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Abstract

This note studies the accuracy of Isogeometric Analysis (IGA) applied in the simu-
lation of incompressible flows around a cylinder in two and three dimensions. Quan-
tities of interest, like the drag coefficient, the lift coefficient, and the difference of
the pressure between the front and the back of the cylinder are monitored. Results
computed with standard finite element methods are used for comparison.
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1 Introduction

Isogeometric Analysis (IGA) is a rather new approach for the discretization of
partial differential equations which was proposed in [9]. It can use non-uniform
rational B-splines (NURBS) for the parametrization of the domain and at the
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same time as basis functions of the finite-dimensional function spaces applied
in the discretization. Compared with finite element methods, the basis func-
tions of IGA are smoother and in some situations, curved boundaries of the
domain can be represented exactly. However, the implementation of IGA is
somewhat more involved, the incorporation of essential boundary conditions
is not as straightforward, and the desire to apply standard techniques known
from finite element methods, like adaptive grid refinement, requires a non-
trivial extension of the standard IGA approach. There is the question if the
quality (accuracy) of the solutions obtained with IGA justifies the effort to
face these difficulties. This question can be answered only with careful nu-
merical studies. This note constitutes a contribution in this direction for the
incompressible Navier–Stokes equations.

IGA for incompressible flow problems has been investigated from the analytical
and numerical point of view, e.g, in [1–4,6,7,15]. In particular, it was clarified
that counterparts of the popular Taylor–Hood pairs of finite element spaces
satisfy a discrete inf-sup condition [1,2]. Even divergence-free versions of IGA
were proposed in [4,6,7], whose implementation is however considerably more
involved compared with a standard IGA.

This note aims at contributing to the assessment of IGA by studying incom-
pressible flows around cylinders in two and three dimensions. The results for
quantities of interest, like the drag and lift coefficient, are compared with the
corresponding results obtained with finite element methods.

2 Flows around a cylinder

Let Ω ⊂ Rd, d ∈ {2, 3}, be a domain. The steady-state incompressible Navier–
Stokes equations without body forces are given by

−ν∆u + (u · ∇)u +∇p = 0 in Ω,

∇ · u = 0 in Ω,
(1)

where u is the velocity, p is the pressure, and ν is a dimensionless viscosity.
In addition, appropriate boundary conditions have to be prescribed.

The numerical studies consider flows around cylinders. Flows around bod-
ies constitute standard situations in applications. For such flows, important
quantities of interest are the drag and lift coefficients at the body. Also the
difference of the pressure between upstream and downstream faces of the body
is of importance. The considered examples were proposed in [14].

The finite element results presented in this note were computed with the code
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Fig. 1. Two-dimensional flow around a cylinder: Domain and coarsest finite element
grid.

MooNMD [12]. An isoparametric approximation of curved boundaries was
used. Drag and lift coefficients were computed, for both the IGA and the finite
element simulations, with volume integrals as described in detail in [11]. The
IGA was implemented in Octave and the correct implementation was checked
at examples with prescribed solution [5]. The nonlinear systems of equations
were solved until the Euclidean norm of the difference of two subsequent it-
erates (velocity and pressure) was smaller than 10−6. Smaller tolerances and
using also the Euclidean norm of the residual vector as stopping criterion gave
quantitatively very similar results. The linear systems of equations were solved
with the solver linsolve provided by Octave.

2.1 Two-dimensional flow around a cylinder

The domain for this example and the initial grid for the finite element simu-
lations are shown in Fig. 1. This example is further given by ν = 10−3 in (1),
the inlet boundary condition

u(0, x2) =
(

1.2

0.412
x2(0.41− x2), 0

)T

,

no-slip boundary conditions at the upper and lower wall and at the cylin-
der, and the do-nothing boundary condition (ν∇u− pI)n = 0 at the outlet,
where n is the outward pointing normal vector and I the identity tensor. The
Reynolds number of this flow, based on the mean inflow velocity, the diameter
of the cylinder, and the viscosity of the fluid is Re = 20.

IGA relies on computations on a reference square (or cube in three dimen-
sions). To this end, Ω is parametrized, i.e., the domain is divided into so-
called patches and these patches are pulled back to the reference domain. It
was already observed in [13], where scalar convection-diffusion equations and
also a domain with a hole were considered, that the parametrization possesses
a considerable impact on the accuracy of the solution. To the best of our
knowledge, there are no guidelines on how to parametrize more complicated
domains in an optimal way. Here, results for several parametrizations of Ω will
be presented, see Fig. 2.

The representation of the circular boundary requires NURBS of degree two.
Thus, this degree is the smallest degree for the pressure that can be used in the
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Fig. 2. Two-dimensional flow around a cylinder: Parametrizations of Ω into patches:
Ω1, . . . ,Ω6, left to right, top to bottom. The thick colored lines give the decomposi-
tion into patches, the thin lines the corresponding coarsest grids, and the dots the
quadrature points. Note that Ω6 is more refined at the cylinder than Ω2.

IGA. Results will be presented for velocity NURBS of order pv ∈ {3, 4} and
the pressure NURBS of order pv−1. These choices are the counterparts of the
Taylor–Hood spaces Qk/Qk−1, k ∈ {3, 4}, which were used in the finite element
simulations. The initial finite element mesh, Fig. 1, was refined uniformly.

For assessing the accuracy of the results, the reference values used in [8] were
taken and the relative errors to these values were evaluated. E.g., let chdrag be a
computed approximation of the drag coefficient, then the relative error is given
by |chdrag−crefdrag|/|crefdrag|, where crefdrag is the reference value from [8]. The relative
errors versus the number of degrees of freedom are depicted in Figs. 3 and 4.
It can be observed that the parametrization of Ω indeed has a great effect
on the accuracy. The best parametrizations are Ω2, Ω5, Ω6, and (apart of the
pressure difference) Ω3. Note that the best parametrization in the numerical
studies in [13] was the analog of Ω3. Concerning drag and lift coefficient,
the numerical results computed with IGA are not more accurate than those
obtained with the finite element method. For the pressure difference, only the
results obtained with parametrization Ω6 are notably more accurate than the
finite element results.

Numerical results for this example with IGA and B-splines instead of NURBS
can be found in [8]. Comparing these results with the results presented in
Figs. 3 and 4, one can observe that the results with NURBS are much more
accurate, see also [5, Fig. 40].
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Fig. 3. Results for the two-dimensional flow around a cylinder for third order velocity
and second order pressure.
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Fig. 4. Results for the two-dimensional flow around a cylinder for fourth order
velocity and third order pressure.

2.2 Three-dimensional flow around a cylinder

The domain of this example is given by

Ω =
{
{(0, 2.5)× (0, 0.41)} \B0.05(0.5, 0.2)

}
× (0, 0.41),

where B0.05(0.5, 0.2) is a circle with center (0.5, 0.2) and radius 0.05. Thus, the
cross-section of this domain looks similarly like for the two-dimensional case,
see Fig. 1. The viscosity is ν = 10−3. At the outlet, a do-nothing boundary
condition was prescribed, at the inlet

u(0, x2, x3) =
(

7.2

0.414
x2(0.41− x2)x3(0.41− x3), 0, 0

)T

,

and no-slip boundary conditions at the other walls. The Reynolds number of
this flow, based on the same quantities as in the two-dimensional example, is
Re = 20.

For simulations with the IGA, parametrizations of type Ω3, Ω5, and Ω6 were
used, compare Fig. 5. The results obtained with the corresponding patches
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Fig. 5. Three-dimensional flow around a cylinder: Parametrizations of Ω into
patches: Ω3, Ω5, and Ω6.

were among the best results for the two-dimensional flow around a cylinder.
For brevity, results for a parametrization of type Ω2 will not be included in
the presentation, since Ω2 is constructed very similarly to Ω6 and the latter
provided more accurate results for the two-dimensional example. For com-
puting the drag and lift coefficient with the volume integrals, one has to use
vector-valued test functions that take the value 1 in some component at the
cylinder and 0 at all other boundaries. In the simulations, the value 1 was
also prescribed at the intersection of the cylinder and the wall. The obtained
results are compared with results from [10] for finite element simulations with
the Taylor–Hood pairs of spaces Pk/Pk−1 and Qk/Qk−1, k ∈ {2, 3}.

Reference values for the drag coefficient, the lift coefficient, and the pressure
difference are provided in [10]. Relative errors to these values are presented
in Fig. 6. Concerning the different parametrizations used in the IGA, Ω6 per-
formed best. All finite element methods compute drag coefficients of a similar
accuracy as the best IGA approach. Concerning the lift coefficient, only Q2/Q1

and Q3/Q2 give similarly accurate results as IGA with Ω6. And with respect
to the pressure difference, the higher order finite element methods P3/P2 and
Q3/Q2 are clearly more accurate than their lower order counterparts. But only
the result obtained with Q3/Q2 is of a similar order of accuracy as the result
of the IGA with Ω6.

Since the IGA and the finite element methods are implemented in different
codes, a comparison of computing times is not meaningful. It should only be
mentioned that the computing times for the IGA were reasonable.

3 Summary

This note assessed the accuracy of IGA applied to the simulation of incom-
pressible flows around obstacles. The dependency of the results on the chosen
parametrization became obvious. For a comparable number of degrees of free-
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Fig. 6. Results for the three-dimensional flow around a cylinder for the IGA with
third order velocity and second order pressure and for the finite element pairs
Q2/Q1, Q3/Q2, P2/P1, and P3/P2.

dom, the accuracy with respect to several quantities of interest of the best
studied parametrization and the best standard finite element methods is com-
parable.
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