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Abstract

This work is devoted to the numerical simulation of an incompressible fluid
through a porous interface, modeled as a macroscopic resistive interface term
in the Stokes equations. We improve the results reported in [M2AN 42(6):961–
990, 2008], by showing that the standard Pressure Stabilized Petrov-Galerkin
(PSPG) finite element method is stable, and optimally convergent, without the
need for controlling the pressure jump across the interface.
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1. Introduction

We consider a regular domain Ω ⊂ Rd, d = 2 or 3, and a porous interface
defined by a hyperplane domain Γ ⊂ Rd−1, dividing Ω in two connected subdo-
mains as Ω = Ω1 ∪ Γ ∪ Ω2. We denote by n1, n2 the outgoing normals from
each subdomain Ωi at the interface, with n1 = −n2, and we define n = n1. The
fluid velocity u and pressure p are governed by the following modified Stokes
equations [1]:

∇p− µ∆u + rΓδΓu = f in Ω,

div u = 0 in Ω,
(1)

with a homogeneous Dirichlet condition on ∂Ω. In (1), the symbol µ stands for
the fluid viscosity, f for a given volume force, δΓ for the Dirac measure on Γ, and
rΓ > 0 is a given interface resistance, related to the permeability and porosity of
the interface. Without loss of generality, rΓ is assumed to be a constant scalar.
For the sake of conciseness we limit ourselves to this problem. Nevertheless,
the analysis below could be generalized to other problems involving pressure
discontinuities, such as two-phase flows.

Problem (1) can be reformulated equivalently as a two-domain Stokes prob-
lem, complemented with the interface conditions

JuK = 0, Jµ∇u · n− pnK = −rΓu on Γ, (2)
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where JqK def
= q1|Γ − q2|Γ denotes the jump across Γ and qi

def
= q|Ωi (i = 1, 2).

In [1], problem (1) was discretized with an extension of the PSPG stabilized
method (see [2]): an additional consistent term (based on (2)) was introduced to
control the interface pressure jump. Numerical evidence showed, however, that
this term did not improve noticeably the behavior of the numerical solution with
respect to a standard PSPG stabilized formulation [1]. The aim of this note is
to show that, indeed, stability and optimal accuracy can be derived without the
need for this extra interface stabilization term (which is convenient in practice).

2. Finite element formulation

Let {Th}0<h≤1 be a regular family of quasi-uniform triangulations of Ω, con-
forming with the interface Γ. The corresponding triangulation of the interface

is denoted by Gh and we set h
def
= maxT∈Th hT , where hT is the diameter of the

element T . We introduce the spaces V
def
= [H1

0 (Ω)]d, Q
def
= L2

0(Ω), and the finite
element spaces of degree k ≥ 1, V k

h and Nk
h , equal order approximations of V

and Q:

V k
h

def
=
{
vh ∈ (C0(Ω))d | vh|T ∈ (Pk)d ∀T ∈ Th

}
∩ V ,

Nk
h

def
=
{
qh|Ωi ∈ C0(Ωi), i = 1, 2 | qh|T ∈ Pk ∀T ∈ Th

}
∩Q.

(3)

Note that the space Nk
h of discrete pressures allows discontinuity at the inter-

face Γ. As underlined in [1], this is of utmost importance to get a correct
approximation of the solution without excessive mesh refinement. Additionally,

we introduce the spaces V0
def
= {v ∈ V | v|Γ = 0} and Vk

0,h
def
= V0 ∩Vk

h.
Let us consider the two following bilinear forms

ArΓδ
(
xh,yh

) def
= (µ∇uh,∇vh)− (ph, div vh) + (rΓuh,vh)Γ + (div uh, qh)

+ δ
∑
T∈Th

h2
T

µ
(−µ∆uh + ∇ph,∇qh)T ,

BrΓδ
(
xh,yh

) def
= ArΓδ

(
xh,yh

)
− δ

∑
E∈Gh

hE
µ

(Jµ∇uh · n− phnK + rΓuh, JqhnK)E

for all xh = (uh, ph) and yh = (vh, qh) in V k
h × Nk

h and δ > 0 is a stabilization
parameter. The discrete formulation proposed and analyzed in [1] is based on
BrΓδ . In this note, we consider the numerical analysis of the standard PSPG
formulation

ArΓδ
(
xh,yh

)
= (f ,vh) + δ

∑
T∈Th

h2
T

µ
(f ,∇qh)T ∀yh ∈ V k

h ×Nk
h . (4)
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3. Stability analysis

Let us consider the mesh-dependent energy norm

|||(uh, ph)|||2h
def
= µ‖∇uh‖2

0,Ω + rΓ‖uh‖2
0,Γ + δ

∑
T∈Th

h2
T

µ
‖∇ph‖2

0,T +
1

µ
‖ph‖2

0,Ω.

Note that, unlike in [1], this norm provides no control on the interface pressure
jump. We address now the stability of (4) in the ||| · |||h norm.

By applying the inverse inequality (see [3])

‖∆vh‖0,T ≤ c∆h
−1‖∇vh‖0,T , vh ∈ V k

h,

and the Schwarz and Young inequalities to the term
∑

T∈Th h
2
T (∆uh,∇ph)T , we

get the following coercivity estimate.

Proposition 3.1. Let δ be such that 0 < δc2
∆ ≤ 1. Then

ArΓδ (xh,xh) ≥
µ

2
‖∇uh‖2

0,Ω + rΓ‖uh‖2
0,Γ +

ξ2

2
≥ 1

2

(
|||(uh, ph)|||2h −

1

µ
‖ph‖2

0,Ω

)
(5)

for all xh = (uh, ph) ∈ V k
h ×Qk

h, with ξ2 def
= δ

∑
T∈Th

h2
T

µ
‖∇ph‖2

0,T .

The stability and the optimal convergence are stated in the following result.

Proposition 3.2. Under the assumption of Proposition 3.1 there holds:
(i) there exists a constant β = β(δ, µ

rΓ
) independent of h, such that

inf
xh∈V k

h×Qkh
sup

yh∈V k
h×Qkh

ArΓδ (xh,yh)

|||xh|||h|||yh|||h
≥ β. (6)

Moreover, if δ � 1 we have β ∼ δ, and β = O (µ/rΓ) for rΓ/µ� 1;
(ii) let (uh, ph) be the solution of (4) and assume that (u, p), the solution of (1),

is such that ui ∈
[
Hk+1(Ωi)

]d
, pi ∈ Hk(Ωi), i = 1, 2. There holds

|||(u− uh, p− ph)|||h ≤ c(β−1)hk
∑
i=1,2

[(
1 + r

1
2
Γh

1
2µ−

1
2 + δ−

1
2

)
µ

1
2‖u‖k+1,Ωi

+
(

1 + δ−
1
2

)
µ−

1
2‖p‖k,Ωi

]
,

(7)

where c is a positive constant, independent of h, that behaves as 1/β .

We remark that the stability and convergence results are essentially the same
as the ones given in [1], but without the need for the extra stabilization term.
Note that the scaling

√
rΓ/µ is present in both cases. The inf-sup constant β

and the estimate constant c have also the same asymptotic behavior as in [1].
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Proof. For the sake of conciseness, we prove only point (i). The proof of (ii)
follows [1], owing to the stability of ArΓδ . Let xh = (uh, ph) ∈ V k

h ×Nk
h . Given

(5), the inf-sup stability of ArΓδ requires additional stability estimates needed to
control the pressure.

A pressure p ∈ L2
0(Ω) has zero mean in Ω, but this is not true in general

for its restriction to Ωi, i = 1, 2. Following an argument of [4], we decompose

ph ∈ Nk
h ⊂ L2

0(Ω) as ph = p0
h + ph, with p0

h,i ∈ L2
0(Ωi) and ph,i

def
=

(ph,i, 1)Ωi

|Ωi| (i.e., p0
h

has zero mean over each subdomain and ph is constant in each subdomain). The
following relations hold:

‖ph‖2
0,Ω =

∥∥p0
h

∥∥2

0,Ω
+‖ph‖

2
0,Ω, ph,1|Ω1|+ph,2|Ω2| = 0, ‖ph‖

2
0,Ω = p2

h,1|Ω1|+p2
h,2|Ω2|.

(8)
We show how to control separately p0

h and ph. Since p0
h,i ∈ L2

0(Ωi), i = 1, 2,

there exists a function v0 ∈ V0, such that v0
i ∈ [H1

0 (Ωi)]
d, − div v0

i = 1
µ
p0
h,i and

‖v0‖1,Ω ≤ cΩ
1
µ
‖p0

h‖0,Ω. We take v0
h as the Scott-Zhang interpolant of v0 into Vk

0,h,
defined separately on each subdomain. Using the properties of the Scott-Zhang
operator [3], we also have ‖v0

h‖1,Ω ≤ c′Ω
1
µ
‖p0

h‖0,Ω and ‖v0 − v0
h‖0,Ω ≤ cπh‖v0‖1,Ω.

Since v0
i ,v

0
i,h ∈ [H1

0 (Ωi)]
d, i = 1, 2, and ph is constant on each subdomain, we

have (v0 − v0
h)|Γ = 0, (ph, div v0

h) = 0 and (ph, div v0) = 0. Hence, using the fact
that ph ∈ Nk

h is continuous in Ω1 and Ω2 we obtain, integrating by parts in each
subdomain:

−(ph, div v0
h) = −

(
p0
h, div v0

)
+
(
p0
h, div(v0 − v0

h)
)

≥ 1

µ

∥∥p0
h

∥∥2

0,Ω
− ξcπcΩδ

− 1
2

1

µ
1
2

∥∥p0
h

∥∥
0,Ω
,

with ξ defined in Proposition 3.1. Using Young’s inequality, this yields

ArΓδ
(
xh, (v

0
h, 0)

)
≥ −c′Ωµ

1
2‖∇uh‖0,Ω

1

µ
1
2

∥∥p0
h

∥∥
0,Ω
− δ−

1
2 cπcΩξ

1

µ
1
2

∥∥p0
h

∥∥
0,Ω

+
1

µ

∥∥p0
h

∥∥2

0,Ω

≥ 1

2µ

∥∥p0
h

∥∥2

0,Ω
− (c′Ω)2µ‖∇uh‖2

0,Ω −
c2
πc

2
Ω

δ
ξ2.

(9)
To handle the constant part of the pressure, we need the following Lemma

(whose proof can be found in [4] in a more complex case):

Lemma 3.1. There exist two (non-constant) functions vαh ∈ V 1
h, α = 1, 2, de-

fined over the whole domain Ω such that

∫
Γ

vαh,1 · n1 = −
∫

Γ

vαh,2 · n2 =
ph,α
µ
|Ωα|

and

µ
1
2‖∇vαh‖0,Ω ≤ cµ−

1
2

∥∥ph,α∥∥0,Ωα
, r

1
2
Γ‖v

α
h‖0,Γ ≤ Cr

1
2
Γµ
−1
∥∥ph,α∥∥0,Ωα

.
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Let vh
def
= v2

h − v1
h ∈ V k

h. Since ∇ph,i = 0 and using (8) and Lemma 3.1, we
have

−(ph, div vh) =
∑
i=1,2

(ph,i, (v
1
h − v2

h) · ni)Γ

= µ−1
(
p2
h,1|Ω1| − ph,1ph,2 (|Ω2|+ |Ω1|) + p2

h,2|Ω2|
)

= 2µ−1
(
p2
h,1|Ω1|+ p2

h,2|Ω2|
)

= 2µ−1‖ph‖
2
0,Ω,

and, by applying Lemma 3.1 once more, and using the fact that
∥∥ph,1∥∥0,Ω1

+∥∥ph,2∥∥0,Ω2
≤ 2‖ph‖0,Ω, there follows

−(ph, div vh) = −(ph, div vh)− (p0
h, div vh)

≥ 2µ−1‖ph‖
2
0,Ω −

∥∥p0
h

∥∥
0,Ω
d

1
2

∥∥∇(v1
h − v2

h)
∥∥

0,Ω

≥ 2

µ
‖ph‖

2
0,Ω − dc̄

2 1

µ

∥∥p0
h

∥∥2

0,Ω
− 1

4µ

(∥∥ph,1∥∥0,Ω1
+
∥∥ph,2∥∥0,Ω2

)2

≥ 1

µ
‖ph‖

2
0,Ω − dc

2 1

µ

∥∥p0
h

∥∥2

0,Ω
,

where we recall that d denotes the spatial dimension. Hence,

ArΓδ (xh, (vh, 0)) ≥− 2cµ
1
2‖∇uh‖0,Ωµ

− 1
2‖ph‖0,Ω − 2CrΓµ

− 1
2‖uh‖0,Γµ

− 1
2‖ph‖0,Ω

+ µ−1‖ph‖
2
0,Ω − dc

2µ−1
∥∥p0

h

∥∥2

0,Ω

≥ 1

2µ
‖ph‖

2
0,Ω − dc

2 1

µ

∥∥p0
h

∥∥2

0,Ω
− 4c2µ‖∇uh‖2

0,Ω − 4C
2 r2

Γ

µ
‖uh‖2

0,Γ .

(10)

Therefore, by taking yh = (λv0
h + (1 − λ)vh, 0), with λ

def
= 1+2dc2

2(1+dc2)
∈ (0, 1),

and using (9) and (10), we obtain

ArΓδ (xh,yh) ≥
(
λ

2
− (1− λ)dc̄2

)
1

µ

∥∥p0
h

∥∥2

0,Ω
+

1− λ
2

1

µ
‖ph‖

2
0,Ω

−
(
λ(c′Ω)2 + (1− λ)4c2

)
µ‖∇uh‖2

0,Ω

− λc
2
πc

2
Ω

δ
ξ2 − (1− λ)4C

2 r2
Γ

µ
‖uh‖2

0,Γ

≥ 1

4c̃µ
‖ph‖2

0,Ω − c
2
max

(
|||(uh, ph)|||2h −

1

µ
‖ph‖2

0,Ω

)
,

(11)

where we have introduced c̃
def
= 1+dc2, and c2

max
def
= max

{(
c′2Ω+4c2

)
, 1
δ
c2
πc

2
Ω, 4C

2 rΓ
µ

}
.

Note that, unlike the other constants that are dimensionless, C
2

has the dimension
of the inverse of a distance. Equation (11) provides a control on the pressure.
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To conclude the proof, we take a test function zh
def
= (1 − ω)xh + ωyh, with

ω
def
= 2c̃

1+2c̃(1+2c2max)
∈ (0, 1), and apply (5) and (11), to obtain

ArΓδ (xh, zh) ≥
1

2
(1− ω)

(
|||(uh, ph)|||2h −

1

µ
‖ph‖2

0,Ω

)
+ ω

(
1

4c̃µ
‖ph‖2

0,Ω − c
2
max

(
|||(uh, ph)|||2h −

1

µ
‖ph‖2

0,Ω

))
≥
(

1− ω
2
− ωc2

max

)(
µ‖∇uh‖2

0,Ω + rΓ‖uh‖2
0,Γ + ξ2

)
+

ω

4c̃µ
‖ph‖2

0,Ω

≥ 1

2
(
1 + 2c̃(1 + 2c2

max)
) |||xh|||2h.

(12)
Moreover, it can be shown that zh can be controlled by xh as

|||zh|||h ≤ (1− ω)|||xh|||h + ω
(
|||(v0

h, 0)|||h + |||(v1
h, 0)|||h + |||(v2

h, 0)|||h
)

≤ (1− ω)|||xh|||h + ωc′Ωµ
− 1

2

∥∥p0
h

∥∥
0,Ω

+ ω
√

2(c2 +
rΓ

µ
C

2
)

1
2µ−

1
2‖ph‖0,Ω

≤ (1− ω)|||xh|||h + ω
√

2 cmax|||xh|||h =
(

1− ω + ω
√

2 cmax

)
|||xh|||h

≤ 1 + 2c̃cmax(2cmax +
√

2)

1 + 2c̃(1 + 2c2
max)

|||xh|||h.

(13)

Combining (12) and (13) we obtain that the global inf-sup condition (6) fol-

lows with a constant β
def
=
[
2(1 + 2c̃cmax(2cmax +

√
2)
]−1

. The stated asymptotic
behavior of β follows from the definition of cmax.
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