.02 and β = 0, β = 0.03,
β = 0.05, β = 0.1, left to right, top to bottom.

Example 6.2. Solution with two interior layers [27], reduction of spurious oscillations. Equation (1) was con-
sidered with ε = 10−8, b(x, y) = (−y, x)T , c = f = 0, and the boundary condition

u = ub on Γ D,
∂u

∂n
= 0 on Γ N ,

where Γ N = {0} × (0, 1), Γ D = ∂Ω \ Γ N , n is the outward pointing unit normal vector to the boundary of Ω,
and

ub(x, y) =
{

1 for (x, y) ∈ (1/3, 2/3)× {0},
0 else on Γ D.

Results that were obtained on the triangulation having 33×33 vertices are presented. Figure 2 shows solutions
computed by means of the LPS method with and without the nonlinear crosswind diffusion term dh defined
using the parameter (23). One can observe that the crosswind diffusion term manages to reduce the oscillations
appearing in the solution of the linear LPS method. An increase of the parameter β does not only reduce
the oscillations but also increases the smearing appearing at the layers. In this respect, the method behaves
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Figure 3. Example 6.2: solutions for the parameter (22) with τ0 = 0.02, β = 0.03 (left) and
τ0 = 0.02, β = 0.1 (right).
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Figure 4. Example 6.2: solutions for the parameter (87) with τ0 = 0.02, β = 0.025 (left) and
τ0 = 0.02, β = 0.06 (right).

as expected. Two results obtained for dh defined using the parameter (22) are shown in Figure 3. A detailed
comparison of the results in Figures 2 and 3 reveals that the method with the parameter (22) is less successful
in suppressing spurious oscillations whereas it leads to a more pronounced smearing.

It is natural to ask whether similar results as presented above can be obtained using a linear crosswind
diffusion term. To this end, the term dh with

τ sold
M = β hM |bM | (87)

was considered. All other settings were the same as above. Since it is difficult to compare various solutions, we
first concentrated on the outflow profile, i.e., the solution graph along the line x = 0. For β ≤ 0.02, the outflow
profile contains overshoots that decrease with increasing β. Figure 4 shows that, for β = 0.025, the overshoots
are not present in the outflow profile but they can be still observed inside the computational domain. For this
value of β, the outflow profile does not differ too much from the outflow profile in Figure 2, top right. However,
inside the computational domain, both overshoots and undershoots are larger for the linear method. A further
increase of β leads to a reduction of the overshoots but also to a smearing of the solution whereas the magnitude
of the undershoots does not change significantly. As an example, the solution for β = 0.06 is shown in Figure 4.
The smearing and the undershoots of this solution are more pronounced than in case of all the three solutions of
the nonlinear method in Figure 2. This study demonstrates that the method with linear crosswind diffusion was
outperformed, with respect to the quality of the computed solution, by the nonlinear method with τ̃M defined
by (23).

From the discussion of the preceding paragraphs, the choice of the stabilization parameter β appears as
an important issue. A good choice of user-chosen parameters in stabilized finite element methods is an open
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Table 2. Example 6.2, number of fixed-point iterations.

parameter (22) parameter (23)

β = 0.01 β = 0.03 β = 0.06 β = 0.10 β = 0.01 β = 0.03 β = 0.06 β = 0.10
ω = 1.0 82 163 305 494 16 27 39 51
ω = 0.9 42 58 68 73 12 18 24 29
ω = 0.8 25 30 32 33 12 13 16 19
ω = 0.7 16 17 18 20 16 16 16 16
ω = 0.6 20 20 20 20 21 21 21 21
ω = 0.5 27 27 27 27 27 27 27 27

problem for all methods. In general, the parameters need to be chosen not constant but as functions (see [18]
for the construction of an example). A non-constant choice, done automatically like in [19], will be the subject
of future research.

Next, the computational cost connected with the solution of the nonlinear discrete problems will be briefly
illustrated. Table 2 shows numbers of fixed-point iterations needed to solve Example 6.2 for τ0 = 0.02 and
various values of β and the damping parameter ω. The iterative process was terminated if the Euclidean norm
of the residual of the nonlinear algebraic system divided by the Euclidean norm of its right-hand side was smaller
than 10−8. The sequences of the residuals were monotonically decreasing, except for some of the computations
with the parameter (22) for ω ∈ {0.9, 1} where oscillations of the residuals appeared at the beginning of the
iterative process. One can observe that the number of iterations depends both on β and ω and that this
dependence is more pronounced if the parameter τ̃M is defined by (22). Since the optimal value of the damping
parameter is usually not known, it can be expected that the numerical effort caused by the nonlinear crosswind
diffusion term will be generally smaller if the parameter τ̃M is defined by (23).

Example 6.3. Smooth time-dependent solution, support of error estimates. The setup of this example is very
similar to Example 6.1 in [22]. Problem (3) was considered in the time interval [0, 1] with ε = 10−8, b = (3, 2)T ,
c = 2, and ub = 0. The right-hand side f and the initial condition u0 were chosen such that

u(x, y, t) = esin(2 π t) sin(2 π x) sin(2 π y)

is the solution of (3).

We considered the discrete problem (64) and its linearized variant (85) with θ = 1 (i.e., the backward Euler
scheme) for both choices of τ̃M . Like in Example 6.1, the values τ0 = 0.02 and β = 0.1 were used for the
stabilization parameters. According to error estimates (71) and (72), one expects that the quantity EN tends
to zero with the convergence order 3/2 if δt ∼ h3/2 and a nonlinear discretization is used (note the extra power
of h1/2 in QN and RN). The same convergence behavior is expected for the linearized method if τ̃M is defined
by (23), see the discussion at the end of Section 4. These expectations are supported by the results presented
in Figure 5. In this figure, level 1 corresponds to the grid with mesh cells of diameter h =

√
2 h̃ with h̃ = 1/8.

Uniform refinement in space was used and the length of the time step was set to be δt = h̃3/2. If the final time
was not obtained exactly with these time steps, the simulations were terminated at the last discrete time smaller
than T = 1. It can be observed in Figure 5 that the order of convergence 3/2 was obtained for the error in the
l2-LPS norm for all four methods. We could observe the same order of convergence also for ‖eN‖0,Ω. Using the
time step δt = h̃2, the error ‖eN‖0,Ω showed even second order convergence, whereas the order of convergence
of the error in the l2-LPS norm was still 3/2. This result demonstrates the sharpness of the estimates (71)
and (72).

Concerning a comparison of the fully nonlinear and the linearized version of the methods, only very little
differences can be seen in this example. On coarser grids, the solutions computed using the parameter (23) were
more accurate compared with the solutions obtained using the parameter (22).
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Figure 5. Example 6.3: order of convergence for piecewise linear finite elements, the backward
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curves of the corresponding nonlinear method.
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