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Abstract

LB simulations can be affected by the arising of initial layers due to an inconsistent
initialization of the discrete LB populations. We present some previously proposed
initialization routines built to overcome that problem; using the asymptotic expan-
sion technique, we show how their features can be analyzed and, in some cases, how
accuracy and computational efficiency can be improved.
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1 Introduction

One of the problems of kinetic methods simulating macroscopic equations is
about how to set correctly the initial conditions, usually given in “macro-
scopic” form, in terms of kinetic variables. Inconsistent choices lead to initial
layers that affect numerical simulations, for example reducing the theoretically
possible accuracy of the schemes. Born with the same kinetic philosophy, even
if evolved and modified ([6], or [4] for detailed overviews), the lattice Boltz-
mann method (LBM) suffers of the same problem. Some results regarding the
setting up of a lattice Boltzmann simulation, in order to avoid initial layers,
will be presented. In Section 2 we introduce the initial layers problem together
with some basic ideas of asymptotic analysis, providing a simple numerical ex-
ample. In Section 3, a first initialization routine, presented in [7], is discussed
and analyzed, showing its main features; using the asymptotic analysis, we
define some modified routines, that improve the previous one in accuracy and
efficiency. Each modification step will be supported by numerical tests, based
on the presented model. Finally, a special case that allows us to get fourth
order initial pressure will be described.
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2 The initial layers problem

The starting point is an initial value incompressible Navier-Stokes problem,
with periodic boundary conditions, on a two dimensional domain Ω ⊂ R

2:











∇ · u = 0

∂tu + ∇p + ∇ · (u ⊗ u) = ν∇2u + G

u(t = 0,x) = u0(x),

(1)

for a given u0(x) : Ω → R
2. Our aim is to solve it using the lattice Boltzmann

method. Employing a numerical scheme whose variables have a kinetic mean-
ing, the right correspondence between these and the macroscopic quantities
has to be set, whenever physical conditions, regarding u and p, are involved
(in problem (1) provided by the initial velocity field u0). Incorrect coupling
can produce initial oscillatory layers, with a pure numerical meaning, in the
numerical solution.

Generalities about LBM. The lattice Boltzmann method, as a solver for the
incompressible Navier-Stokes equations, was originally built up from the lat-
tice gas cellular automata (LGCA) models (see [1],[2]); however, the numerical
schemes provided by the LBM can be also derived ([5]) from a discretization
of a finite discrete-velocity model of the Boltzmann equation

∂tfi + ci · ∇fi = Ji(f), i = 0, . . . , N (2)

being V = {ci}i=0,...,N the finite velocity set. The variable fi(t,x) represents
the particle mass density distribution moving in the direction of ci at time t

and position x; the functional Ji(f) models the effects of collisions between
particles. General theory and detailed derivation of the LBE from the LGCA
and from the BE can be found, for example, in [8]. To recover the incompress-
ible Navier-Stokes equations in the continuous limit (see [8],[9]), equation (2)
has to be discretized according to the diffusive scaling ∆t = ∆x2. In what
follows, we describe the LBM in terms of a dimensionless lattice unities ref-

erence system, where space and time unities are represented by grid size and
time step, related by the diffusive scaling. Furthermore, the unity of measure
of mass density is fixed setting the reference density of the flow equal to 1.

In the presented results, we will use the particular D2Q9 model, with a 9-
velocities set V = {c0, . . . , c8} of 2-dimensional vectors;for a more detailed
description of such a model, and specific definitions of discrete velocity space,
equilibrium distribution and related constants, we refer to [8].

Calling h the physical grid spacing, the LB populations at time tn = nh2 and
on position xj = jh are expressed by functions f̂i(n, j) : N × Z

2 ∩ Ω → [0, 1];
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the general iteration of the algorithm (LBM with BGK approximation) reads
then

f̂i(n + 1, j + ci) = f̂i(n, j) +
1

τ
(f eq

i (f̂) − f̂i)(n, j) + ĝi(n, j). (3)

The equilibrium distribution f eq is function of f̂ , through the density ρ̂ =
∑

i f̂i

and the velocity û =
∑

i cif̂i. We denote with Heq the equilibrium as a function
of ρ̂ and û, composed of a linear (HL(eq)) and a quadratic (HQ(eq)) part. For
the considered D2Q9 model:

H
eq
i (ρ,u) = f ∗

i

(

ρ + c−2
s ci · u +

c−4
s

2

(

|ci · u|2 − c2
su

2
)

)

= H
L(eq)
i +H

Q(eq)
i (4)

(the lattice sound speed cs and the weights f ∗
i depend on the model); more

general description of the equilibrium distribution and of its properties can be
found, for example, in [9]. The last term in (3) is defined as

ĝi(n, j) = h3f ∗

i c−2
s ci · G(tn,xj) (5)

and takes care of the force term G (rescaled by h3 in lattice unities) in the
Navier-Stokes equations (1). The relaxation time τ is related to a dimensionless
viscosity through ν = c2

s(τ − 1
2
).

Asymptotic analysis of periodic LBM. Assuming that the LB solution
can be written in the form

f̂i(n, j) = f
(0)
i (nh2, jh) + hf

(1)
i (nh2, jh) + h2f

(2)
i (nh2, jh) + . . . , (6)

with coefficients f
(k)
i sufficiently smooth and h-independents, we can derive

explicitly the f
(k)
i by inserting (6) into (3), Taylor expanding and sorting the

orders in h; in the periodic case, we have (see [9])

f
(0)
i = f ∗

i ,

f
(1)
i = f ∗

i c−2
s ci · u,

f
(2)
i = f ∗

i c−2
s p + H

Q(eq)
i (u,u) − τf ∗

i c−2
s (ci · ∇)ci · u,

f
(3)
i = f ∗

i c−2
s ci · w − τ

(

(ci · ∇)f
(2)
i +

(ci · ∇)2

2
f

(1)
i + ∂tf

(1)
i

)

+ τg
(3)
i

(7)

where u and p solve the Navier-Stokes equations and the vector field w is solu-
tion of an inhomogeneous Oseen-type problem. The behavior of the numerical
scheme is analyzed through a truncated expansion

F̂i = f
(0)
i + hf

(1)
i + h2f

(2)
i + h3f

(3)
i , (8)

that can predict the LB solution up to order h4. Combining equations (7), the
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pressure can be extracted from f̂ , defining

p̂ = c2
s

∑

i f̂i − 1

h2
; (9)

it expresses a 0-average pressure, related to the higher order density fluctua-
tions (see [9]), once removed the constant contribution of the incompressible
density (equal to 1 in dimensionless unities). Using the (7) and the predic-
tion (8), it can be shown (computing û and p̂ using F̂ instead of f̂ , see [9]
for details) that û and p̂ are a second order accurate approximation of the
Navier-Stokes solution. Moreover, the tensor S[u] ≡ ∇u+∇uT (viscous stress

tensor divided by ν) can be approximated, up to the second order, from the
non-equilibrium part of f̂i:

Ŝ[u] = − 1

τc2
sh

2

∑

i

ci ⊗ ci

(

f̂i − f
eq
i (f̂)

)

. (10)

2.1 Lattice Boltzmann initial conditions

Coming back to the problem (1), to set up our LB simulation, we have to
fix the initial values of the discrete populations fi, according to the initial
macroscopic fields. We present here a list of possible choices, shortly describing
them. Par. 2.2 contains some numerical example. The simplest way consists
of initializing with equilibrium values

f̂i|t=0 = H
eq
i (1, hu0) (11)

(the velocity u0 is scaled by h in lattice unities). In view of (9), a constant
initial density ρ0 = 1, gives rise to an initial pressure p0 = 0, but, for general
u0 and G0, the initial pressure should satisfy

∇2p0 = −∇ · (∇ · (u0 ⊗ u0)) + ∇ ·G0, (12)

(taking the divergence of the Navier-Stokes equation). To include the initial
pressure, we could use an additional Poisson solver, to get an estimate p̃ from
equation (12) and define

f̂i|t=0 = H
eq
i (1 + h2c−2

s p̃, hu0). (13)

An initialization which leads to better results, including the initial tensor S[u0]
was proposed in [3]; computing a numerical approximation S̃ we can set

fi = H
eq
i (1 + h2c−2

s p̃, hu0) − h2τc−2
s f ∗

i

(

ci ⊗ ci : S̃
)

. (14)

Comparing the behavior of different initializations with the results of asymp-
totic analysis (7), we note that (14) sets correctly the initial values up to
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the second order part f
(2)
i . At this point, it seems that to construct better

initializations more and more expensive routines are required; however, the
approach presented in [7], analyzed and improved in the present paper, allows
to achieve initialization (14) completely within the LB framework.

2.2 Test problems

Our test problems in this article are based on the periodic Taylor vortex field

on Ω = [0, 1] × [0, 1]:

uTV (t, x, y) = 1
2π

(− cos(2πx) sin(2πy), sin(2πx) cos(2πy)) exp (−8π2νt),

(pressure pTV (t, x, y) = − 1
16π2 (cos(4πx) + cos(4πy)) exp (−16π2νt)),

(15)
as a solution of different problems:

• (NS): Navier-Stokes, with G = 0;
• (ST): Stokes, adding a non divergence-free force G = ∇pTV ;

Fig. 1a shows results of the LBM for the problem (NS), using the initial values
(11); the initial discrepancy in pressure produces an initial layer, which does
not vanish for h → 0. With initialization (13), the initial layer is still present in
S[u] (fig 1b). We do not see the claimed second order accuracy for p and S[u],
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Figure 1. Qualitative behavior of initial layers. (a) Initial layer in the error eC
p (t) in

pressure in the central point xC of the unit square (where p takes its maximum),
initializing with (11); the exact initial value of pressure is ∼ 0.012. Initial layer is of order
0. (b) Superimposed oscillatory initial layers in the error of S[u]; maximum amplitude
oscillations for the component Sxx (in xM = (0.25, 0.25)) are shown, for h = 0.05
(dashed line) and h = 0.025 (solid) initializing with (13).

because, as remarked in the end of par. 2.1, the coefficients f
(2)
i (same order

of p and S[u]) have wrong value at time t = 0, if we use initialization (11) or
(13). As a consequence, the hypothesis of smoothness of expansion coefficients

is not satisfied by f
(2)
i (there is a jump at t = 0), and the prediction (8) we
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derived might differ from numerical results. Initial layers in the order h2 are
removed using (14).

3 LB Initialization routines

The following algorithm has been proposed in [7] to initialize LB algorithm
according to (14).

It has the same structure as the classical LBM; only, in the collision step, the
velocity is kept fixed and equal to u0 in the equilibrium function.

Algorithm 1

ρ0 = 1
do while ||ρ(n + 1, ·) − ρ(n, ·)|| > ε (fixed by tolerance criterion)

collision: f̂ c
i (n, j) = f̂i(n, j) + τ(Heq

i (ρ(n, j), hu0(j)) − f̂i(n, j)) + ĝi(0, j)

advection: f̂i(n + 1, j + ci) = f̂ c
i (n, j)

ρ(n + 1, ·) =
∑

i f̂i(n + 1, ·)
end

3.1 Asymptotic analysis

To see how the algorithm acts on the populations, we apply an expansion of the
form (6) to the previous procedure. Since in what follows the time t is not the
“real” time (the algorithm is used only to initialize the populations, keeping
the initial velocity and the initial force fixed), we will call it pseudotime, even
if we indicate it with the letter t. The frozen quantities are denoted with
subscript 0, like u0 or G0.

From definition (9), an analogous expansion can be derived for the pressure,
which reads

p̂ = p + hp(3) + h2p(4) + h3p(5) + . . . (16)

The expressions of the coefficients f
(k)
i (up to the third order, compare with

(7)) are

f
(0)
i = f ∗

i ,

f
(1)
i = f ∗

i c−2
s ci · u0,

f (2) = f ∗

i c−2
s p + H

Q(eq)
i (u0,u0) − τf ∗

i c−2
s (ci · ∇)ci · u0

f
(3)
i = f ∗

i c−2
s p(3) − τ(ci · ∇)f

(2)
i − τ

(ci · ∇)2

2
f

(1)
i + τg

(3)
0,i ,

(17)
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with p satisfying















∇p + ∇ · (u0 ⊗ u0) = ν∇2u0 + G0 −
1

τ
w

c−2
s ∂tp + ∇ · w +

1

2
(∇2p + ∇ · (u0 ⊗ u0)) = 0

. (18)

The field w, defined as the first order moment of the coefficient f
(3)
i , can be

recovered from the first equation and inserted into the second, obtaining

∂tp = ν(∇2p + ∇ · (∇ · (u0 ⊗ u0)) −∇ · G0) +
c2
s

2
∇ · G0, (19)

with initial condition p|t=0 = 0. Using an analogous procedure, we obtain for
p(3) the PDE

∂tp
(3) = ν∇2p(3), (20)

with p(3)|t=0 = 0, that has solution p(3) ≡ 0.

3.2 A LB Poisson solver

Now we analyze more in detail equation (19). If ∇ ·G0 = 0, it shows that, at
the steady state (in pseudotime), p solves the Poisson equation (12). Hence,
we can extract a second order accurate pressure, since (as a consequence of
(20), using the expansion (16)), p̂ − p = O(h2). On the other hand, the pro-
cedure does not work if the force has non zero divergence, because equation
(19) is then different from (12). Figure 2a (right) exemplifies the problem.
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Figure 2. (a) Algorithm 1 applied to vortex solution (20 × 20 grid), for viscosity
ν1 = 0.006 (bold line), ν2 = 5ν1 = 0.030 (solid), ν3 = 5ν2 = 0.15 (dashed) (the
arrow in the plots shows the increasing viscosity). Left: error eC

p (t) of central point
pressure in logarithmic pseudotime during initialization for (NS) problem. Right: (ST)
problem (with additional non divergence-free force); the error is increasing like ν−1. (b)
Double logarithmic plot of maximum error in initial pressure versus grid size in (ST),
with (◦) and without (×) the corrected force term g∇.

Looking at the pressure during the initialization algorithm for a (ST) problem
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(where an additional non divergence-free force is present) we see an error in
the asymptotic value increasing like ν−1 (this relationship is also explained by
equation (19)). Fixing the viscosity and refining the grid (fig. 2b), the error in
the initial pressure (solution of (12)) is not reduced (slope ∼ 0 in the double
logarithmic plot); the procedure gives an inconsistent pressure.

To cure this anomaly we modify the collision step, replacing ĝi with

g∇

i ≡ h3c−2
s f ∗

i ci · G + h4f ∗

i

∇ · G
2

, (21)

which produces a new term in (19) able to remove the undesired source. Results
of this modified routine, shown in fig. 2b, confirm that the corrected force g∇

i

allows to recover a second order accurate initial pressure (slope ∼ 2) solving
equation (12) only by using LB-type iterations.

Other aspects of (modified) alg. 1 follow from the analysis performed in par.
3.1. Actually, it is more than a LB Poisson solver, since it does not require not
even an approximation of ∇u0 to set f

(2)
i as initialization (14) does. However,

we observe also that the pseudotime steps needed to reach the steady state of
equation (19) are a function (∼ 1

ν
) of viscosity, i.e. of τ (it can be seen in fig.

2a, showing the error in pressure approaching a steady value). Therefore, once
guaranteed the accuracy in pressure for a general force field, our next aim is
to see whether is it possible to reduce the computational effort to get it.

3.3 Accelerated initialization routines

We focus on a periodic box without boundaries. The idea is the following: the
Poisson equation (12) does not depend on ν; hence, to have a faster procedure,
it should be possible to run the algorithm with a higher, faster, viscosity (i.e.
using a different τ). This allows the pressure to get closer to its limit in less
pseudotime steps; unfortunately, the simple increasing of viscosity leads to a
wrong initial tensor S[u], in which we will still see a zeroth order initial layer
(fig. 3-right and 4a), due to a wrong initialization of the τ -depending term in

f
(2)
i . Looking at the definition of the coefficients (17), we can derive a recipe to

correct the initial populations in such a way to remove completely the error in
f

(2)
i , even using a different value of τ . Practically, calling τ̃ the new relaxation

time and r the ratio
τ

τ̃
, we isolate (up to order h) the term we are interested

in, subtracting from the output (of the accelerated routine) f̂ τ̃
i the previous

order terms, reconstruct “by hand” the correct initial second order,

f̄
(2)
i = (1−r)

(

f ∗

i c−2
s p̂ + H

Q(eq)
i (u0,u0)

)

+r

(

f τ̃
i − f ∗

i − hf ∗

i c−2
s ci · u0

h2

)

, (22)
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Figure 3. Same simulation as in fig.1, the error in p and Sxx are now shown after the
modified viscosity initialization. It reduces the order of initial layer in pressure (left) but
not in the tensor S[u] (right); dashed line: 20 × 20 grid, solid line: 40 × 40 grid.

and define the initial values

f̄ τ̃
i = f ∗

i + hf
(1)
i + h2f̄

(2)
i = (1 − r)Heq

i (1 + h2c−2
s p̂, hu0) + rf̂ τ̃

i . (23)

Algorithm 2

given initial data u0 and force G0

compute ∇ ·G0 (at least first order accurately), g∇

run algorithm 1 with τ1

compute pressure p and equilibrium from p and u0

initialize LBM using (23)

Using the (22)-(23), the difference between f̄ τ̃ and the correct initial popula-
tion f can be explicitely written down as

f − f̄ τ̃ = h3
(

−rf (3),τ̃ + f (3)
)

+ O(h4). (24)

This accelerated initialization procedure will then remove all the inconsisten-
cies regarding initial conditions from the second order populations, reducing
the computational time needed to initialize them. The following numerical
tests (fig. 4) compare results of the original initialization routine, with the
accelerated one. The original viscosity is ∼ 0.03, with τ = 0.59; as a faster
relaxation time we used τ̃ = 1, that allows also to simplify the implementation
of the LB collision step. The tolerance criterion in alg. 1 is based on the differ-
ence between the pressure in two successive pseudotime iterations (related to
an approximated ∂tp) and the gain in CPU time is about 65%. Initial layers
in pressure and viscous stress tensor have been compared; we get first order
accuracy for p̂ and second order (only after correction (23)) for Ŝ, even if, for
pressure, after the accelerated procedure the initial layer amplitude may be
slightly bigger. It happens mainly because we modify, and do not correct, the
f

(3)
i ; we can explicitly write down the modification occurring in the third order

coefficients (as given in (17)) running alg. 2, using the evaluation of error (24):

f
(3),τ
i − f̄

(3),τ̃
i = E

(3)
i = (τ − τ̃)τc2

sf
∗

i (ci · ∇)2(ci · u0). (25)
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Figure 4. (a) Double logarithmic plot of maximum error in initial pressure (left) and
S[u] (right) for (NS), versus grid size (viscosity ∼ 3 · 10−2); the curves are obtained
with original-viscosity routine (×), alg. 1 run with τ = 1 (◦), and accelerated routine,
inclusive of correction (�). (b) Error in pressure versus grid size for original (×) and
accelerated (◦) initialization applied to (ST).

This part is only responsible of the increasing of the amplitude (fig. 4a) of the
initial layer in pressure. This arises even using the original viscosity routine,
because the expressions of f

(3),τ
i differ from the exact initial values given in

(7); in particular, a term involving ∂tu|t=0 is missed, affecting our prediction
F̂i from order h3 (as explained in par. 2.1). Note that in the linear problem,
original and accelerated routines lead to similar results, because the difference
(25) vanishes, since it contains only quadratic terms (fig. 4b).

Summarizing the theoretical and numerical results presented so far, we started
analyzing an existing initialization algorithm from which a modified collision

routine, able to initialize correctly LBM up to second order for a general

force field, has been defined; for a special class of periodic boundary prob-
lems, we have proposed a faster viscosity routine characterized by a viscosity-

independent CPU-time needed.

Special viscosity. Performing a further step of asymptotic analysis, we can
write the equation for the coefficient p(4) of expansion (16):

A(τ)∂tp
(4) + B(τ)∂2

t p = ∇2p(4) +
1

τ
φ(τ)F(u0,G0) + γ(τ)∇2(∇ · G0) (26)

with initial conditions p(4) = 0. The operator F involves fourth and sixth order
derivatives of the initial data. The function φ(τ) is a second order polynomial

with two real roots, τ ∗
± =

1

2
± 1√

6
. This means that if ∇ · G0 = 0, with the

special value τ ∗

+ ∼ 0.9089, p(4) vanishes at the steady state, giving a fourth
order initial pressure (the coefficient p(5) behaves like the previous odd term
p(3), see [9]). Note, again, that the third order error has not been removed
(it is just “invisible” in pressure) and that the fourth order pressure will, in
general, become of second order once starting the actual LBE iteration.
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