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SUMMARY

The derivation of the space averaged Navier–Stokes equations for the large eddy simulation (LES) of
turbulent incompressible �ows introduces two groups of terms which do not depend only on the space
averaged �ow �eld variables: the divergence of the Reynolds stress tensor and commutation errors.
Whereas the former is studied intensively in the literature, the latter terms are usually neglected. This
note studies the asymptotic behaviour of these terms for the turbulent channel �ow at a wall in the case
that the commutation errors arise from the application of a non-uniform box �lter. To perform analytical
calculations, the unknown �ow �eld is modelled by a wall law (Reichardt law and 1=�th power law)
for the mean velocity pro�le and highly oscillating functions model the turbulent �uctuations. The
asymptotics show that near the wall, the commutation errors are at least as important as the divergence
of the Reynolds stress tensor. Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: incompressible turbulent channel �ow; large eddy simulation (LES); commutation errors;
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1. INTRODUCTION: COMMUTATION ERRORS IN LARGE EDDY SIMULATION (LES)

Turbulent incompressible �ows are governed by the incompressible Navier–Stokes equations

ut − 2Re−1∇ ·D(u) +∇ · (uuT) +∇p= f in (0; T ]×�
∇ · u=0 in (0; T ]×� (1)

The vector �eld u=(u1; u2; u3)T is the velocity, p the pressure, Re¿0 the Reynolds number,
�⊂R3 a bounded domain, T a positive time, f the external force, and D(u) the velocity
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1710 L. C. BERSELLI AND V. JOHN

deformation tensor

D(u)= ∇u+∇uT
2

We prefer to write the non-linear term in its conservative form with the tensor

(uuT)ij := uiuj; i; j=1; 2; 3

since with this form the problems arising in space-averaging are simpler to identify. Equation
(1) must be also equipped with boundary conditions on @� and an initial condition.
We recall that presently a direct numerical simulation (DNS) is not possible in the high

Reynolds number case, due to the extreme richness of scales in turbulent �ows, e.g. see
Reference [1]. This is the reason why turbulence modelling becomes necessary. A popular ap-
proach is large eddy simulation (LES), where one seeks to simulate the behaviour of large �ow
structures (u; p) and to model the in�uence of the turbulent �uctuations (u′; p′)= (u; p)−(u; p)
on the formers. Besides numerous promising numerical results obtained with LES models, an-
other appealing feature of these models is the chance of achieving rigorous mathematical
support, e.g. see References [2–5].
Generally, large �ow structures in LES are de�ned by convolution with a �lter function.

In this note, we consider the symmetric box (or top-hat) �lter with non-uniform �lter width.
We make this choice since the box �lter is one of the most popular �lters in LES. The usual
form of such a �lter in multiple dimensions is a tensor product of one-dimensional �lters, see
References [6,7]. Let x=(x; y; z)⊂R3 and �(x), �(y), �(z) be the non-uniform �lter widths
in the respective co-ordinate directions. Then, the non-uniform box �lter u(y) of a scalar
function u(x) is given by

u(y)=
1

8�(x)�(y)�(z)

∫ x+�(x)

x−�(x)

∫ y+�(y)

y−�(y)

∫ z+�(z)

z−�(z)
u(x) dx (2)

An appealing advantage of non-uniform �lters with compact �lter kernel is that the �lter
width can be chosen such that the domain of �ltering is always inside �. Hence, an extension
of functions outside � is not necessary for the �ltering to be well-de�ned. This property is
desirable for all boundary conditions which do not allow a physically motivated extension
outside � of the functions appearing in (1). We refer to Reference [8] for the study of
a situation where the functions are extended o� the domain.
In order to enforce the domain of �ltering being always inside �, the volume of the �lter

box with centre x necessarily has to tend to zero at the boundary. This property does not
hold if the point x, where the �lter is applied, is not the centre of the �lter box. This kind
of �lter is called non-symmetric or skewed. We will not consider them in this note since
such �lters introduce commutation errors that are considerably larger than for non-uniform
symmetric �lters, see References [9,10].
The usual way of deriving equations for (u; p) is �rst to �lter the Navier–Stokes equations (1)

leading to the space averaged Navier–Stokes equations in the space–time domain (0; T ]×�:

ut − 2Re−1∇ · D(u) +∇ · (u uT) +∇p= f +∇ · (u uT − uuT)
∇ · u=0

(3)

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1709–1719



COMMUTATION ERRORS NEAR WALLS IN THE TURBULENT CHANNEL FLOW 1711

Then, the divergence of the (subgrid-scale) Reynolds stress tensor R(u; u)= u uT − uuT must
be modelled in terms of (u; p), see References [2,7]. LES modelling considers the second
step almost exclusively.
A crucial assumption made during the �rst step is that of commutation between di�eren-

tiation and convolution. This is true in the case of �lters with constant �lter width, as those
freely used in problems de�ned on the whole space, e.g. by imposing periodic boundary con-
ditions. However, this assumption is in general not satis�ed. In particular, it fails if � is a
bounded domain, hence if the width of a �lter (with the domain of �ltering always inside
�) must be allowed to vary. In this respect, we recall that considering a bounded domain is
the standard case in applications, since periodic or Cauchy problems are just mathematical
idealizations.
We now de�ne the commutation error we will deal with. Let u : � → R denote a generic

function to be �ltered (a velocity component or the pressure). Then, the so-called commutation
error with respect to the ith partial derivative, is de�ned by

Ec(@iu) := @iu− @iu (4)

In the last decade, this error attracted increasing attention from the scienti�c community, see
References [4,8,10–15], and its role is becoming better understood.
As a natural counterpart, a boundary commutation error (BCE) is committed if a �lter with

constant �lter width is used in a bounded domain, as analysed in References [4,8]. The well-
posedness of the �ltering requires in this case an extension of (u; p) outside �. It is shown
in Reference [8] that no commutation error is committed if the space averaged Navier–Stokes
equations are derived in the framework of distributions. However, in comparison to the form
(3), which is obtained by simply interchanging di�erentiation and convolution, an additional
term appears. From the latter it is possible to have an analytical expression for the BCE term.
The analysis of this term shows that it is large near the boundary and it does not even vanish
in the sense of the Lebesgue spaces Lp, p ∈ [1;∞], as the �lter width tends to zero. Thus, the
commutation error committed (and usually omitted) in this case is of considerable importance
in a neighbourhood of the boundary. For the model problem of the space averaged heat
equation with �=const, numerical studies in Reference [16] show that modelling the BCE is
crucial for reducing the error at the boundaries.
Since there is no way to eliminate these sources of error in the derivation of LES equations,

in Reference [9] enhanced estimates were proved for the commutation error in the case of
non-uniform �lters. The main point of interest of these estimates is that, contrary to other
papers concerning this topic, they do not require strong regularity assumptions on the velocity
u or a special form of the kernel.
Straightforward calculations show that applying a non-uniform �lter to the Navier–Stokes

equations (1) and taking the commutation error into account give, instead of (3),

ut − 2Re−1∇ · D(u) +∇ · (u uT) +∇p
= f +∇ · (u uT − uuT)− 2Re−1∇ · Ec(D(u))

− 2Re−1Ec(∇ · D(u)) + Ec(∇ · (uuT)) + Ec(∇p)
∇ · u = Ec(∇ · u)

(5)
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1712 L. C. BERSELLI AND V. JOHN

in (0; T ] × �. For simplicity, we use the symbol Ec to denote the sum of all commutation
errors involving a given di�erential operator. For instance, Ec(∇ · u) involves all the terms
coming from the �ltering of the divergence operator applied to u.
Note that the commutation error terms coming from the viscous term are scaled by Re−1

which is, for turbulent �ows, a small non-dimensional factor.
On the right-hand side of the equations in (5), there are two groups of terms which do

not depend just on (u; p), but depend also on the un�ltered variables: the divergence of the
Reynolds stress tensor

∇ · (u uT − uuT) (6)

and the commutation errors

−2Re−1∇ · Ec(D(u))− 2Re−1Ec(∇ · D(u)) + Ec(∇ · (uuT)) + Ec(∇p)
Ec(∇ · u)

(7)

By far, most of the LES literature neglects the commutation errors. However, there is �rst
numerical evidence that commutation errors are of importance, see Reference [10]. Simulations
of the turbulent mixing layer problem show that the commutation errors may be large, e.g.
for non-uniform �lters with sharp variations in the �lter width. In Reference [10], exclusively
commutation errors away from solid boundaries are considered and two models for them are
proposed and tested.
A complete analysis of the relation between the commutation errors and the divergence of

the Reynolds stress tensor requires analytical expressions for the �lter widths �(x); �(y); �(z),
and the velocity �eld u(x). Whereas �(x); �(y), and �(z) can be prescribed, it seems
impossible to obtain such an expression for u(x), an instantaneous velocity �eld in a tur-
bulent �ow.
To circumvent this problem, we use in this note known mean velocity pro�les, which are

perturbed with highly oscillating functions. The asymptotic behaviours of the divergence of
the Reynolds stress tensor (6) and the commutation errors (7) are studied for the turbulent
channel �ow at a solid wall. The turbulent channel �ow is a classical benchmark problem for
the numerical study of turbulent �ows [1,17]. Two wall laws are considered as mean velocity
pro�les, the Reichardt law and the 1=�th power law. We do not consider the Prandtl–Taylor
law, which is linear near the wall, since a direct evaluation of the commutation error for
the non-uniform box �lter shows that this error vanishes identically in the case of a linear
function.

2. ASYMPTOTIC ANALYSIS OF THE COMMUTATION ERRORS AND THE
DIVERGENCE OF THE REYNOLDS STRESS TENSOR

FOR THE TURBULENT CHANNEL FLOW

The turbulent channel �ow is de�ned in a hexahedral domain �= (0; L)× (0; 2H)× (0; b),
where H is the channel half-width and L and b are chosen to be su�ciently large see,
e.g. References [1,17]. Periodic boundary conditions are imposed in the x–z-directions (for
simplicity, assume that after rescaling b is an integer multiple of 2�), while no-slip boundary
conditions are given at y=0 and y=2H . This is a classical numerical test case and it can

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1709–1719



COMMUTATION ERRORS NEAR WALLS IN THE TURBULENT CHANNEL FLOW 1713

be easily shown that, under minimal assumptions [1], the solution u=(u1; u2; u3)T = (u; v; w)T

is of the form

u=

⎛
⎜⎜⎝
u

v

w

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
U (y) + u′(t; x; y; z)

v′(t; x; y; z)

w′(t; x; y; z)

⎞
⎟⎟⎠ ; p=p′(t; x; y; z)

where U (y) is the mean velocity pro�le and the prime denotes the turbulent �uctuations.
Away from boundaries, the size of the turbulent �uctuations is much smaller than the size of
the mean velocity. The standard test cases for turbulent channel �ows from Reference [17] are
de�ned for Re∈ {180; 395; 590}, where the Reynolds number is based on the friction velocity,
the channel half-width and the viscosity of the �uid.
In our study of commutations errors and of the divergence of the Reynolds stress tensor, we

mainly consider terms which involve the mean velocity U (y). This is motivated by the fact
that the mean �ow gives the non-oscillating contributions to these errors. Terms not involving
the mean �ow give often negligible contributions in the asymptotics, see below.
We are interested in the relation of the commutation error and the divergence of the

Reynolds stress tensor near the walls and, without loss of generality, we consider the wall
y=0. Neither the mean velocity pro�le U (y) (apart form special Reynolds numbers, where
DNS data are available) nor the �uctuations are known. However, for the near wall region,
empirical laws for U (y) exist, e.g. see References [1,18]. Two of them will be studied below.
Regarding �uctuations, we want to study the e�ect of a �uctuation mainly in the y-direction,

since this is the variable with respect to, the �lter must necessarily be non-uniform (in the
other directions we can extend the �lter by periodicity and use uniform �lters).
As a model for �uctuations, we have to use an oscillation vanishing at y=0. A straight-

forward choice is A sin(!y). In order to have the oscillations vanishing also at y=2H , to
keep periodicity in the x–z-directions, and to satisfy the divergence-free constraint, a simple
model is the following: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′(t; x; y; z)=A sin
(!�y
H

)

v′(t; x; y; z)=A sin
(!�y
H

)2
cos(z)

w′(t; x; y; z)=− A�!
H

sin
(
2!�y
H

)
sin(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with A;!¿ 0. This model is surely an idealization (as all models), however, it captures
important properties of �uctuations. Besides vanishing at solid boundaries and being
divergence-free, it is small in absolute value if A is small and it becomes highly oscillat-
ing if !� 1, having large derivatives. In addition, it satis�es the asymptotic v′=O(y2) for
y→ 0, see, e.g. Reference [1, Chapter 7].
Finally, the �lter widths �(x), �(y), and �(z) need to be prescribed to compute (8)–(10).

By periodicity, in the x–z-directions, there is need for a variable width just in the y-direction.
With this observation and recalling that the �lter is the product of three one-dimensional �lters,
we can restrict, without loss of generality, to consider �lters acting only in y-direction. This

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1709–1719



1714 L. C. BERSELLI AND V. JOHN

follows since in the other directions the �lter width is constant, hence no commutation error
is committed. Note also that the mean velocity �eld in the turbulent channel �ow depends
just on the y-variable, so this is the most relevant one. The remaining variables concern only
�uctuations. Fluctuations are mainly modelled by a function which depends on y (slowly
changing dependence on z is imposed to preserve the zero divergence, even if it is not
essential). Concerning �(y), we will study the family of functions {�(y)=yq; q¿ 1}. This
choice ensures that in the evaluation of the �lter the domain of integration remains always
inside �.
Straightforward computations (see Sections 2.1, 2.2) prove that the relevant term concerning

the commutation error for the viscous term is the following:

Evisc :=
∣∣∣∣Ec
(
@2u(t; x; y; z)

@y2

)∣∣∣∣
=

∣∣∣∣∣Re−1
(
@2

@y2
u(t; x; y; z)− @2u(t; x; y; z)

@y2

)∣∣∣∣∣ (8)

Regarding the convective term, among all terms of the type

@uiuj
@y

for i; j=1; 2; 3

the important one is that involving the product of u and v= v′:

Econv :=
∣∣∣∣Ec
(
@u(t; x; y; z)v′(t; x; y; z)

@y

)∣∣∣∣
=

∣∣∣∣∣ @@y u(t; x; y; z)v′(t; x; y; z)− @u(t; x; y; z)v′(t; x; y; z)
@y

∣∣∣∣∣ (9)

The asymptotic behaviours of the other terms (involving @y(v v) and @y(w v)) are given in
Remarks 1 and 2.
Among all terms appearing in the divergence of the Reynolds stress tensor, again we restrict

to those involving derivatives with respect to y and among them, the relevant one will turn
out to be

Ereyn :=

∣∣∣∣∣
(
@u(t; x; y; z) v′(t; x; y; z)

@y
− @
@y
u(t; x; y; z)v′(t; x; y; z)

)

+

(
@u(t; x; y; z) w′(t; x; y; z)

@z
− @
@z
u(t; x; y; z)w′(t; x; y; z)

)∣∣∣∣∣ (10)

Note that the �rst term of Econv and the second term of Ereyn are the same.

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1709–1719
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Now, replacing U (y) by an empirical wall law (for convenience denoted again by U (y)),
expressions (8)–(10) can be computed. We are interested in the asymptotic behaviour towards
the wall, i.e. as y→ 0. For this reason, series expansions of Evisc, Econv, and Ereyn are computed.
Sometimes, the integrals which have to be evaluated lead to special functions that are di�cult
to deal with. Some of the computations require very high order Taylor series expansions and
the simpli�cation of several (dozens of) terms. We do not report them here since they do not
add any insight into the problem, but just add ugly formulas to the paper. In such cases, it
is more convenient to apply the series expansion already for the term in the integral, taking
care of having a large enough order in the series expansion, not to loose the leading terms.

2.1. The Reichardt law

First, we consider the Reichardt law

U (y)=2:5 log(1 + 0:4y) + 7:8
[
1− exp

(
− y
11

)
− y
11
exp

(
−y
3

)]
(11)

For our purposes, the behaviour for y→ 0 is of importance since we want to evaluate the
e�ects near the lower boundary. Evaluating (8)–(10), one obtains

Evisc = Re−1
[
2q2 − q
363

]
y2q−2 + O(y2q−1)

Econv = 2q
A�2!2| cos(z)|

H 2 y2q + O(y2q+1)

Ereyn =
4q
3
A�2!2| cos(z)|

H 2 y2q + O(y2q+1)

The commutation errors coming from the convective term Econv and the divergence of the
Reynolds stress tensor Ereyn possess, up to a constant factor, the same asymptotic behaviour.
The leading order term of Econv is 1:5 times larger than the leading order term of Ereyn.
However, asymptotically, the commutation error Evisc coming from the viscous term domi-

nates. One can argue that this term is in practice of less importance since it is scaled by the
small factor Re−1. But in the case q=1, Evisc behaves qualitatively di�erent than the other
two terms since Evisc does not converge to zero as y→ 0.
The turbulent �uctuation u′ does not contribute to the leading order term of Evisc since

Re−1
(
d2 u′

dy2
− d2u′

dy2

)
=Re−1

(2q+ 1)q
3

A�3!3

H 3 y2q−1 + O(y2q)

Thus, the asymptotic behaviour of Evisc is neither in�uenced by the smallness of the turbulent
�uctuation nor by its possible large frequency.

Remark 1
In the case of the Reichardt law, also the asymptotic behaviour of some other terms, not
involving U (y), is of interest. We found that, concerning the other viscous terms, the com-
mutation error involving �ltering of @2yw is of one order higher, hence asymptotically smaller,

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1709–1719
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while the commutation error coming from @2yv is of the same order as Evisc:

Ec(@2yv)=Re
−1 2(2q

2 − q)
3

A�2!2| cos(z)|
H 2 y2q−2 + O(y2q−1)

The comparison between Ec(@2yv) and Evisc is hard since their ratio does not depend on q but
on A;!; z; H . We focus on Evisc since for the 1=�th power law considered below, Evisc will
dominate Ec(@2yv).
Concerning the remaining convective terms, the commutation error involving the product

vv is O(y2q+1), while that involving the product of v and w possesses the same asymptotic
behaviour as Econv:

Ec(vw)=4q
A2�4!4| sin(z) cos(z)|

H 4 y2q + O(y2q+1)

Again, we do not focus on this term since it does not depend on the mean �ow, the ratio of
Econv and Ec(vw) depends on A;!; z; H and Ec(vw) will be a higher-order term for the 1=�th
power law, see Remark 2.
Regarding the other terms coming from the divergence of the Reynolds stress tensor, we

found that @y(v v− vv) + @z(v w − vw) = O(y2q+1). On the other hand, it is

|@y(w v− wv) + @z(w w − ww)|= 8q− 4
3

A2�4!4| cos(z) sin(z)|
H 4 y2q + O(y2q+1)

Hence, this term is of the same order as Ereyn. For the same reasonings as above, we further
focus only on Ereyn.

2.2. The 1=�th power law

In this section, we analyse the role of commutation errors in the case of the power law

U (y)=

⎧⎪⎨
⎪⎩
U∞

(
y
�

)1=�
06y6 �

U∞ �¡y

(12)

with �¿0. In practice, the value �=7 is used, see Reference [18]. We use this law as mean
�ow near the wall, to evaluate the same quantities as in the previous section.
One obtains for the near-wall region 06y6 � the following asymptotic behaviours of

(8)–(10):
Evisc = Re−1c0(�; q)

U∞
�1=�

y2q−4+1=� + o(y2q−4+1=�)

Econv = c1(�; q)
U∞
�1=�

y2q−1+1=� + o(y2q−1+1=�)

Ereyn = c2(�; q)
U∞
�1=�

y2q−1+1=� + o(y2q−1+1=�)

(13)

Remark 2
The remaining ‘viscous’, ‘convective’ and ‘Reynolds’ error terms are related to products of
v and w alone and do not depend on the mean �ow. Hence, they are the same we evaluated

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1709–1719
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1 2 3 4 5 6 7

1

2

3

4

5

Figure 1. The constants c1(7; q) (solid line) and c2(7; q) (dashed line), (divided by [A�2!2| cos(z)|=H 2])
in the leading order terms of Econv and Ereyn for the 1=7th power law.

in the previous section and their order of convergence remains unchanged. Comparing (13)
with the results in Remark 1 shows that for the 1=�th power law the leading terms are always
those given in (13).

Again, the �uctuation u′=A sin(!�y=H) does not contribute to the asymptotic of Evisc. The
observations for the 1=�th power law are similar to those for the Reichardt law. The dominant
term in the asymptotic y→ 0 is Evisc. In the interval q ∈ [1; 2−1=(2�)], Evisc does not vanish as
y→ 0 in contrast to Econv and Ereyn. However, as already mentioned, the multiplication of
Ereyn with the small factor Re−1 will reduce the in�uence of this term in practice. Again,
Econv and Ereyn possess the same asymptotic behaviour.
We will report the constants c0(�; q), c1(�; q), c2(�; q) in the most important case �=7: for

q¿1

c0(7; q) =
∣∣∣∣4q249 − 66q

343

∣∣∣∣
c1(7; q) =

40q
49

A�2!2| cos(z)|
H 2

c2(7; q) = 4
(
q
21

− 1
49

)
A�2!2| cos(z)|

H 2

The di�erence of the constants c1(7; q) in Econv and c2(7; q) in Ereyn is illustrated in
Figure 1. The constant c2(7; q) of Ereyn is always smaller than c1(7; q) and the ratio of c1(7; q)
and c2(7; q) is between 15=2=7:5 for q→ 1 and 30=7 for q→ ∞. Altogether, Econv is again
somewhat larger than Ereyn but both terms have the same order of magnitude.

2.3. Evaluation of the results, remarks

For both wall laws, the Reichardt law and the 1=�th power law, the commutation error arising
from the viscous term Evisc dominates asymptotically the divergence of the Reynolds stress

Copyright ? 2006 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2006; 29:1709–1719
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tensor and the commutation error from the convective term. However, Evisc is scaled by a
small factor which will reduce its importance in practice. The commutation error coming from
the convective term Econv and the divergence of the Reynolds stress tensor Ereyn have for both
wall laws the same asymptotic order. The constants in the leading order term are always
somewhat larger for Econv. In summary, Econv and Ereyn are of the same importance.
It was observed in Reference [10] that the commutation error coming from the convec-

tive term and the divergence of the Reynolds stress tensor have the same asymptotic order
also away from solid boundaries. However, numerical simulations at the turbulent mixing
layer problem show that for smoothly varying �lter widths, which one can use away from
boundaries, the constant in the divergence of the Reynolds stress tensor is considerably larger.
Note also that the commutation error can be asymptotically reduced by choosing, instead

of the box �lter, higher-order �lters [19]. However, the use of higher order �lters leads
to an equally strong decrease of the contribution of the divergence of the Reynolds stress
tensor. Thus, it does not seem to be possible to obtain a separate control over these two
sources of errors simply by adopting a suitable class of �lters, which is already guessed in
Reference [20].

3. CONCLUSIONS

This note studied the asymptotic behaviour of commutation errors arising from non-uniform
�lter widths in the box �lter and the asymptotic behaviour of the divergence of the Reynolds
stress tensor.
In particular, we focused our attention to the behaviour near the boundary in the turbu-

lent channel �ow. The unknown �ow �eld has been modelled near the wall by a wall law
(Reichardt law, 1=�th power law) for the mean velocity �eld and a highly oscillating model
for the turbulent �uctuations. The analytical results reveal that near the wall, the commutation
errors are asymptotically not of lower importance than the divergence of the Reynolds stress
tensor. This supports the point of view that the modelling of commutation errors near walls
is at least as important as the modelling of the Reynolds stress tensor in LES models. Hence,
a precise modelling of commutation errors must be a component of advanced and accurate
LES models.
This note is a �rst step, performed with analytical tools, on the relationship between various

sources of errors in LES. To obtain deeper insight, numerical studies of them in the turbulent
channel �ow will be the topic of forthcoming work.
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