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Abstract. We study linear rough partial differential equations in the setting of [Friz and
Hairer, Springer, 2014, Chapter 12]. More precisely, we consider a linear parabolic partial
differential equation driven by a deterministic rough path W of Hölder regularity α with
1/3 < α ≤ 1/2. Based on a stochastic representation of the solution of the rough partial
differential equation, we propose a regression Monte Carlo algorithm for spatio-temporal
approximation of the solution. We provide a full convergence analysis of the proposed
approximation method which essentially relies on the new bounds for the higher order
derivatives of the solution in space. Finally, a comprehensive simulation study showing
the applicability of the proposed algorithm is presented.

1. Introduction

We consider linear rough partial differential equations in the setting of Friz and Hairer [14,
Chapter 12], see also Diehl, Oberhauser, Riedel [13] and Diehl, Friz and Stannat [12], i.e.,

−du = L(u) dt +

d∑
k=1

Γk(u)dWk,

u(T, ·) = g,

where the differential operators L and Γ = (Γ1, . . . ,Γd) are defined by

L f (x) =
1
2

trace
(
σ(x)σ(x)>D2 f (x)

)
+ 〈b(x) ,D f (x)〉 + c(x) f (x),

Γk f (x) = 〈βk(x) ,D f (x)〉 + γk(x) f (x),

see Section 2 for more details. We stress here that W is a deterministic rough path (of
Hölder regularity α with 1/3 < α ≤ 1/2), i.e., the PDE above is considered as a deter-
ministic, not a stochastic equation. (This does not, of course, preclude choosing individual
trajectories produced by a stochastic process, say a fractional Brownian motion.)

The goal of this paper is to provide a numerical algorithm for solving the above rough
partial differential equation together with a proper numerical analysis of the algorithm
and numerical examples. More precisely, we want to approximate the function (t, x) 7→
u(t, x) as a linear combination of some easily computable basis functions depending on x
with time dependent coefficients. Such approximations can then be, for example, used to
solve optimal control problems for linear rough PDEs. In this respect, our approach can
be viewed as an alternative to the space-time Galerkin proper orthogonal decomposition
method used to solve optimal control problems for the standard linear parabolic PDEs (see,
e.g. [4] and references therein). We analyze the corresponding approximation error which
turns out to depend on smoothness properties of the solution u. As a by-product of this
analysis, we also proved regularity of the solution u in x of degree larger than 1 under
suitable conditions.

2010 Mathematics Subject Classification. Primary 65C30; Secondary 65C05, 60H15.
Key words and phrases. rough paths, rough partial differential equations, Feynman-Kac formula, regression.
C.B., M.R., S.R., and J.S. gratefully acknowledge support from the DFG through the research unit FOR2402.

1



2 C. BAYER, D. BELOMESTNY, M. REDMANN, S. RIEDEL, AND J. SCHOENMAKERS

Stochastic partial differential equations driven by Brownian motion have, of course,
many potential applications for instance in filtering theory ([27]) and mathematical finance
([6]), see also [21] for more examples. In many of these cases, it can be beneficial to
go beyond the classical case and, for example, allow fractional Brownian motion, which
allows for auto-correlation of the noise in time. Our framework naturally covers such
extensions, concentrating on the (technically more challenging) case of Hurst index H < 1

2 .

1.1. Literature review. Terry Lyons’ [24] theory of rough paths provides a determinis-
tic, pathwise analysis of stochastic ordinary differential equations. This has interesting
consequences both from a theoretical point of view—often based on the continuity of
the solution w.r.t. the driving noise (which is not true in the classical stochastic analy-
sis framework)—and from a practical point of view—see, for instance, [23]. We refer to
[17, 14] for background information on rough path theory.

Nonetheless, the seemingly obvious step from rough ODEs the rough PDEs turns out
to be quite difficult, mainly because of two essential limitations of standard rough path
theory: regularity of the vector fields driving the differential equation (lacking in the case
of (unbounded) partial differential operators), and the restriction to paths, i.e., functions
parametrized by a one-dimensional variable. While not relevant for this paper, we should
mention that the second restriction was overcome by seminal work of Hairer [20], thereby
allowing space-time noise.

Despite those difficulties, rough partial differential equations (driven by a true path, i.e.,
a “noise” component only depending on time, but not space) have become a thriving field
in the last few years, and several approaches have been developed to extend rough path
analysis to rough PDEs (RPDEs). Most approaches are based on transformations of the
problem separating the roughness of the drivers from the non-regularity of the differential
operators. A series of papers by Friz and co-authors derives existence and uniqueness
results for some classes of RPDEs by applying a flow-transformation to a classical PDE
(with random coefficients), for instance see [7, 16]. Other works in this flavour are based
on mild formulations of the RPDE, e.g., Deya, Gubinelli and Tindel [10].

Some more recent works have focused on more intrinsic formulations of rough PDEs,
trying to extend classical PDE techniques to the rough PDE context. This paper is based
on the Feynman-Kac approach of Diehl and co-authors [12, 13, 14], which is presented
in more detail in Section 2. In a quite different vein, Deya, Gubinelli, Hofmanová and
Tindel [9] have provided a rough Gronwall lemma, which makes classical approaches to
weak solutions of PDEs accessible.

Despite the increasing interest in rough PDEs, so far no numerical schemes have been
suggested to the best of our knowledge. In this context, let us again mention [9], which
could open up the field to finite element methods, as it provides variational techniques for
some classes of rough PDEs. Of course, an abundance of numerical methods exist for
classical stochastic PDEs and PDEs with random coefficients, see, for instance, [22].

In this work, we will use the stochastic representation of [12] in order to build a regres-
sion based approximation of the solution u(t, ·) of the rough PDE, a technique that has been
successfully applied both to stochastic PDEs by Milstein and Tretyakov [26] and to PDEs
with random coefficients by Anker et al. [2].

1.2. Outline of the paper and main results. Diehl, Friz and Stannat [12] provide a solu-
tion theory to the rough partial differential equation above by means of a stochastic repre-
sentation, i.e., they construct a stochastic process X which is driven by a stochastic rough
path Z constructed from a Brownian motion B and our rough path W driving the rough
PDE. The solution u of the rough PDE then is given as a conditional expectation of a
functional of X, see Section 2 and, in particular, (2.6) for more details.

For the numerical approximation of u(t, ·), it is very important to understand the regu-
larity of this map. Note that the regularity in t quite clearly corresponds to the regularity
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of the driving path W, whereas regularity in space alone can be much better depending on
the coefficients and the terminal data g. In the theoretical work [12], spacial regularity of
u is obtained from regularity of the stochastic process X in its initial value X0 = x, which
is well understood for rough differential equations. In order to show regularity of u one,
however, needs to interchange differentiation with expectation, and the required integrabil-
ity conditions were only available for the first derivative (see Cass, Litterer, Lyons [8]), but
not for higher derivatives. In Section 3 we extend these results to higher derivatives, which
enables us to show the following theorem, see Corollary 3.3:

Theorem 1.1. Let u(t, x) be as above. Assume that g is k-times differentiable with g
and its derivatives having at most exponential growth. Assume further that b and β are
bounded, (2 + k)-times continuously differentiable with bounded derivatives, σ is bounded
with (3 + k)-times continuously differentiable with bounded derivatives, and γ and c are
bounded, k-times continuously differentiable with bounded derivatives. Then u(t, ·) is k
times continuously differentiable and we provide explicit bounds on the derivatives.

For any fixed t > 0, the spacial resolution of the function x 7→ u(t, x) can be approxi-
mated using regression with respect to properly chosen basis functions ψ1, . . . , ψK , K ∈ N.
More precisely, with respect to a specific probability measure µ on the state space Rn, we
try to minimize the error in the sense of L2(µ), i.e., we would like to find

arg min
ṽ∈span{ψ1,...,ψK }

∫
Rn
|u(t, x) − ṽ(x)|2 µ(dx).

The above loss function can, however, only serve as a guiding principle, since u(t, x) is
not available to us. Instead, we replace the above loss function by a proper Monte Carlo
approximation: denoting the actual stochastic representation of u byV = V(t, x, ω) in the
sense that u(t, x) = E[V(t, x)], we consider samplesV(m) ofV obtained by

(1) sampling initial values x(m) according to the distribution µ;
(2) sampling the solution of X started at Xt = x(m) driven by independent (of each

other and of x(m))) samples of the Brownian motion.
Finally, we construct an approximation ṽ of u(t, ·) by (essentially) solving the least squares
problem

arg min
ṽ∈span{ψ1,...,ψK }

M∑
m=1

1
M

∣∣∣V(m) − ṽ(x(m))
∣∣∣2

via a “pseudo-regression” procedure (also used in [2] for PDEs with random coefficients)
that is presented in detail in Section 4.) We obtain (cf. Theorem 4.1):

Theorem 1.2. Under some boundedness conditions on the solutions and its stochastic
representation, there is a constant C > 0 (which can be made explicit) such that

E
[∫
Rn
|u(t, x) − ṽ(x)|2 µ(dx)

]
≤ C

K
M

+ inf
w∈span{ψ1,...,ψK }

∫
Rn
|u(t, x) − w(x)|2 µ(dx).

In order to find an approximation u(t, x) on a time grid 0 < t1 < . . . < tL < T the entire
procedure (2) has to be repeated for every time step, i.e., we generate samples of X starting
in x(m) at the respective initial time tl. In Section 4.2 we propose an alternative regression
type algorithm which allows for approximating the solution u(t, x) on 0 < t1 < . . . < tL < T
using only one set of trajectories of the process X with X0 = x(m).

Under somewhat more restrictive assumptions, our approximation u satisfies

E
[∫
Rn
|u(tl, x) − u(tl, x)|PXtl

(dx)
]
≤ C

[
K log(M)

M

+ inf
w∈span{ψ1,...,ψK }

∫
Rn
|u(tl, x) − w(x)|2 PXtl

(dx)
]
,
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for l = 1, . . . , L. We note that the above estimate is much more involved compared to
Theorem 1.2 owing to the fact that the exact distribution PXtl

(which essentially plays the
rôle of µ) cannot be assumed to be known and, therefore, has to be approximated itself.

In order to bound the corresponding approximation errors

inf
f∈span{ψ1,...,ψK }

‖u(tl, ·) − f (·)‖2L2(%), l = 1, . . . , L,

where the measure % is either µ or PXtl
, one needs to specify the basis functions.

In Section 4.3 we show that in the case of piecewise polynomial basis functions, the
approximation error can be bounded (up to a constant) by K−κ with κ =

2(q+1)
n , provided

that each function u(tl, ·) is q + 1 times differentiable, irrespective of the chosen regression
type, and the support of ρ above is finite. Now the smoothness of u(tl, ·) follows from the
smoothness of the coefficients of the underlying PDE and g via Theorem 1.1.

A last puzzle piece is still missing if we want to provide a fully implementable approx-
imation scheme, since we still need to solve the rough differential equation describing X.
Here we employ a (simplified) Euler-type scheme including approximations of the needed
signature terms by polynomials of the path itself, see Bayer, Friz, Riedel and Schoenmak-
ers [5] for details. The scheme is recalled in Section 5. In the current context, the rate of
convergence of the scheme is (almost) 2α − 1/2, see Theorem 5.1 for details. Finally, we
give several numerical examples in Section 6.

Remark 1.3. The scope of this paper is solving deterministic rough PDEs, i.e., PDEs
driven by a deterministic but rough path W. What happens when W is instead assumed to
be random – implying randomness of u? If we apply the same algorithm as above, but with
the samples of X based on i.i.d. samples of W, then the regression based approximation is
an estimate for E[u(t, x)] (see [2] for the case of regular random noise). Of course, we can
also use a regression approach for solving the full random solution u(t, x;ω). In this case,
we need to choose basis functions in both x and ω. This means, proper basis functions need
to be found in ω – or rather, in W. The signature of W provides a useful parametrization
for purposes of regression, see, for instance Lyons [23]. We will revisit this question in
future works.

2. Stochastic representation

We consider rough partial differential equations in the setting studied [12, 13, 14]. Given
a d-dimensional α-Hölder continuous geometric rough path W = (W,W), 1

3 < α ≤ 1
2 , we

consider the backward problem on Rn

−du = L(u) dt +

d∑
k=1

Γk(u)dWk,(2.1a)

u(T, ·) = g,(2.1b)

where the differential operators L and Γ = (Γ1, . . . ,Γd) are defined by

L f (x) =
1
2

trace
(
σ(x)σ(x)>D2 f (x)

)
+ 〈b(x) ,D f (x)〉 + c(x) f (x),(2.2)

Γk f (x) = 〈βk(x) ,D f (x)〉 + γk(x) f (x),(2.3)

for a suitable test function f : Rn → R and given functions σ : Rn → Rn×m, b : Rn → Rn,
c : Rn → R, βk : Rn → Rn, γk : Rn → R, k = 1, . . . , d. All functions are “smooth enough”.

A function u = u(t, x; W) is called a “regular” solution1 to (2.1) if u ∈ C0,2 and

u(t, x) = g(x) +

∫ T

t
Lu(r, x)dr +

d∑
k=1

∫ T

t
Γku(r, x)dWk

r ,

1[12] also provide a weak notion of solution. In what follows, the construction for both notions of solutions
is the same, but weak solutions can be established under weaker regularity conditions on the coefficients.
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where the integral is understood in the rough path sense requiring Γku,Γ jΓku to be con-
trolled by W as functions in t.

Solutions to the above rough PDE in the above sense are constructed by Feynman-Kac
representations. We introduce an m-dimensional Brownian motion B, which will essen-
tially be used to construct a diffusion process with generator L. Specifically, let

(2.4) dXt = σ(Xt)dBt + b(Xt)dt + β(Xt)dWt,

where the dB-integral is understood in the Itô sense. More precisely, (2.4) is understood as
a random (via B) rough ordinary differential equation with respect to a (m+d)-dimensional
rough path Z = (Z,Z) defined by

(2.5) Zt B

(
Bt

Wt

)
, Zs,t B

 BItô
s,t

∫ t
s Ws,r ⊗ dBr∫ t

s Bs,r ⊗ dWr Ws,t

 .
The following existence and uniqueness theorem is (part of) [12, Theorem 2.8].

Theorem 2.1. Assume that the coefficients satisfyσi, β j, γk ∈ C
6
b(Rn), c, g ∈ C4

b(Rn). Define

(2.6) u(t, x; W) B Et,x
[
g(XT ) exp

(∫ T

t
c(Xr)dr +

∫ T

t
γ(Xr)dWr

)]
, (t, x) ∈ [0,T ]×Rn.

Then u ∈ C0,4
b ([0,T ] × Rn) solves the problem (2.1) in the regular sense. The solution is

unique among all C0,4
b ([0,T ] × Rn) “which are controlled by W”. Moreover, if g addition-

ally has exponential decay, then the same is true for u.

Remark 2.2. The authors of this paper are in doubt to what extent Theorem 2.1 was indeed
proved in [12], in particular with respect to regularity. Differentiability of u in space is
obtained by the corresponding differentiability of the solution map x = X0 7→ Xt of the
mixed stochastic/rough differential equation (2.4). Cass, Litterer and Lyons [8] (see also
[15]) have proved the existence and integrability of the first variation of RDEs like (2.4),
i.e., the first derivative, which extends to the statement that u ∈ C0,1 in the above theorem.
However, to the best of our knowledge, this result has not been extended to higher order
derivatives in the literature before. We fill this gap in Section 3, see Theorem 3.1 for the
result on regularity of the flow of an RDE and Corollary 3.3 for the extended version of
Theorem 2.1 above.

Remark 2.3. It is possible to consider the problem (2.1) for slightly more general operators
L and Γ, by adding to L and Γ an autonomous term, say h(x) and η(x) ∈ Rd, respectively.
This will result in an extended stochastic representation

(2.7) E
[
g(Xt,x

T )Y t,x,1
T + Zt,x,1,0

T

]
, t ≤ T, x ∈ Rn,

for the solution of (2.1), where Xt,x
t = x, and

Y t,x,1
s := exp

(∫ s

t
c(Xt,x

r )dr +

∫ s

t
γ(Xt,x

r )dWr

)
,(2.8)

Zt,x,1,0
T :=

∫ T

t
Y t,x,1

r

(
h(Xr)dt + η> (Xr) dWr

)
.

Remark 2.4. By defining a mean-zero process Z̃t,x,1,0
· as the solution to

dZ̃s = YsF>(s, Xs)dBs, Z̃t = 0

for an arbitrary column vector function F(s, y) ∈ Rm, y ∈ Rn, and Ys given in (2.8), we
obtain another modification of the standard stochastic representation, (2.6), which provides
a stochastic representation with a free parameter that has smaller (point-wise) variance if
this parameter is chosen accordingly. Indeed, from Theorem 2.1 it is a trivial observation
that

(2.9) E
[
g(Xt,x

T )Y t,x,1
T + Z̃t,x,1,0

T

]
, t ≤ T, x ∈ Rn,
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is a stochastic representation to the solution of (2.1). In fact, via the chain rule for geomet-
ric rough paths it is possible to show that the variance of the random variable

g(Xt,x
T )Y t,x,1

T + Z̃t,x,1,0
T

vanishes if F satisfies σ>Du + F = 0. (Cf. Milstein and Tretyakov [25] for this result in the
standard SDE setting.) Of course such an “optimal” F involves the solution of the problem
itself, and as such is not directly available. A comprehensive study of constructing “good”
variance reducing parameters F in the present context is deferred to subsequent work.

Remark 2.5. From a regression point of view, it might be simpler to consider the Dirichlet
problem on a domain D ⊂ Rn, i.e.,

−du = L(u) dt +

d∑
k=1

Γk(u)dWk,

u(T, x) = g(x), x ∈ D, u(·, x) = f (x), x ∈ ∂D.

There are a few challenges here:
• A new existence and uniqueness theorem following the lines of [12] is required.

In particular, the Feynman-Kac representation in terms of stopped processes has
to be derived.

• Numerical schemes for stopped rough differential equations have, to the best of
our knowledge, not yet been considered.

3. Regularity of the solution

In order to understand the convergence of the regression based approximation to u as a
function of the input data (including the rough path W), we need to control the derivative
∂xu(t, x) and higher order derivatives explicitly in terms of the data.

We start with an e-dimensional weakly geometric rough path Z with finite p-variation
norm (2 ≤ p < 3).2 Recall that standard stability estimates for solutions of rough differen-
tial equations driven by Z lead to estimates of the form

exp
(
‖Z‖p−var ∨ ‖Z‖

p
p−var

)
,

see, for instance, [17, Theorem 10.38]. If we replace Z by a Brownian rough path, we
see that terms of the above form are not integrable, due to the pth power. Hence, these
estimates, which are sufficient (and sharp) in the deterministic setting, are impractical in
the stochastic setting. Cass, Litterer and Lyons [8] were able to derive alternative estimates
for the first derivative of the solution flow induced by a rough differential equation, which
retain integrability in (most) Gaussian contexts, cf. also [15]. In the following section, we
extend their results to higher order derivatives.

3.1. Higher order derivatives of RDE flows. Consider the rough differential equation

Xx
t = x +

∫ t

0
V(Xx

s ) dZs ∈ R
n,(3.1)

where V ∈ C(Rn, L(Re,Rn)). Formally, the derivative X(1) B DxXx should solve the equa-
tion

X(1)
t = Id +

∫ t

0
DV(Xx

s )(dZs)X(1)
s ∈ Rn×n

with

DV : Rn → L(Rn, L(Re,Rn)) � L(Re, L(Rn,Rn)).

2Note that Z as defined in (2.5) is not weakly geometric. As outlined below, we have to transform the
equation (2.4) for X into Stratonovich form first.
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The higher order derivatives of the vector field V are functions

DkV : Rn → L((Rn)⊗k, L(Re,Rn)) � L(Re, L((Rn)⊗k,Rn)),

and the k-th derivative of the flow X(k) B Dk
xXx should be a function

DkX·t : Rn → L((Rn)⊗k,Rn).

Taking formally the second derivative in (3.1), we obtain the equation

X(2)
t =

∫ t

0
D2V(Xx

s )(dZs)(X(1)
s ⊗ X(1)

s ) +

∫ t

0
DV(Xx

s )(dZs)X(2)
s ,

and for the third derivative,

X(3)
t =

∫ t

0
D3V(Xx

s )(dZs)(X(1)
s ⊗ X(1)

s ⊗ X(1)
s ) + 2

∫ t

0
D2V(Xx

s )(X(1)
s ⊗ X(2)

s )

+

∫ t

0
D2V(Xx

s )(dZs)(X(2)
s ⊗ X(1)

s ) +

∫ t

0
DV(Xx

s )(dZs)X(3)
s .

These formal calculations can be performed for any order k. The forthcoming theorem
justifies these calculations. Moreover, it provides estimates for the solution which are
especially useful for tail estimates when the equation is driven by a Gaussian process. For
given 0 ≤ s < t ≤ T , these estimates are based on the following sequence of times τi,
iteratively defined by τ0 = s and

τi+1 B inf
{
τi < u < t

∣∣∣∣ ‖Z‖pp−var;[τi,u] ≥ α
}
∧ t,

where α is a positive parameter. Define

(3.2) Nα(Z; [s, t]) B max { n | τn < t } .

For α = 1, we will omit the parameter and simply write N instead of N1. The important
insight of [8] was that ‖Z‖pp−var can often be replaced by N in rough path estimates, and that
N does have Gaussian tails when Z is replaced by Gaussian processes respecting certain
regularity assumptions. But for now we remain in a purely deterministic setting.

Next, we state the main theorem of this section. Since the proof is a bit lengthy, we
decided to give it in the appendix, cf. page 33.

Theorem 3.1. Fix s ∈ [0,T ] and let Z be a weakly geometric p-rough path for p ∈ [2, 3).
Let V ∈ C2+k

b (Rn, L(Re,Rn)) for some k ≥ 1. Consider the unique solution Xs,x to

Xs,x
t = x +

∫ t

s
V(Xs,x

u ) dZu ∈ R
n, t ∈ [s,T ].(3.3)

Then for every fixed t ∈ [s,T ], the map x 7→ Xs,x
t is k-times differentiable. Moreover, the kth

derivative X(k)
t = Dk

xXs,x
t solves a rough differential equation which is obtained by formally

differentiating (3.3) k-times with respect to x. Setting ω(u, v) B ‖Z‖pp−var;[u,v], we have the
bounds

‖X(k)‖p−ω B ‖X(k)‖p−ω;[s,T ] ≤ C‖V‖C2+k
b

exp
(
C‖V‖p

C2+k
b

(N(Z; [s,T ]) + 1)
)

and

(3.4)

‖X(k)‖∞ B ‖X(k)‖∞;[s,T ] ≤ |X(k)
s | + C‖Z‖p−var;[s,T ]‖V‖C2+k

b
exp

(
C‖V‖p

C2+k
b

(N(Z; [s,T ]) + 1)
)(3.5)

where C depends on p and k.
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3.2. Bounding higher variations of (2.4). In order to apply Theorem 3.1 to the rough
stochastic differential equation (2.4), we first rewrite it in Stratonovich form which leads
to the following hybrid Stratonovich-rough differential equation

dXt = [b(Xt) − a(Xt)] dt + σ(Xt) ◦ dBr + β(Xt)dWt

= b̂(Xt)dt + σ(Xt) ◦ dBr + β(Xt)dWt
(3.6)

where a(·) = 1
2
∑m

i=1 Dσi(·) · σi(·) is the Itô-Stratonovich correction, σi is the ith column
of σ and b̂(·) := b(·) − a(·). Equation (3.6) is now indeed of the form (3.1) if we set
V = (̂b, σ, β) : Rn → L(R1+m+d,Rn) and consider the joint (geometric) rough path lift Z of
t 7→ (t, Bt,Wt) =: (B̃t,Wt) obtained from the Stratonovich rough path lift of the Brownian
motion B̃ and W (recall that d is the dimension of W, m is the dimension of the Brownian
motion B). The lift Z is given as in (2.5), but BItô is substituted by the Stratonovich integral
BStr, cf. [13] for further details.

Applying the bounds of Theorem 3.1 to the solution of equation (3.6) with initial con-
dition Xt = x, we see that the expected value of the norm of the kth variation DkX is
bounded in terms of the moment generating function of N(Z; [t,T ]). In [13], such bounds
are provided considering the moment generating function of ‖Z‖2p−var. The following is a
version of [13, Corollary 23], which differs in two respect: first, we consider the moment
generating function of N(Z; [t,T ]) instead of N(Z; [t,T ])2, and secondly we try to make
the constants explicit (instead of only providing the existence of the exponential moment).

Lemma 3.2. Given 1
α
< p < 3 and δ > 0, we let

κp(δ,W) B E
[
exp

(
δ ‖Z‖2p−var;[t,T ]

)]
,

assuming that δ is small enough such that κ < ∞. Then for all λ > 0 we have the bound

(3.7) E
[
exp (λN(Z; [t,T ]))

]
≤ exp

21/pλ

[
log(2κp(δ,W)

δ

]p/2 +
√

2πλσe2λ2σ2
,

where σ B
√

T − t.

Proof. Choose K >

√
log κp(δ,W)

δ
and define

r0 B 21/pK p, a B 1 −
κp(δ,W)
exp(δK2)

, α B Φ−1(a),

where Φ denotes the c.d.f. of the standard normal distribution and we note that 0 < a < 1
by our conditions. The result follow from the Fernique type estimate in [13, Theorem 17],
which shows that

P (N(Z; [t,T ]) > r) ≤ 1 − Φ

(
α +

r
2σ

)
, r ≥ r0.

(The choice of constants follows from [13, Lemma 19, Theorem 20, Lemma 22, proof of
Corollary 23], for q = 1.) Using this estimate, the integration by parts formula

E
[
exp(λN(Z; [t,T ])

]
=

∫ ∞

0
P

(
N(Z; [t,T ]) >

1
λ

log x
)

dx

and the estimate 1 − Φ(x) ≤ 1
2 e−x2/2 (where the Gaussian tail estimate applies, i.e., for

r = 1
λ

log x ≥ r0) together with the trivial estimate of any probability by 1 (where the
estimate does not apply, i.e., for r = 1

λ
log x < r0), directly gives

(3.8) E
[
exp (λN(Z; [t,T ]))

]
≤ eλr0 +

√
π

2
σλ exp (2σλ(σλ − α)) × · · ·

· · · × erfc
(

1
√

2

(
α − 2σλ +

r0

2σ

))
.
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Note that K2 ≥ 1
δ

log(2κp) implies α ≥ 0. Using the trivial bound erfc ≤ 2, we further
obtain

E
[
exp (λN(Z; [t,T ]))

]
≤ e21/pλK p

+
√

2πσλe2λ2σ2
.

The right hand side is now minimized by K =

√
1
δ

log(2κp), which gives (3.7). �

Finally, we consider bounds for the derivatives of the solution u(t, x) of (2.1). For ease
of notation, we will formally only consider the case c ≡ 0, γ ≡ 0, i.e.,

u(t, x; W) = Et,x [
g(XT )

]
.

However, note that we do allow g and its derivatives to have exponential growth in what
follows, and it is thus easy to incorporate the general setting by extending the state space.
For this, we just need to add an additional component Yt solving

dYs = c(Xs)ds + γ(Xs)dWs, Yt = 0,

and consider
u(t, x; W) = Et,x [

g(XT ) exp(YT )
]
.

Corollary 3.3. Let u(t, x,W) be as above. Assume that g is k-times differentiable and that
there are constants ζ1, ζ2 ≥ 0 such that

|Dlg(x)| ≤ ζ1eζ2 |x|

for all x ∈ Rn and l = 1, . . . , k. Assume that b̂, σ and β are bounded, (2 + k)-times
differentiable with bounded derivatives, and let K > 0 be a bound for their norms, i.e.

‖̂b‖C2+k
b
∨ ‖σ‖C2+k

b
∨ ‖β‖C2+k

b
≤ K.

Then there are constants C = C(p, k) and C1 = C1(p) such that

|∂k
xu(t, x,W)| ≤ Cζ1λeζ2(|x|+1)

(
1 +

√
(T − t)(ζ2C1 + C)K p

)
× exp

(ζ2C1 + C)K p

1 +

 log
(
2κp(δ,W)

)
δ


p/2

+ (T − t)(ζ2C1 + C)K p




where we use the same notation as in Lemma 3.2.

Proof. Recall that the solution Xt,x
v to

dXt,x
v = b̂(Xt,x

v ) dv + σ(Xt,x
v ) ◦ dBv + β(Xt,x

v ) dWv; Xt,x
t = x

equals the solution to

dXt,x
v = V(Xt,x

v ) dZv; Xt,x
t = x

where V = (̂b, σ, β) : Rn → L(R1+m+d,Rn) and Z denotes the joint geometric rough path lift
of v 7→ (v, Bv,Wv). Iterating the chain rule, we see that

∂k
xg(Xt,x

v ) =

k∑
l=1

∑
i1+...+il=k

λi1,...,ik (D
lg)(Xt,x

v )(Di1
x Xt,x

v ⊗ . . . ⊗ Dil
x Xt,x

v )

where 1 ≤ i1, . . . il ≤ k and λl1,...,ik are nonnegative integers which can be calculated explic-
itly (using e.g. Faà di Bruno’s formula). Thus we obtain

|∂k
xu(t, x)| = |E(∂k

xg(Xt,x
T ))| ≤

∑
λi1,...,ilζ1E

(
exp(ζ2|X

t,x
T |)|D

i1
x Xt,x

T | · · · |D
il
x Xt,x

T |
)
.

As in the proof of Theorem 3.1, one can see that there is a constant C1 depending only on
p such that

|Xt,x
T | ≤ |x| + N(Xt,x; [t,T ]) + 1 ≤ |x| + C1‖V‖

p
C2+k

b
(N(Z; [t,T ]) + 1) + 1.
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The bounds of Theorem 3.1 imply that

|Di1
x Xt,x

T | · · · |D
il
x Xt,x

T | ≤

(
1 + C‖Z‖p−var;[t,T ]‖V‖C2+k

b
exp

(
C‖V‖p

C2+k
b

(N(Z; [t,T ]) + 1)
))l

≤ 2k−1 + C‖Z‖lp−var;[t,T ]‖V‖
l
C2+k

b
exp

(
C‖V‖p

C2+k
b

(N(Z; [t,T ]) + 1)
)

for a constant C depending on p and k. Therefore, we see that there is a constant λ depend-
ing on k only such that

|∂k
xu(t, x)| ≤ ζ1λeζ2(|x|+1)E

(
exp

(
ζ2C1‖V‖

p
C2+k

b
(N(Z; [t,T ]) + 1)

))
+ Cζ1λeζ2(|x|+1) max

l=1,...,k
‖V‖l

C2+k
b

E
(
‖Z‖lp−var;[t,T ] exp

(
(ζ2C1 + C)‖V‖p

C2+k
b

(N(Z; [t,T ]) + 1)
))
.

We use [15, Lemma 4, Lemma 1 and Lemma 3] to see that for every l = 1, . . . , k,

(‖V‖C2+k
b
‖Z‖p−var;[t,T ])l ≤ exp(k‖V‖p

C2+k
b

(2N(Z; [t,T ]) + 1)).

This implies that

|∂k
xu(t, x)| ≤ Cζ1λeζ2(|x|+1)E

(
exp

(
(ζ2C1 + C)‖V‖p

C2+k
b

(N(Z; [t,T ]) + 1)
))
.

Now we use Lemma 3.2 to obtain the bound

Cζ1λeζ2(|x|+1)E
(
exp

(
(ζ2C1 + C)‖V‖p

C2+k
b

(N(Z; [t,T ]) + 1)
))

≤ Cζ1λe
ζ2(|x|+1)+(ζ2C1+C)‖V‖p

C2+k
b E

(
exp

(
(ζ2C1 + C)‖V‖p

C2+k
b

(N(Z; [t,T ]))
))

≤ Cζ1λeζ2(|x|+1)
(
1 +

√
2π(T − t)(ζ2C1 + C)‖V‖p

C2+k
b

)
× exp

(ζ2C1 + C)‖V‖p
C2+k

b

1 + 21/p

 log
(
2κp(δ,W)

)
δ


p/2

+ 2(T − t)(ζ2C1 + C)‖V‖p
C2+k

b




and our claim follows. �

4. Regression

From the numerical point of view it is desirable to have a functional approximation for
the solution u, i.e., to have an approximation of the form

u(t, x) ≈
K∑

k=0

ak(t)ψk(x),(4.1)

for some natural K > 0, where (ψk(x)) are some simple basis functions and the coefficients
(ak(t)) depend only on t. Such an approximation can be then used to perform integration,
differentiation and optimization of u(t, x) in a fast way. In this section we are going to use
non-parametric regression to construct approximations of the type (4.1). First we turn to
the problem of approximating u(t, x) for a fixed t > 0 and then consider approximation of
the solution u in space and time. While the first problem can be solved using a simplified
version of linear regression called pseudo-regression, for the second task we need to use
general non-parametric regression algorithms.

4.1. Spacial resolution obtained by regression. The representation (2.6) implies,

(4.2) u(t, X0,x
t ) = EFt

[
g(Xt,X0,x

t
T )Y t,X0,x

t ,1
T

]
,



SOLVING LINEAR PARABOLIC ROUGH PARTIAL DIFFERENTIAL EQUATIONS 11

where (Fs)0≤s≤T denotes the filtration generated by B. (Recall the notation introduced in
Remark 2.3.) From (2.9) we observe that for s ≥ t,

Y t,X0,x
t ,1

s = exp
[∫ s

t
c
(
Xt,X0,x

t
r

)
dr + γ>

(
Xt,X0,x

t
r

)
dWr

]
= exp

[∫ s

t
c
(
X0,x

r

)
dr + γ>

(
X0,x

r

)
dWr

]

=
exp

[∫ s
0 c

(
X0,x

r

)
dr + γ>

(
X0,x

r

)
dWr

]
exp

[∫ t
0 c

(
X0,x

r

)
dr + γ>

(
X0,x

r

)
dWr

] =
Y0,x,1

s

Y0,x,1
t

.(4.3)

Due to (4.3), (4.2) yields

(4.4) u(t, X0,x
t ) = EFt

g(X0,x
T )

Y0,x,1
T

Y0,x,1
t

 .
We now aim at estimating u(t, x) for a fixed t, 0 ≤ t ≤ T, globally in x ∈ Rn, based on

the stochastic representation (4.4). Let us consider a random variableU ranging over some
domainD ⊂ Rn, with distribution µ. GivenU, we then consider the random trajectory(

X0,U
s ,Y0,U,1

s

)
0≤s≤T

,

which is understood in the sense that the Brownian trajectory B is independent of U. At
time s = 0 we sample i.i.d. copies U1, ...,UM of U. We then construct a collection of
“training paths”Dtr

M , consisting of independent realizations

(4.5) Dtr
M B

{(
X0,Um;m

s ,Y0,Um,1;m
s

)
0≤s≤T

| m = 1, . . . ,M
}
,

again based on independent realizations of the Brownian motion B. Next consider for a
fixed time t, 0 ≤ t ≤ T, the vector Y(t) ∈ RM , where

(4.6) Y(t)
m B g

(
X0,Um;m

T

) Y0,Um,1;m
T

Y0,Um,1;m
t

.

Now let ψ1, ..., ψK be a set of basis functions on Rn and define define a matrixM(t) ∈ RM×K

by
M

(t)
mk B ψk

(
X0,Um;m

t

)
,

In the next step we solve the least squares problem

(4.7) γ̂(t) B arg min
γ∈RK

1
M

M∑
m=1

Y(t)
m −

K∑
k=1

M
(t)
mkγk

2

=

((
M(t)

)>
M(t)

)−1 (
M(t)

)>
Y(t).

This gives an approximation

(4.8) û(t, x) = û(t, x;Dtr
M) B

K∑
k=1

γ̂(t)
k ψk(x)

of u. Thus, with one and the same sample (4.5) we may so get for different times t and
states x an approximate solution û(t, x). Let us first consider the particular case t = 0,where
we have

M
(0)
mk := ψk (Um) , Y(0)

m = g
(
X0,Um;m

T

)
Y0,Um,1;m

T

and then (4.7) reads

(4.9) γ̂(0) =
1
M

(
1
M

(
M(0)

)>
M(0)

)−1 (
M(0)

)>
Y(0).
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Instead of the inverted random matrix in (4.9) we may turn over to a so called pseudo-
regression estimator where the matrix entries[

1
M

(
M(0)

)>
M(0)

]
kl

=
1
M

M∑
m=1

ψk (Um)ψl (Um)

are replaced by their limits as M → ∞, i.e., by the scalar products

Gkl := 〈ψk, ψl〉 :=
∫
D

ψk (z)ψl (z) µ(dz).

That is, we may also consider the estimate

ũ(0, x) := ũ(0, x;Dtr
M) :=

K∑
k=1

γ̃(0)
k ψk(x) with(4.10)

γ̃(0) :=
1
M
G−1

(
M(0)

)>
Y(0).(4.11)

The interesting point is that in (4.10) we may freely choose both the initial measure, and
the set of basis functions. So by a suitable choice of basis functions (ψk) and initial measure
µ, we may arrange the matrix G to be known explicitly, or even that G = Id (the identity
matrix), thus simplifying the regression procedure significantly from a computational point
of view. Indeed, the cost of computing (4.7) in (4.8) is of order MK2 while the cost of
computing (4.11) is only of order MK.

It should be emphasized that the function estimates (4.8) and (4.10) are random as they
depend on the simulated training paths (4.5). In the next section we study mean-squares-
estimation errors in a suitable sense for the particular case (4.10), and for the general case
(4.8), respectively.

4.1.1. Error analysis. For the error analysis of the pseudo-regression method (4.10) we
could basically refer to Anker et al. [2], where pseudo regression is applied in the context of
global solutions for random PDEs. For the convenience of the reader, however, let us here
recap the analysis in condensed form, consistent with the present context and terminology.
For the formulation of the theorem and its proof below, let us abbreviate (cf. (4.6) and
(4.10))

V B g(X0,U
T )Y0,U,1

T , v(z) B u(0, z), ṽ(z) B ũ(0, z),

V(m) B g(X0,U(m);m
T )Y0,U(m),1;m

T , M BM(0), Y B Y(0), γ̃ B γ̃(0).

Theorem 4.1. Suppose that

|v(z)| ≤ A and Var [V|U = z] < σ2, for all z ∈ D,

0 < λmin ≤ λmin

(
GK

)
≤ λmax

(
GK

)
≤ λmax, for all K = 1, 2, ...,

where λmin

(
GK

)
, and λmax

(
GK

)
, denote the smallest, respectively largest, eigenvalue of

the positive symmetric matrix GK B
(
Gi j

)
1≤i, j≤K

. Then it holds,

(4.12) E
∫
D

|ṽ(z) − v(z)|2 µ(dz) ≤
λmax

λmin

(
σ2 + A2

) K
M

+

+ inf
w∈span{ψ1,...,ψK }

∫
D

|w(z) − v(z)|2 µ(dz).

Proof. Let vK be the projection of v on to the linear span of ψ1, . . . , ψK , i.e.,

(4.13) vK = arg inf
w ∈ span{ψ1,...,ψK }

∫
D

|w(z) − v(z)|2 µ(dz).
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Then, with γ◦ := (γ◦1, ..., γ
◦
K)> ∈ RK defined by

(4.14) vK =

K∑
k=1

γ◦kψk,

and α ∈ RK defined by αk := 〈ψk, v〉, it follows straightforwardly by taking scalar products
that

(4.15) γ◦ = G−1α.

By the rule of Pythagoras it follows that,

(4.16) E
∫
D

|ṽ(z) − v(z)|2 µ(dz) = E
∫
D

∣∣∣ṽ(z) − vK(z)
∣∣∣2 µ(dz) +

∫
D

∣∣∣vK(z) − v(z)
∣∣∣2 µ(dz).

With ψ := (ψ1, ..., ψK)> it holds by (4.15) that,

E
∫
D

∣∣∣ṽ(z) − vK(z)
∣∣∣2 µ(dz) =

∫
D

E
∣∣∣γ̃>ψ(z) − γ◦>ψ(z)

∣∣∣2 µ(dz)

=

∫
D

E

∣∣∣∣∣∣
(

1
M
Y>M− α>

)
G−1ψ(z)

∣∣∣∣∣∣2 µ(dz)

=

∫
D

E
[(

1
M
Y>M− α>

)
G−1ψ(z)ψ>(z)G−1

(
1
M
M>Y − α

)]
µ(dz)

= E
[(

1
M
Y>M− α>

)
G−1

(
1
M
M>Y − α

)]
,

since ∫
D

[
ψ(z)ψ>(z)

]
kl
µ(dz) = 〈ψk, ψl〉 = Gkl.

We thus have that

0 ≤ E
∫
D

∣∣∣ṽ(z) − vK(z)
∣∣∣2 µ(dz) ≤

1
λmin

E
∣∣∣∣∣ 1
M
M>Y − α

∣∣∣∣∣2 =
1
λmin

K∑
k=1

Var
[

1
M
M>Y

]
k
,

using that

E
[

1
M
M>Y

]
k

=
1
M

E
M∑

m=1

ψk(U(m))V(m)

= E
(
ψk(U(1))E

[
V(1)|U(1)

])
= 〈ψk, v〉 = αk.

Now, by observing that

Var
[

1
M
M>Y

]
k

= Var

 1
M

M∑
m=1

ψk(U(m))V(m)


=

1
M

Var
(
ψk(U(1))V(1)

)
=

1
M

E Var
[
ψk(U(1))V(1)|U(1)

]
+

1
M

Var E
[
ψk(U(1))V(1)|U(1)

]
=

1
M

E
(
ψ2

k(U(1))Var
[
V(1)|U(1)

])
+

1
M

Varψk(U(1))v
(
U(1)

)
≤
σ2 + A2

M
GK

kk,

one has
1
λmin

K∑
k=1

Var
[

1
M
M>Y

]
k
≤
σ2 + A2

Mλmin
tr

(
GK

)
≤
σ2 + A2

Mλmin
Kλmax,
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and then (4.12) follows. �

4.2. Spatio-temporal resolution obtained by regression. If we want to approximate
u(t, x) in space and time, we can perform regression on a given set of trajectories for dif-
ferent time points t. Let us fix a time grid (t1, . . . , tL) with 0 < t1 < t2 < . . . < tL < T and
consider regression problems

γ̂(l) B arg min
γ∈RK

1
M

M∑
m=1

Y(l)
m −

K∑
k=1

M
(l)
mkγk

2

(4.17)

=

((
M(l)

)>
M(l)

)−1 (
M(l)

)>
Y(l), l = 1, . . . , L,

where
M

(l)
mk B ψk

(
X0,Um;m

tl

)
and

Y(l)
m B g

(
X0,Um;m

T

) Y0,Um,1;m
T

Y0,Um,1;m
tl

, l = 1, . . . , L.

This would give us a decomposition

û(tl, x) = û(tl, x;Dtr
M) B

K∑
k=1

γ̂(l)
k ψk(x), l = 1, . . . , L.

of u. Furthermore, the coefficients γ̂(l)
k can be interpolated to provide us with the approxi-

mation of the form (4.1). The convergence analysis of the estimates (4.17) is more involved
and follows from the general theory of non-parametric regression, see Section 11 in [19]
Assume that

(A1) maxl=1,...,L supz∈Rn Var
[
g(X0,U

T ) Y0,U,1
T

Y0,U,1
tl

∣∣∣∣∣ X0,U
tl = z

]
≤ σ2 < ∞,

(A2) maxl=1,...,L supx∈Rn |u(tl, x)| ≤ A < ∞,

for some positive constants σ and A. Then we denote by u a truncated regression estimate,
which is defined as follows:

u(t, x) B TAû(t, x) B

̂u(t, x) if |̂u(t, x)| ≤ A,
A sgn û(t, x) otherwise.

Under (A1)–(A2) we have the following L2-upper bound (see Theorem 11.3 in [19])

E‖u(tl, ·) − u(tl, ·)‖2L2(PXtl
) ≤ c̃

(
σ2 + A2(log M + 1)

) K
M

(4.18)

+8 inf
f∈span{ψ1,...,ψK }

‖u(tl, ·) − f (·)‖2L2(PXtl
),

for all l = 1, . . . , L, where c̃ > 0 is a universal constant. Note that the use of the measure
PXtl

in (4.18) is essential and PXtl
can not be in general replaced by an arbitrary measure µ

as in the case of pseudo-regression algorithm.
Instead of linear regression, we could use a nonlinear one. Let us fix a nonlinear class

of functions ΨM and define

û(tl, x) = arg min
ψ∈ΨM

1
M

M∑
m=1

(
Y(tl)

m − ψ
(
X0,Um;m

tl

))2
.

Under a stronger assumption that |Y(tl)| ≤ A with probability 1 for all l = 1, . . . , L and a
constant A > 0, we get (see Theorem 11.5 in [19])

E‖u(tl, ·) − u(tl, ·)‖2L2(PXtl
) ≤

(
c1 + c2 log M

) VΨM

M
(4.19)

+2 inf
f∈ΨM
‖u(tl, ·) − f (·)‖2L2(PXtl

),
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for all l = 1, . . . , L,where the constants c1, c2 depend on At, VΨM is the Vapnik-Chervonenkis
dimension of ΨM and u is a truncated version of û. The advantage of using nonlinear classes
consists in their ability to significantly reduce the approximation errors inf f∈ΨM ‖u(tl, ·) −
f (·)‖2L2(PXtl

), while keeping the complexity VΨM comparable to the linear classes. One pop-

ular choice of ΨM is neural networks.

4.3. Rates of convergence. There are several ways to choose the basis functions ψ1, . . . , ψK .
In this section we consider the so-called piecewise polynomial partitioning estimates and
present L2-upper bounds for the corresponding projection errors

(4.20) inf
f∈span{ψ1,...,ψK }

‖u(t, ·) − f (·)‖2L2(%) =: ‖u(t, ·) − u(t, ·)‖2L2(%),

for some fixed t ≥ 0 and some generic measure % on Rn. For instance, in (4.18) t and %
may taken to be tl and PXtl

, l = 1, ..., L, respectively, and in (4.12) we may take t = 0
and % equal to µ. The piecewise polynomial partitioning estimate of u works as follows:
We fix some q ∈ N that denotes the maximal degree of polynomials involved in our ba-
sis functions. Next fix some R > 0 and a uniform partition of [−R,R]n into S n cubes
C1, . . . ,CS n . That is, [−R,R] is partitioned into S subintervals with equal length. Further,
consider the set of basis functions ψ j,1, . . . , ψ j,cq,n with j ∈ {1, . . . , S n} and cq,n :=

(
q+n

n

)
such

that ψ j,1(x), . . . , ψ j,cq,n (x) are polynomials with degree less than or equal to q for x ∈ C j,
and ψ j,1(x) = . . . = ψ j,cq,n (x) = 0 for x < C j. Then we consider the least squares projection
estimate u(t, x) for x ∈ Rn, based on K = S ncq,n = O(S nqn) basis functions. Let us define
the operator Dα as

Dα f (x) :=
∂|α| f (x)

∂xα1
1 · · · ∂xαn

n
,

for any real-valued function f , α ∈ Nn
0 and |α| = α1 + . . .+αn. For r ∈ N0 and L f : Rn → R+

we say that a function f : Rn → R is (r + 1, L f )-smooth w.r.t. the (Euclidean) norm | · |
whenever, for all α with |α| =

∑n
i=1 αi = r and all R > 0, we have

|Dα f (x) − Dα f (y)| ≤ L f (x)|x − y|, x ∈ Rn, |y − x|∞ ≤ 1,

i.e., the function Dα f is locally Lipschitz with the Lipschitz function L f with respect to the
norm | · | on Rn. Let us make the following assumptions.

(A3) The function u(t, ·) is (q + 1, Lu)-smooth with∫
Rn

L2
u(x) %(dx) ≤ C2

u < ∞

for some constant Cu > 0.
(A4) It holds ∫

{|z|∞>R}
u2(t, z) %(dz) ≤ BνR−ν

for some ν > 0 all R > 0.
The following result holds.

Lemma 4.2. Suppose that (A3) and (A4) hold, then

‖u(t, ·) − u(t, ·)‖2L2(%) .
C2

u

[(q + 1)!]2n

(Rn
S

)2(q+1)

+ BνR−ν,(4.21)

where . stands for inequality up to an absolute constant.

Remark 4.3. Notice that the terms on the right-hand-side of (4.21) are of order

(4.22)
(R
S

)2(q+1)

+ R−ν,

provided that we only track R and S and ignore the remaining parameters, such as q and
κp(δ,W). Let us assume that both terms in (4.22) are of the same order. Then we get
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R = O(S
2(q+1)
ν+2(q+1) ) and thus R−ν = O(S −

2ν(q+1)
ν+2(q+1) ). Together with the fact that the overall number

of basis functions K is of order S n, we have R−ν = O(K−
2ν(q+1)

n(ν+2(q+1)) ). Thus there is a constant
D > 0 such that

‖u(t, ·) − u(t, ·)‖2L2(%) ≤
D
Kκ
.

with κ =
2ν(q+1)

n(ν+2(q+1)) .

The following result is based on Corollary 3.3 and gives sufficient conditions for (A3)
and (A4) to hold.

Corollary 4.4. Let u(t, x,W) be as above. Assume that g is q + 1-times differentiable (in
x) and that there are constants ζ1, ζ2 ≥ 0 such that

|Dlg(x)| ≤ ζ1eζ2 |x|(4.23)

for all x ∈ Rn and l = 1, . . . , q + 1. Assume that σ is bounded, (4 + q)-times differentiable
with bounded derivatives, b and β are bounded, (3 + q)-times differentiable with bounded
derivatives, and let K1 > 0 be a bound for their norms, i.e.

‖σ‖
C

3+q
b
∨ ‖̂b‖

C
3+q
b
∨ ‖β‖

C
3+q
b
≤ K1(4.24)

with b̂ denoting the Stratonovich corrected drift as given in (3.6). Suppose that∫
e2ζ2 |x|%(dx) < ∞,

then (A3) holds with

Cu ≤ D1 exp


 log

(
2κp(δ,W)

)
δ


p/2 + D2.

for some constants D1 = D1(q,K1, ζ1, ζ2) and D2 = D2(q,K1, ζ1, ζ2). Moreover, (A4) holds
for some ν > 0 and Bν depending on K1,T, ζ1, ζ2.

Using to the parameter allocations in Remark 4.3 we end up with the following conver-
gence rates for the regression procedures proposed in Section 4.1 and Section 4.2, respec-
tively.

Corollary 4.5. Suppose that the conditions (4.23) and (4.24) are satisfied. Moreover as-
sume that ∫

e2ζ2 |x|µ(dx) < ∞,

then under assumptions of Theorem 4.1, the latter reads,

E
∫
D

|ṽ(z) − v(z)|2 µ(dz) ≤ D3
K
M

+
D4

Kκ
,

for some constants D3,D4 > 0.

Corollary 4.6. Suppose that the conditions (4.23) and (4.24) are satisfied. Moreover as-
sume that ∫

e2ζ2 |x|PXtl
(dx) < ∞, l = 1, . . . , L,

then under assumptions (A1) and (A2)

E‖u(tl, ·) − u(tl, ·)‖2L2(PXtl
) ≤ D5(log M + 1)

K
M

+
D6

Kκ
,

for some constants D5,D6 > 0.
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5. Simplified Euler scheme for rough differential equations

For the computation of the optimal coefficients γ in (4.7) and (4.11) it is required to
construct the vector Y with components Ym defined in (4.6) that depends on paths of the
solution to equation (2.4). For that reason, we introduce an Euler scheme which allows us
to numerically solve (2.4).

As in Section 3, we consider the hybrid Stratonovich-rough differential equation with
0 ≤ t ≤ r ≤ T :

(5.1) dXt,x
r =

[
b(Xt,x

r ) − a(Xt,x
r )

]
dt + σ(Xt,x

r ) ◦ dBr + β(Xt,x
r )dWr, Xt,x

t = x,

where a(·) = 1
2
∑m

i=1 Dσi(·) ·σi(·) is the Itô-Stratonovich correction and σi is the ith column
of σ. Again, the above hybrid equation is defined as an RDE driven by the joint rough path
of B and W. This geometric joined rough path Zg is given as in (2.5) but BItô is substituted
by the Stratonovich integral BStr. Below, we set b̂(·) := b(·) − a(·) and V(·) :=

[
σ(·) β(·)

]
for the simplicity of the notation.

First of all, let t = r1 < r2 < . . . < rn̄ = T be an equidistant time grid with step size
h. In the numerical experiments later on the path W will be specified as a trajectory of a
fractional Brownian motion with Hurst index 1

3 < H ≤ 1
2 . For this situation the following

scheme provides a meaningful approximation X̄rk of Xt,x
rk :

X̄rk+1 = X̄rk + b̂(X̄rk )h +

3∑
`=1

1
`!

Vi1 . . .Vi` I(X̄rk )∆kZi1 . . .∆kZi` ,(5.2)

where Vi is the ith column of V , I(x) = x, ViV j(x) = DV j(x) Vi(x) and ∆kZi = Zi
rk+1
− Zi

rk
.

Notice that we use Einstein’s summation convention in (5.2) which we indicate by the
upper indices for the components of Z.

This simplified Euler scheme was first introduced in [11] and also investigated in [5].
In the following, we state a result from [5] on the strong order of convergence to (5.2).

Theorem 5.1. Let W be a d-dimensional, continuous, centered Gaussian process with
independent components. Moreover, we assume that each component W i, i ∈ {1, . . . , d},
has stationary increments with a concave variance function

σ2
i (τ) := E

∣∣∣W i
t+τ −W i

t

∣∣∣2 , t, τ ≥ 0,

where σ2
i (τ) = O

(
τ

1
ρ

)
as τ→ 0 for some ρ ∈ [1, 2). Let X be the solution to (5.1) and X̄ be

its approximation based on (5.2), where Zt =
(

Wt(ω)
Bt

)
for fixed ω ∈ Ω. Then, for almost all

paths of W and for any 1 ≤ p < ∞, there is a constant C̃ such that∣∣∣∣∣E max
k=1,...,n̄

∣∣∣Xrk − X̄rk

∣∣∣p∣∣∣∣∣ 1
p

≤ C̃h
1
ρ−0.5−δ,

where h is the time step of the Euler method and δ > 0 is arbitrary small.

Proof. This theorem is a consequence of [5, Theorem 1] together with [11, Theorem 1.1].
�

Remark 5.2.
• Theorem 5.1 covers the case of W being a fractional Brownian motion with Hurst

index 1
4 < H ≤ 1

2 ( 1
ρ

= 2H).
• An almost sure rate for the scheme in (5.2) is proved in [11, Theorem 1.1] in case

Z is a fractional Brownian motion.
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6. Numerical examples

We illustrate the methods by some numerical examples. First we study examples involv-
ing linear vector fields, for which the rough differential equation has an explicit solution.
This allows for easy comparison with a reliable reference solution. Later on, we consider
an example with non-linear vector fields without readily available reference values. All
examples take place in a two- or three-dimensional state space, and we assume that the
driving Brownian motion is one-dimensional (i.e., the PDE fails to be elliptic), whereas
the rough driver is two-dimensional in order to rule out trivial cases.

6.1. Numerical examples with linear vector fields. Let us investigate a particular ex-
ample for the RPDE (2.1). We set c, γ ≡ 0 such that by Theorem 2.1 the corresponding
regular solution is simply represented by

(6.1) u(t, x; W) = E
[
g(Xt,x

T )
]
, (t, x) ∈ [0,T ] × Rn,

where Xt,x
· is the solution to (5.1) with initial time t and initial value x. Below, we from

now on assume that

(6.2) b(x) = Ax, σi(x) = Cix and β j(x) = N jx,

for i = 1, . . . ,m, j = 1, . . . , d, x ∈ Rn and where all coefficients A, Ci, N j are n×n matrices.

6.1.1. Explicit solutions to linear RDEs. We can find an explicit representation for the
resulting linear RDE (compare 5.1) by introducing the fundamental solution Φ to the linear
system. Using the Einstein convention, we formally define Φ as the Rn×n-valued process
satisfying

(6.3) Φr = I +

∫ r

0

A −
1
2

m∑
i=1

C2
i

 Φsds +

∫ r

0
CiΦs ◦ dBi

s +

∫ r

0
N jΦsdW j

s.

For t ≤ r we can easily see that the following identity holds:

ΦrΦ
−1
t = I +

∫ r

t

A −
1
2

m∑
i=1

C2
i

 ΦsΦ
−1
t ds +

∫ r

t
CiΦsΦ

−1
t ◦ dBi

s +

∫ r

t
N jΦsΦ

−1
t dW j

s.

Consequently, equation (5.1) with the linear coefficients (6.2) is represented as

(6.4) Xt,x
r = ΦrΦ

−1
t x, 0 ≤ t ≤ r ≤ T.

Case of commuting matrices. We now point out a case, in which Φ is given explicitly. Let
all matrices A, Ci and N j commute, then we have

(6.5) Φr = f (r, Bi
r,W

j
r ) := exp

(A − 1
2

m∑
i=1

C2
i )r + CiBi

r + N jW
j

r

 .
Using the classical chain rule for geometric rough paths

d f (r, Bi
r,W

j
r ) =

∂

∂t
f (r, Bi

r,W
j

r )dr +
∂

∂bi
f (r, Bi

r,W
j

r ) ◦ dBi
r +

∂

∂w j
f (r, Bi

r,W
j

r )dW j
r ,

we indeed see that f solves (6.3) taking into account that

(6.6) exp

 q∑
i=1

Ai

 =

q∏
i=1

exp (Ai) and A j exp (Ai) = exp (Ai) A j

for commuting matrices A1, . . . , Aq.
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Case of nilpotent matrices. We know from the above considerations that the fundamental
matrix Φ is given by (6.5) if all matrices commute, i.e., the rough path structure does
not enter the solution at all. For that reason, we investigate another case with an explicit
solution. Let us again look at the linear RDE which is of the form:

(6.7) dXr =

d1∑
i=1

AiXrdZg,i
r , r ∈ [t,T ],

where d1 = m + d, Zg is the geometric joint rough path of B and W, Ai = Ci, A j+m = N j

for i = 1, . . . ,m and j = 1, . . . , d. For simplicity, we assume to have a zero drift, i.e.,
A − 1

2
∑m

i=1 C2
i = 0.

The Chen-Strichartz formula, see [28], provides a general solution formula in terms of
a infinite series in the general case, involving higher order iterated integrals of the driving
rough path.3 For simplicity, we shall only provide the solution in the step-2 nilpotent case,
i.e., we assume that

(6.8) ∀i, j, l : [[Ai, A j], Al] = 0,

where [A, B] B AB − BA denotes the usual commutator of matrices.

Lemma 6.1. For 1 ≤ i , j ≤ d1 let

ai j
t,r B

1
2

∫ r

t
Zi

t,sdZ j
s −

1
2

∫ r

t
Z j

t,sdZi
s

denote the area swapped by the paths Zi and Z j, where the integrals are, of course, under-
stood in the sense of the rough path Zg. Then, we have

Xt,x
r = exp

 d1∑
i=1

AiZi
t,r −

∑
1≤i< j≤d1

[Ai, A j]a
i j
t,r

 x.

Remark 6.2. The unusual minus sign in Lemma 6.1 comes from the fact that the linear
vector field y 7→ −[A, B]y is the Lie bracket of the linear vector fields y 7→ Ay and y 7→ By.
In the more general formulation involving general vector fields, the minus sign above,
therefore, turns into a plus sign.

Sketch of proof of Lemma 6.1. Formally, suppose that the paths t 7→ Zi
t are actually smooth,

so that (6.7) can be replaced by the non-autonomous ODE

Ẋt = A(t)Xt, A(t) B
d1∑
i=1

AiŻi
t .

(Here, A(t) is considered a time dependent vector field.) The Chen-Strichartz formula
(also known as “generalized Baker-Campbell-Hausdorff-Dynkin formula”) [28, formula
(G.C-B-H-D)] involves n-fold Lie brackets of the vector fields A(s j) for different times s j,
j = 1, . . . , n. Note that

[A(s1), A(s2)](x) = −
∑

1≤i< j≤d1

(
Żi

s1
Ż j

s2 − Ż j
s1 Żi

s2

)
[Ai, A j] · x,

while all Lie brackets of terms involving two or more Lie brackets vanish. The result is
then obtained by inserting into the formula. �

3The Chen-Strichartz formula is usually given for the smooth case, but one can repeat the proof for the rough
case, see, for instance, [3] for the Brownian case in a free setting.
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6.1.2. Numerical example with commuting matrices. For the following numerical consid-
erations we now assume that m = 1, n = d = 2, T = 1 and g(x) = exp

(
−0.5 ‖x‖2

)
.

We specify the matrices in (6.2) of the linear system. We introduce a matrix V which
satisfies the property V−1 = V:

V =

− 1
√

2
1
√

2
1
√

2
1
√

2

 .
Using V , we then set

A = V
(
0.5 0
0 4.5

)
V =

(
2.5 2
2 2.5

)
, C1 = C = V

(
1 0
0 3

)
V =

(
2 1
1 2

)
,

N1 = V
(
0.5 0
0 1.5

)
V =

(
1 0.5

0.5 1

)
and N2 = V

(
3 0
0 1

)
V =

(
2 −1
−1 2

)
.

Due to their special structure, all these matrices commute. Furthermore, we observe that
A = 1

2C2 such that the drift is zero. Hence, the corresponding fundamental solution is of
the following simple form

Φr = V exp
((

1 0
0 3

)
Br +

(
0.5 0
0 1.5

)
W1

r +

(
3 0
0 1

)
W2

r

)
V

= V

exp
(
Br + 0.5W1

r + 3W2
r

)
0

0 exp
(
3Br + 1.5W1

r + W2
r

) V.

Inserting (6.4) into (6.1) with the above fundamental matrix and using numerical integra-
tion to estimate the expected value delivers an “exact” solution u of the underlying RPDE.
The goal of this section is to compare the exact solution with the solution that is obtained
from the pseudo-regression procedure from Section 4.

We conduct the experiments for two different paths of W (see Figure 1). In both cases
we choose W1 and W2 to be fixed paths of independent scalar fractional Brownian motions
with Hurst index H = 0.4.
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T
im

e
t

0

1
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−1
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0
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1

W 1(t)W 2(t)

T
im

e
t

Figure 1. Two paths of a fractional Brownian motion with Hurst index
H = 0.4.

Simulations for the first path (left picture in Figure 1). We compute a numerical approxima-
tion ũ of the RPDE solution u based on the pseudo-regression procedure, see Theorem 4.1,
where for every fixed t ∈ [0, 1] the approximation ũ(t, ·) is derived according to (4.10) and
(4.11). We start with the left driver in Figure 1. Within the numerical approximation we
encounter three different errors. The regression error itself depends on the number of basis
functions K and the number of samples M that we use to approximate the expected value
with respect to the probability measure µ of the initial data. In order to generate the paths
of (5.1) that we require for the regression approach, we need to apply the Euler scheme
from Section 5. The error in this discretization depends on the step size h which is our
third parameter.
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We choose µ to be the uniform measure on [0, 1]2 and zero elsewhere. Based on this
we choose Legendre polynomials on [0, 1]2 as an ONB (ψi)i=1,...,K of L2(R2, µ). To be more
precise, we consider the Legendre polynomials up to a certain fixed order p for every spatial
direction and then take into account the total tensor product between the basis functions of
different spatial variables, such that K = (p + 1)n.

In Figure 2 we plot the regression solution ũ on [0, 1]2 for three different time points.
Here, we use K = 36 Legendre polynomials, M = 106 samples and a step size h = 2−9 of
the Euler scheme (5.2). We observe in our simulations that ũ is a very good approximation
for the reference solution u for these fixed parameters. The plots for u look exactly as in
Figure 2. Since there is no visible difference between u and ũ, we omit the pictures for u.
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ũ
(t
,
·)

0

0.5

1

0

0.5

1

0

0.5

1

x1

x2

ũ
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Figure 2. Pseudo-regression solution ũ(t, ·), t = 0, 0.84, 0.99, of the
RPDE driven by the left path in Figure 1. The parameters are K = 36,
h = 2−9, M = 106.

Below, we investigate how sensitive the pseudo-regression approach is in every single
parameter. Therefore, we always fix two parameters and vary the remaining third one. All
the errors are measured in L2([0, 1]2), i.e., we compute ‖u(t, ·) − ũ(t, ·)‖L2([0,1]2), t ∈ [0, 1],
or the corresponding relative error. In Figure 3, the absolute and relative errors are shown
for different step sizes h = 2−7, 2−8, 2−9. If we compare the curves with the largest step size
with the ones having the smallest step size, we can see that there is a remarkable difference.
We observe that the error is most of the times twice and sometimes up to three time larger
when using a four times larger step size. This can lead to an relative approximation error
of more than 10%. This implies that a small step size h is recommended in order to ensure
a small error. This is not surprising since the order of convergence in h is worst out of all
parameters.
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Figure 3. Absolute and relative error between RPDE and pseudo-
regression solution. The parameters are K = 36, M = 106 and h =

2−7, 2−8, 2−9.
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Now we fix the number of basis functions and the step size of the Euler method. For
different numbers of samples M = 104, 105, 106, we find the errors in Figure 4. We see
that it does not really matter whether 106 or 105 samples are used, whereas 104 samples
are probably too few, since the relative error can be up to 9%.
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Figure 4. Absolute and relative error between RPDE and pseudo-
regression solution. The parameters are K = 36, M = 104, 105, 106

and h = 2−9.

It remains to analyze the error in the number of basis functions. In Figure 2, the solution
looks relatively flat, such that it is not surprising that the parameter K only plays a minor
role. Since there is barely a difference when varying K, we state the logarithmic errors in
Figure 5 for K = 16, 81. The error for K = 36 lies between the curves in Figure 5 and is
omitted because it would have been hard to distinguish between the plots if it would have
been included. Even in the logarithmic scale there is almost no difference in the errors.
Moreover, we observe that for most of the time points, an additional error is caused by
taking too many polynomials. Thus, the approach is not at all sensitive in the parameter K
for this problem with the left driving path in Figure 1. This is not true for every driving
path as the following experiment will show. Using the right path in Figure 1 as the driver
instead will lead to a much larger error if we choose the same parameters as before.
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Figure 5. Logarithmic absolute and relative error between RPDE and
pseudo-regression solution. The parameters are K = 16, 81, M = 106

and h = 2−9.

Simulations for the second path (right picture in Figure 1). We conduct a second experi-
ment with the same example as above. We only change the driving path, i.e., the left path
in Figure 1 is replaced by the right one. This leads to a very large relative L2-error for
M = 106, h = 2−9 and K = 36, see Figure 7. In the worst case (t = 0.48) the relative
error is almost 80%. The reason for this can be seen in Figure 6, where u(0.48, ·) (left) is
compared with ũ(0.48, ·) (right). The exact solution in this worst case is close to be a delta
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function which is generally hard to approximate. The pseudo-regression solution clearly
looks differently which shows that the parameter K depends on the underlying driving path.
If we increase the number of polynomials to K = 121, we can reduce the error in Figure 7
but still many more basis functions would be required to obtain a small relative error which
is still large at every time point, where u is close to be a delta function.
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Figure 6. Exact solution u(t, ·) (left) and pseudo-regression solution
ũ(t, ·) (right), t = 0.48, of the RPDE driven by the right path in Fig-
ure 1 (coefficients as in (6.2)). The regression parameters are K = 36,
h = 2−9, M = 106.
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ũ
(t
,·)
| L2 [0

,1
]2
/
|u(

t,
·)|

L
2 [0

,1
]2 K=36

K=121

Figure 7. Absolute and relative error between RPDE and pseudo-
regression solution with parameters M = 106, h = 2−9 and K = 36, 121.

6.1.3. Numerical example with nilpotent matrices. In Subsection 6.1.2 an example has
been considered that does not depend on the complete rough path but only on the path.
Therefore, we investigate another case, where still a reference solution can be derived but
this time it depends on the full rough path.

Let us consider an scenario that fits the framework (6.8). We set b, c, γ ≡ 0 in system
(2.1) with terminal time T = 1 and terminal value g(x) = exp

(
−0.5 ‖x‖2

)
. Moreover, we

define

(6.9) σ(x) = A1x, β1(x) = A2x and β2(x) = A3x,

where we assume m = 1, d = 2 and a three-dimensional space variable x ∈ R3. Again, by
Theorem 2.1, the solution to (2.1) has the following stochastic representation:

(6.10) u(t, x; W) = E
[
g(Xt,x

1 )
]
, (t, x) ∈ [0, 1] × R3,
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where Xt,x
1 satisfies the RDE

(6.11) dXr = A1XrdBr + A2XrW1
r + A3XrW2

r , Xt = x, r ∈ [t, 1].

Now we fix the coefficients such that (6.8) is fulfilled:

A1 =

0 0 1
0 0 0
0 0 0

 , A2 =

0 1 0
0 0 0
0 0 0

 , A3 =

0 0 0
0 0 1
0 0 0

 .
Notice that A2

1 = 0 implies that the Itô-Stratonovich correction term is zero in (6.11) such
that we automatically obtain a geometric driver in the equation. The driving path is again
a fractional Brownian motion with Hurst index H = 0.4. Now, since A1 commutes with
A2 and A3 it can be seen that [A1, A2] = [A1, A3] = 0. Furthermore, we observe that
[A2, A3] = A1 which by Lemma 6.1 leads to the following solution representation:

Xt,x
r = exp

(
A1(Bt,r − a12

t,r) + A2W1
t,r + A3W2

t,r

)
x,

where the term

a12
t,r =

1
2

(∫ r

t
W1

t,sdW2
s −

∫ r

t
W2

t,sdW1
s

)
is approximated numerically by using piece-wise linear approximations to W1 and W2 on
a very fine time grid. Consequently, we have

Xt,x
r = exp

(
0 W1

t,r Bt,r−a12
t,r

0 0 W2
t,r

0 0 0

)
x =: exp

(
Dt,r

)
x.

The matrix Dt,r is nilpotent with index 3, so that exp
(
Dt,r

)
= I + Dt,r + 1

2 D2
t,r which then

leads to

Xt,x
r =

(
1 W1

t,r Bt,r−a12
t,r +0.5W1

t,rW2
t,r

0 1 W2
t,r

0 0 1

)
x.

Inserting this into (6.10) and estimating the expected value with numerical integration pro-
vides the exact solution u of the underlying RPDE.

The probability measure within the regression approach has the same structure as before
but it is now defined on R3, i.e., we choose µ to be the uniform measure on [0, 1]3 and
zero elsewhere. So, the ONB of L2(R3, µ) is given by Legendre polynomials on [0, 1]3.
In Figure 8, the absolute and the relative error in L2([0, 1]3) between the exact and the
pseudo-regression solution is considered. The algorithm also works very well in this case
since the relative error is less than 1% for K = 64 basis polynomials, M = 106 samples
and a Euler step size of h = 2−9.
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Figure 8. Absolute and relative error between the RPDE with coeffi-
cients as in (6.9) and the pseudo-regression solution. The parameters are
K = 64, M = 106 and h = 2−9.
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The pseudo-regression ũ for several fixed time points is illustrated in Figure 9. In the
cubic domain the color represents the corresponding function value of ũ(t, ·) which is rela-
tively large if the color is red and relatively small if the color is blue. We omit the plots for
the exact solution since there is no visible difference to the regression solution.

Figure 9. The pseudo-regression solution ũ(t, ·), t =

0, 0.14, 0.43, 0.61, 0.78, 0.99, of the RPDE driven a path of a fBm.
The parameters are K = 64, h = 2−9, M = 106.

We conclude this section by discussing an alternative to the pseudo-regression, that
is the stochastic regression, where an approximation û(t, ·) to u(t, ·) is derived based on
(4.7) instead of (4.11). Within the stochastic regression the Euler scheme (5.2) has to
be used only once, whereas we run (5.2) for every fixed t when computing the pseudo-
regression solution ũ(t, ·). Consequently, û can be computationally cheaper than ũ if the
Euler method is very expensive in terms of computational time. We determine the solution
of the stochastic regression û with the same paprameters as before and compare it with the
exact solution in Figure 10. In this context, we modify our basis, i.e., we use ψ̃i = gψi,
where ψi are again Legendre polynomials (i = 1, . . . ,K). This compensation is required
since ψi takes very large values outside [0, 1]3. Now, we evaluate the basis functions at
samples of the solution to (5.1) in order to compute M(t) in (4.7). Since the paths of the
solution to (5.1) leave [0, 1]3 quite frequently, we would encounter a very large variance
and hence a large error when using the non-modified basis. With the basis (ψ̃i)i=1,...,K we
see that the error in Figure 10 is relatively small but it is clearly larger than the error of the
pseudo-regression in Figure 8.

6.2. Numerical example with non-linear vector fields. We conclude the numerical sec-
tion with an example which has no reference solution. We start with a similar setting as in
Section 6.1, i.e., we assume that c, γ ≡ 0. Hence, the solution of the underlying RPDE is
given by the expected value in (6.1) but here non-linear vector fields enter equation (5.1).
We define them as follows:

(6.12) b(x) =
(

sin(x1+2x2)
sin(2x1+x2)

)
, σ(x) =

(
x1+sin(x2)

2x1+0.5 cos(x2)

)
, β(x) =

(
0.3 cos(x1+x2) 0.2(x1+x2)
sin(x2)−0.5x1 sin(x1 x2)−0.5x2

)
,
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û(
t,
·)|

L
2 [0

,1
]3
/
|u(

t,
·)|

L
2 [0

,1
]3

Figure 10. Absolute and relative error between the RPDE with coeffi-
cients as in (6.9) and the stochastic regression solution û. The parameters
are as in Figure 8, i.e., K = 64, M = 106 and h = 2−9.

where we suppose to have a scalar Brownian motion B (m = 1), a two-dimensional spaces
variable x =

( x1
x2

)
∈ R2 as well as a two dimensional rough path W (n = d = 2). Moreover,

the terminal time and the terminal value of the RPDE are T = 1 and g(x) = exp
(
−0.5 ‖x‖2

)
,

respectively. We fix the probability measure µ like in Subsection 6.1.2 such that the ONB
is again represented by Legendre polynomials on [0, 1]2. We apply the pseudo-regression
approach to this case and illustrate the resulting solution ũ in Figure 11 for K = 36, h = 2−8

and M = 106. Although there is no reference solution to determine the exact error, we
expect the approximation to be good because ũ is relatively flat in space and does not show
an extreme behavior like in Figure 6.
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Figure 11. The pseudo-regression solution ũ(t, ·), t =

0, 0.33, 0.57, 0.73, 0.87, 0.99, of the RPDE (vector fields as in (6.12))
driven by a path of a fBm with H = 0.4. The regression parameters are
K = 36, h = 2−8 and M = 106.
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Appendix A. Proof of Theorem 3.1

A.1. Controlled p-variation paths. Recall that a function

ω : {0 ≤ s ≤ t ≤ T } → [0,∞)

is called control if it is continuous, ω(t, t) = 0 for all t ∈ [0,T ] and if it is superadditive, i.e.

ω(s, u) + ω(u, t) ≤ ω(s, t)

for all s ≤ u ≤ t. Examples of a control include ω(s, t) = |t − s| or ω(s, t) = ‖Z‖pp−var;[s,t]
provided Z is a p-rough path. We say that the p-variation of Z is controlled by a control
function ω if |Zs,t |

p ≤ ω(s, t) holds for all s ≤ t. For arbitrary control functions, the quantity
Nα(ω; [s, t]) is defined exactly as in (3.2) by replacing ‖Z‖pp−var;[u,v] by ω(u, v).

The following definition generalizes the notion of a controlled path from Hölder- to
p-variation rough paths.

Definition A.1. Let U and W be normed spaces. Let Z : [0,T ] → U be a path whose
p-variation is controlled by a control function ω. We say that a path y : [0,T ] → W is
controlled by Z and ω if there exists a path y′ : [0,T ] → L(U,W) whose p-variation is
controlled by ω so that for Ry given implicitly by the relation

ys,t = y′sZs,t + Ry
s,t,

we have

‖Ry‖p/2−ω;[0,T ] B sup
0≤s<t≤T

|Ry
s,t |

ω(s, t)
2
p

< ∞.

We will usually not explicitly mention the control ω and just say that y is controlled by Z.
We denote by D p

Z ([0,T ],W) the space of controlled p-rough paths. We will call a function
y′ with the given property a Gubinelli-derivative of y (with respect to Z).

It is an (admittedly lengthy) exercise to show that all classical estimates proven for
Hölder rough paths can be generalized to p-rough paths and their controlled functions in
the sense above for p ∈ [2, 3) when replacing |t− s| by ω(s, t) in these estimates. Indeed, the
results follow by using an appropriate version of the Sewing Lemma for control functions
which was proven recently, even for discontinuous control functions, in [18, Theorem 2.2].
For instance, the corresponding results for rough integrals are summarized in the following
theorem.

Theorem A.2. Let U,W, Ŵ be finite dimensional vector spaces and Z = (Z,Z) be a p-
rough path with p-variation controlled by ω, p ∈ [2, 3). Let y ∈ D p

Z ([0,T ], L(W, Ŵ)) and
z ∈ D p

Z ([0,T ],W). Then∫ t

s
yu dzu = (IΞ)s,t , Ξu,v = yuzu,v + y′uz′uZu,v

exists as an abstract integral (cf. [14, Lemma 4.2 and p. 49 eq. (4.6)]), and there is a
constant C depending only on p such that the estimate∣∣∣∣∣∣

∫ t

s
yu dzu − yszs,t − y′sz

′
sZs,t

∣∣∣∣∣∣
≤ C

(
‖x‖p−ω;[s,t]‖Rz‖p/2−ω;[s,t] + ‖Z‖p/2−ω;[s,t]‖y′z′‖p−ω;[s,t]

)
ω(s, t)3/p

holds for every s < t. In particular, the map t 7→
∫ t

0 yu dzu is itself a controlled p-rough
path, both controlled by z with derivative y, and by Z with derivative yz′.

Proof. A combination of [14, Theorem 4.10 and Remark 4.11] generalized to p-rough
paths. �
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In the next lemmas, we prepare some estimates for rough integrals and solutions to
rough differential equations we are going to use at the end of this section. In the following,
U,W, Ŵ,W1,W2, . . . will denote finite dimensional vector spaces, and Z will be a fixed
weakly geometric p-rough path, p ∈ [2, 3), with values in U ⊕ (U ⊗ U), controlled by a
control function ω. C ≥ 0 will denote a generic constant whose actual value may change
from line to line and which might depend on the parameters specified before.

Lemma A.3. Let V : W → L(U,W) and let y : [0,T ]→ W be a solution to

yt = x +

∫ t

0
V(ys) dZs.(A.1)

Assume that

‖y‖p−ω ∨ ‖Z‖p−ω ≤ 1 and ‖V‖C2
b
≤ 1.

Then there are constants C and α depending only on p such that

‖Ry‖p/2−ω ≤ C(1 + Nα(ω; [0,T ])).

Proof. For α > 0, set

‖Ry‖p/2−ω;α := sup
0≤s<t≤T ;|t−s|≤α

|Ry
s,t |

ω(s, t)2/p .

Choose s < t such that ω(s, t) ≤ α. Then we have, using the estimate in Theorem A.2,

|Ry
s,t | =

∣∣∣∣∣∣
∫ t

s
V(yu) dZu − V(ys)Zs,t

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ t

s
V(yu) dZu − V(ys)Zs,t − DV(ys)V(ys)Zs,t

∣∣∣∣∣∣ + |DV(ys)V(ys)Zs,t |

≤ Cα1/pω(s, t)2/p(‖Ry‖p/2−ω;α + ‖DV(y·)V(y·)‖p−ω) + ω(s, t)2/p.

Using boundedness of V and its derivatives, one can check that

‖DV(y·)V(y·)‖p−ω ≤ C‖y‖p−ω ≤ C.

Hence we obtain

‖Ry‖p/2−ω;α ≤ Cα1/p‖Ry‖p/2−ω;α + C.

Choosing α such that Cα1/p ≤ 1/2, we obtain

‖Ry‖p/2−ω;α ≤ 2C.

Now choose (τn) such that 0 = τ0 < τ1 < . . . < τN < τN+1 = T with ω(τi, τi+1) ≤ α
and N = Nα(ω; [0,T ]). Let s < t be arbitrary. Choose i and j such that s ∈ [τi−1, τi) and
t ∈ (τ j, τ j+1]. Then

|Ry
s,t |

ω(s, t)2/p ≤ ω(s, t)−2/p(|Ry
s,τi | + |R

y
τi,τi+1 | + . . . + |Ry

τ j,t |

+ |V(yτi ) − V(ys)||Zτi,τi+1 | + . . . + |V(yτ j ) − V(ys)||Zτ j,t |
)

≤
|Ry

s,τi |

ω(s, τi)2/p + . . . +
|Ry
τ j,t |

ω(τ j, t)2/p +
|V(yτi ) − V(ys)||Zτi,τi+1 |

ω(s, τi)1/pω(τi, τi+1)1/p + . . . +
|V(yτ j ) − V(ys)||Zτ j,t |

ω(s, τ j)1/pω(τ j, t)1/p

≤ 2C(Nα(ω; [0,T ]) + 1) + C(Nα(ω; [0,T ]) + 1). �

Lemma A.4. Let y be a solution to (A.1). Consider

ζt = ζ0 +

∫ t

0
ν(ys)(dZs)zs ∈ L(Ŵ,W)
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where ν : W → L(U, L(W1,W)) is bounded, twice differentiable with bounded derivatives
and z : [0,T ]→ L(Ŵ,W1) is controlled by Z. Assume that

‖y‖p−ω ∨ ‖Z‖p−ω ≤ 1 and ‖ν‖C2
b
≤ 1.

Then there is a constant C and some α > 0 depending on p such that

‖ζ‖p−ω;[s,t] ≤ Cω(s, t)2/p
(
‖z‖∞;[s,t](1 + Nα(ω; [0,T ])) + ‖z‖∞;[s,t] + ‖z′‖∞;[s,t]

+ ‖z‖p−ω;[s,t] + ‖z′‖p−ω;[s,t] + ‖Rz‖p/2−ω;[s,t]

)
+ Cω(s, t)1/p(‖z‖∞;[s,t] + ‖z′‖∞;[s,t]) + C‖z‖∞;[s,t]

and

‖Rζ‖p/2−ω;[s,t] ≤ Cω(s, t)1/p
(
‖z‖∞;[s,t](1 + Nα(ω; [0,T ])) + ‖z‖∞;[s,t] + ‖z′‖∞;[s,t]

+ ‖z‖p−ω;[s,t] + ‖z′‖p−ω;[s,t] + ‖Rz‖p/2−ω;[s,t]

)
+ C(‖z‖∞;[s,t] + ‖z′‖∞;[s,t])

for all s ≤ t.

Proof. Note first that the path t 7→ yt is controlled by Z, and the path t 7→ ν(yt)zt ∈

L(U, L(Ŵ,W)) is controlled by Z as composition with a smooth function [14, Lemma 7.3].
Moreover, its Gubinelli derivative is given by

(ν(yt)zt)′ = (ν(yt))′zt + ν(yt)z′t = Dν(yt)(y′t)zt + ν(yt)z′t = Dν(yt)V(yt)zt + ν(yt)z′t

where we used (p-variation versions of) [14, Lemma 7.3] in the first and second equality
and [14, Theorem 8.4] in the third. We start to prove the claimed estimate for Rζ . The
Gubinelli derivative of ζ is given by ζ′t = ν(yt)zt and

Rζ
s,t =

∫ t

s
ν(yu)(dZu)zu − ν(ys)(zs)Zs,t.

Hence we can estimate

|Rζ
s,t | ≤

∣∣∣∣∣∣
∫ t

s
ν(yu)(dZu)zu − ν(ys)(zs)Zs,t − (ν(ys)zs)′Zs,t

∣∣∣∣∣∣ +
∣∣∣Dν(ys)V(ys)zsZs,t + ν(ys)z′sZs,t

∣∣∣
≤ C

(
‖Rν(y·)z·‖p/2−ω;[s,t] + ‖Dν(y·)V(y·)z·‖p−ω;[s,t] + ‖Dν(y·)z′·‖p−ω;[s,t]

)
ω(s, t)3/p

+ C(‖z‖∞;[s,t] + ‖z′‖∞;[s,t])ω(s, t)2/p

where we used Theorem A.2 and that V , ν and all its derivatives are bounded. We have

|Rν(y·)z·
s,t | = |ν(yt)zt − ν(ys)zs − (ν(ys))′zsZs,t − ν(ys)z′sZs,t |

≤ |(ν(yt) − ν(ys) − (ν(ys))′Zs,t)zt | + |ν(ys)(zt − zs − z′sZs,t)| + |(ν(ys))′(zt − zs)Zs,t |

≤ C(‖Rν(y·)‖p/2−ω;[s,t]‖z‖∞ + ‖Rz‖p/2−ω;[s,t] + ‖z‖p−ω;[s,t])ω(s, t)2/p

using (ν(ys))′ = Dν(ys)V(ys) and boundedness of the vector fields an their derivatives. As
in [14, Lemma 7.3], we can see that

‖Rν(y·)‖p/2−ω;[s,t] ≤ C
(
‖y‖2p−ω;[s,t] + ‖Ry‖p/2−ω;[s,t]

)
≤ C(1 + Nα(ω; [0,T ]))

where the second estimate follows from Lemma A.3. Thus

‖Rν(y·)z·‖p−ω;[s,t ≤ C(‖z‖∞(1 + Nα(ω; [0,T ])) + ‖Rz‖p/2−ω;[s,t] + ‖z‖p−ω;[s,t]).

Using the Lipschitz bounds for V , ν and its derivatives, we can easily see that

‖Dν(y·)V(y·)z·‖p−ω;[s,t] ≤ C(‖z‖∞;[s,t] + ‖z‖p−ω;[s,t]) and

‖Dν(y·)z′·‖p−ω;[s,t] ≤ C(‖z′‖∞;[s,t] + ‖z′‖p−ω;[s,t]).
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Therefore, we find that

‖Rζ‖p/2−ω;[s,t] ≤ Cω(s, t)1/p(‖z‖∞;[s,t](1 + Nα(ω; [0,T ])) + ‖z‖∞;[s,t] + ‖z′‖∞;[s,t]

+ ‖z‖p−ω;[s,t] + ‖z′‖p−ω;[s,t] + ‖Rz‖p/2−ω;[s,t]
)

+ C(‖z‖∞;[s,t] + ‖z′‖∞;[s,t]).

For ζ, we have

|ζs,t |

ω(s, t)1/p ≤ ω(s, t)1/p |Rζ
s,t |

ω(s, t)2/p +
|ν(ys)(zs)Zs,t |

ω(s, t)1/p

≤ ω(s, t)1/p‖Rζ‖p/2−ω;[s,t] + C‖z‖∞;[s,t]

for all s < t and the claim follows. �

Lemma A.5. Let A : [0,T ] → L(U, L(W,W)) be controlled by Z, and let Z be weakly
geometric. Consider a solution Φ : [0,T ]→ L(W,W) to

Φt = Φ0 +

∫ t

0
A(s)(dZs)Φs ∈ L(W,W).

Then Liouville’s formula holds:

det(Φt) = det(Φ0) exp
(
Tr

∫ t

0
A(s) dZs

)
.

In particular, if det(Φ0) , 0, Φt is invertible for every t ≥ 0. In this case, the inverse
Ψt := Φ−1

t solves the equation

Ψt = Φ−1
0 −

∫ t

0
ΨsA(s)(dZs) ∈ L(W,W).

Proof. Assume first that Z is smooth. In this case, Liouville’s formula is well-known, cf.
[1, (11.4) Proposition]. The statement about Ψ follows from the identity

dΦ−1
t

dt
= −Φ−1

t
dΦt

dt
Φ−1

t ,

which is true for matrices depending smoothly on t. The general case follows by approxi-
mation of Z with smooth rough paths and continuity of the rough integral. �

Lemma A.6. Let y be a solution to (A.1). Consider a solution Φ : [0,T ]→ L(W,W) to

Φt = Φ0 +

∫ t

0
ν(yu)(dZu)Φu ∈ L(W,W)

where ν : W → L(U, L(W,W)) is bounded, twice differentiable and has bounded deriva-
tives. Assume that

‖y‖p−ω ∨ ‖Z‖p−ω ≤ 1 and ‖ν‖C2
b
≤ 1.

Then Φ is controlled by Z and there are constants C and α > 0 depending on p such that

‖RΦ‖p/2−ω ≤ C(1 + |Φ0|) exp(CNα(ω; [0,T ])) and

‖Φ‖∞ + ‖Φ‖p−ω + ‖Φ′‖∞ + ‖Φ′‖p−ω ≤ C(1 + |Φ0|) exp(CNα(ω; [0,T ])).

The same estimate holds true for any solution Ψ : [0,T ]→ L(W,W) to

Ψt = Ψ0 −

∫ t

0
Ψuν(yu)(dZu) ∈ L(W,W)

when we replace Φ0 by Ψ0.
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Proof. Note that Φ is controlled by Z with derivative

(Φt)′ = ν(yt)Φt.(A.2)

Using boundedness of ν and its derivative and our assumptions on ω, this implies that

‖Φ′‖∞;[s,t] ≤ C‖Φ‖∞;[s,t] and ‖Φ′‖p−ω;[s,t] ≤ C(‖Φ‖p−ω;[s,t] + ‖Φ‖∞;[s,t])

for all s < t, therefore it is enough to bound Φ to obtain bounds for Φ′. Let K be a constant
such that

‖Φ‖p−ω;[0,T ] + ‖Φ‖∞;[0,T ] ≤ K.

Let α > 0 and choose s < t such that ω(s, t) ≤ α. Using Lemma A.4, we have for
sufficiently small α

‖RΦ‖p/2−ω;[s,t] ≤ Cα1/p‖RΦ‖p/2−ω;[s,t] + Cα1/pK(1 + Nα(ω; [0,T ])) + CK.

Choosing α smaller if necessary, we may assume that Cα1/p ≤ 1/2 and we therefore obtain

‖RΦ‖p/2−ω;[s,t] ≤ 2Cα1/pK(1 + Nα(ω; [0,T ])) + 2CK ≤ CK(1 + Nα(ω; [0,T ])).

Using the same strategy as at the end of the proof of Lemma A.3, we can conclude that

‖RΦ‖p/2−ω;[0,T ] ≤ CK(1 + Nα(ω; [0,T ]))2.

Using the results about linear rough differential equations in [15, Section 5], we see that
we can choose

K = C(1 + |Φ0|) exp(CNα(ω; [0,T ]))

and the claim follows for RΦ. The estimates for Φ can either be obtained by a direct
calculation similar to the one performed in Lemma A.4, but also follow from the results
proven for linear rough differential equations in [15, Section 5]. The estimates for Ψ can
be obtained in exactly the same way. �

Lemma A.7. Let y be a solution to (A.1). Let ζ : [0,T ]→ L(Ŵ,W) be of the form

ζt =

∫ t

0
ν̂(yu)(dZu )̂zu

for some ν̂ : W → L(U, L(W1,W)) and ẑ : [0,T ] → L(Ŵ,W1). Assume that ẑ is controlled
by Z. Consider

zt = Φt

(
z0 +

∫ t

0
Ψu dζu

)
, z0 ∈ L(Ŵ,W)

with Φ,Ψ as in Lemma A.6 where we assume in addition that Φ0 = Ψ0 = Id. Assume that

‖y‖p−ω ∨ ‖Z‖p−ω ≤ 1 and ‖̂ν‖C2
b
≤ 1.

Let κ ≥ 1 be a constant such that

‖̂z‖∞ + ‖̂z‖p−ω + ‖̂z′‖∞ + ‖̂z′‖p−ω + ‖R̂z‖p/2−ω ≤ κ.

Then z is controlled by Z and there are constants C > 0 and α > 0 depending only on p
such that

‖z‖∞ + ‖z‖p−ω + ‖z′‖∞ + ‖z′‖p−ω + ‖Rz‖p/2−ω

≤ Cκ(1 + |z0|)(1 + ω(0,T )1/p + ω(0,T )4/p) exp(CNα(ω; [0,T ])).

Proof. It is clear that z is controlled by Z, and the Gubinelli derivative is given by

z′t = Φ′t

(
z0 +

∫ t

0
Ψu dζu

)
+ Φt(Ψtζ

′
t ) = ν(yt)Φt

(
z0 +

∫ t

0
Ψu dζu

)
+ ν̂(yt )̂zt

= ν(yt)zt + ν̂(yt )̂zt

(A.3)
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where we used Theorem A.2, ζ′t = ν̂(yt )̂zt and the fact that Ψt = (Φt)−1. For s < t, we
therefore obtain

Rz
s,t = zs,t − z′sZs,t

= Φt

∫ t

s
Ψu dζu + Φs,tzs − ν(ys)(Zs,t)zs − ν̂(ys)(Zs,t )̂zs

= Φt

(∫ t

s
Ψu dζu − Ψsζs,t + ΨsR

ζ
s,t

)
+ ΦtΨsζ

′
sZs,t + Φs,tzs − Φ′sZs,tzs − ν̂(ys)(Zs,t )̂zs

= Φt

(∫ t

s
Ψu dζu − Ψsζs,t + ΨsR

ζ
s,t

)
+ RΦ

s,tzs + (Φt − Φs)Ψŝν(ys)(Zs,t )̂zs

and by the triangle inequality,

|Rz
s,t | ≤

∣∣∣∣∣∣Φt

(∫ t

s
Ψu dζu − Ψsζs,t + ΨsR

ζ
s,t

)∣∣∣∣∣∣ +

∣∣∣∣∣∣RΦ
s,t

(
z0 +

∫ s

0
Ψu dζu

)∣∣∣∣∣∣
+ |(Φt − Φs)Ψŝν(ys)(Zs,t )̂zs|.

(A.4)

For the first term on the right hand side in (A.4), we can use the estimate in Theorem A.2
to see that∣∣∣∣∣∣Φt

(∫ t

s
Ψu dζu − Ψsζs,t + ΨsR

ζ
s,t

)∣∣∣∣∣∣
≤ C‖Φ‖∞;[s,t]ω(s, t)2/p

(
(‖Rζ‖p/2−ω;[s,t] + ‖Ψ′ζ′‖p−ω;[s,t])ω(s, t)1/p + ‖Ψ′‖∞;[s,t]‖ζ

′‖∞;[s,t]

+ ‖Ψ‖∞;[s,t]‖Rζ‖p/2−ω;[s,t]

)
.

Note first that

‖Ψ′ζ′‖p−ω;[s,t] ≤ ‖Ψ
′‖p−ω;[s,t]‖ζ

′‖∞;[s,t] + ‖Ψ′‖∞;[s,t]‖ζ
′‖p−ω;[s,t]

and

‖ζ′‖∞ + ‖ζ′‖p−ω ≤ Cκ.

From Lemma A.4, it follows that

‖Rζ‖p/2−ω;[s,t] ≤ Cκ
(
ω(s, t)1/p(1 + Nα(ω; [0,T ])) + 1

)
.

Using the estimates for Φ and Ψ in Lemma A.6, we therefore obtain∣∣∣∣∣∣Φt

(∫ t

s
Ψu dζu − Ψsζs,t + ΨsR

ζ
s,t

)∣∣∣∣∣∣ ≤ Cκω(s, t)2/p(1 + ω(0,T )1/p + ω(0,T )2/p) exp(CNα(ω; [0,T ]))

for all s < t. For the second summand in (A.4), we can again use Theorem A.2 to estimate∣∣∣∣∣∣RΦ
s,t

(
z0 +

∫ s

0
Ψu dζu

)∣∣∣∣∣∣ ≤ Cω(s, t)2/p‖RΦ‖p/2−ω;[s,t]

×
(
|z0| + ω(0, s)3/p(‖Rζ‖p/2−ω;[0,s] + ‖Ψ′ζ′‖p−ω;[0,s])

+ ‖ζ‖∞;[0,s] + ω(0, s)2/p |̂z0|
)

using Ψ0 = Id, Ψ′0 = ν(y0) and ζ′0 = ν̂(y0 )̂z0. With Lemma A.4, we obtain

‖ζ‖∞;[0,s] ≤ ω(0,T )1/p‖ζ‖p−ω ≤ Cκ(ω(0,T )1/p + ω(0,T )3/p)(1 + Nα(ω; [0,T ])).

As above, we obtain the bound∣∣∣∣∣∣RΦ
s,t

(
z0 +

∫ s

0
Ψu dζu

)∣∣∣∣∣∣ ≤ Cκω(s, t)2/p(1 + |z0|)(1 + ω(0,T )1/p + ω(0,T )4/p) exp(CNα(ω; [0,T ]))
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for all s < t. For the third term in (A.4), we have

|(Φt − Φs)Ψŝν(ys)(Zs,t )̂zs| ≤ κω(s, t)2/p‖Φ‖p−ω;[s,t]‖Ψ‖∞;[0,s]

≤ Cκω(s, t)2/p exp(CNα(ω; [0,T ])).

Using all these estimates in (A.4), we can conclude that

‖Rz‖p/2−ω ≤ Cκ(1 + |z0|)(1 + ω(0,T )1/p + ω(0,T )4/p) exp(CNα(ω; [0,T ])).

We proceed with z. For s < t,

|zt − zs| ≤ |Φt |

∣∣∣∣∣∣
∫ t

s
Ψu dζu

∣∣∣∣∣∣ + |Φt − Φs|

∣∣∣∣∣z0 +

∫ s

0
Ψu dζu

∣∣∣∣∣
and as before, we obtain the estimate

‖z‖p−ω ≤ Cκ(1 + |z0|)(1 + ω(0,T )1/p + ω(0,T )4/p) exp(CNα(ω; [0,T ])).

Similarly,

‖z‖∞ ≤ Cκ(1 + |z0|)(1 + ω(0,T )1/p + ω(0,T )4/p) exp(CNα(ω; [0,T ])).

From (A.3), we see that

‖z′‖∞;[s,t] ≤ C(‖z‖∞;[s,t] + ‖̂z‖∞;[s,t])

and

‖z′‖p−ω;[s,t] ≤ C(‖z‖∞;[s,t] + ‖z‖p−ω;[s,t] + ‖̂z‖∞;[s,t] + ‖̂z‖p−ω;[s,t])

for all s < t, therefore the same estimates hold for z′. This proves the claim. �

Lemma A.8. Let z ∈ D p
Z ([0,T ], L(W,W1)) and ẑ ∈ D p

Z ([0,T ], L(Ŵ, Ŵ1)). Then z ⊗ ẑ ∈
D p

Z ([0,T ], L(W ⊗ Ŵ,W1 ⊗ Ŵ1)) with derivative

(z ⊗ ẑ)′s(u) = (z′su) ⊗ ẑs + zs ⊗ (̂z′su), u ∈ U

and remainder given by

Rz⊗̂z
s,t = zs,t ⊗ ẑs,t + Rz

s,t ⊗ ẑs + zs ⊗ R̂z
s,t.

Proof. Follows readily from a short calculation. �

Proof of Theorem 3.1. W.l.o.g, we may assume s = 0, otherwise we may replace Z by
the time-shifted rough path Zs+· and solve the corresponding equation. Existence of the
derivatives and their characterization as solutions to rough differential equations is a clas-
sical result, cf. [14, Section 8.9] and [17, Section 11.2]. It remains to prove the claimed
bounds for X(k). Let us first assume that ‖V‖C2+k

b
≤ 1/κ for some κ ≥ 1 and that ω̂ is some

control function for which

‖Z‖p−ω̂ ∨ ‖Xx‖p−ω̂ ≤ 1

holds (the precise choice of κ and ω̂ will be made later). We claim that in this case, there
are constants C, α and M depending on p and k such that

‖X(k)‖∞ + ‖X(k)‖p−ω̂ + ‖(X(k))′‖∞ + ‖(X(k))′‖p−ω̂ + ‖RX(k)
‖p/2−ω̂

≤ C(1 + ω̂(0,T )1/p + ω̂(0,T )M/p) exp(CNα(ω̂; [0,T ]))
(A.5)

holds. We prove the claim by induction. For k = 1, X(1)
t =: Φt solves

X(1)
t = Id +

∫ t

0
DV(Xx

s )(dZs)X(1)
s
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and the bound (A.5) follows from Lemma (A.6). Let k ≥ 2 and assume that our claim
holds for all l = 1, . . . , k − 1. It is easy to see that X(k) solves an inhomogeneous equation
of the form

X(k)
t = ζt +

∫ t

0
DV(Xx

s )X(k)
s dZs ∈ L((Rn)⊗k,Rn)(A.6)

where ζ : [0,T ]→ L((Rn)⊗k,Rn)) can be written as

ζt =
∑
2≤l≤k

i1+...+il=k

λi1,...,il

∫ t

0
DlV(Xx

s )(dZs)(X(i1)
s ⊗ · · · ⊗ X(il)

s ) =:
∫ t

0
ν̂(Xx

s )(dZs )̂zk
s,

the λi1,...,il being integers which can be explicitly calculated using the Leibniz rule. Note that
ẑk is controlled by Z by the induction hypothesis and Lemma A.8, therefore the integrals
are well defined. Moreover, the estimate (A.5) holds for ẑk instead of X(k) again by the
induction hypothesis and Lemma A.8. We also see that we can choose κ ≥ 1 depending
only on k to obtain ‖̂ν‖C2

b
≤ 1. The equation (A.6) can be solved with the variation of

constants method: making the ansatz X(k)
t = ΦtCt, Ct ∈ L((Rn)⊗k,Rn)), we can conclude

that X(k) can be written as

X(k)
t = Φt

∫ t

0
Φ−1

s dζs.

The claim (A.5) for X(k) now follows from Lemma A.7. We proceed with deducing the
bound (3.4) from (A.5). Note first that Xx also solves the equation

Xx
t = x +

∫ t

0
Ṽ(Xx

s ) dZ̃s

where Ṽ = V/(κ‖V‖C2+k
b

) and Z̃ = (κ‖V‖C2+k
b

Z, κ2‖V‖2
C2+k

b
Z). Clearly ‖Ṽ‖C2+k

b
≤ 1/κ, and

ω̂(s, t) := ‖Z̃‖pp−var;[s,t] + ‖Xx‖
p
p−var;[s,t] = κp‖V‖p

C2+k
b
‖Z‖pp−var;[s,t] + ‖Xx‖

p
p−var;[s,t]

is a valid choice for ω̂. Therefore, (A.5) holds for X(k) with this ω̂. Next, [15, Corollary 3]
implies that there is a constant depending on p such that

N1(Xx; [0,T ]) ≤ C(N1(Z̃; [0,T ]) + 1).

Together with [15, Lemma 4], this implies that

ω̂(0,T )1/p ≤ ‖Z̃‖p−var;[0,T ] + ‖Xx‖p−var;[0,T ] ≤ N1(Z̃; [0,T ]) + N1(Xx; [0,T ]) + 2

≤ C(N1(Z̃; [0,T ]) + 1) ≤ C exp(N1(Z̃; [0,T ])),

therefore also

ω̂(0,T )1/p + ω̂(0,T )M/p ≤ C exp(CN1(Z̃; [0,T ])).

From [15, Lemma 3] and [5, Lemma 5], we see that

Nα(ω̂; [0,T ]) ≤ 2Nα(Z̃; [0,T ]) + 2Nα(Xx; [0,T ]) + 2 ≤ C(N1(Z̃; [0,T ]) + 1)

for a constant C depending on α and p, and therefore on p only. Using these estimates,
(A.5) implies that there is a constant C depending on p and k such that

‖X(k)‖p−ω̂ ≤ C exp
(
CN1(Z̃; [0,T ])

)
holds. Using [15, Lemma 1 and Lemma 3], we see that

N1(Z̃; [0,T ]) ≤ κp‖V‖p
C2+k

b
(2N1(Z; [0,T ]) + 1)

which shows that

‖X(k)‖p−ω̂ ≤ C exp
(
C‖V‖p

C2+k
b

(N1(Z; [0,T ]) + 1)
)
.
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Note that for every s ≤ t, the estimate for Xx in [17, Theorem 10.14] implies that

ω̂(s, t) = ‖Z̃‖pp−var;[s,t] + ‖Xx‖
p
p−var;[s,t] ≤ ‖Z̃‖

p
p−var;[s,t] + C‖Z̃‖pp−var;[s,t](1 + ‖Z̃‖pp−var;[0,T ])

≤ Cκp‖V‖p
C2+k

b

(
1 + κp‖V‖p

C2+k
b
ω(0,T )

)
ω(s, t),

therefore

‖X(k)‖p−ω ≤ C‖V‖C2+k
b

(
1 + ‖V‖C2+k

b
ω(0,T )1/p

)
‖X(k)‖p−ω̂

and we can use again the estimates above to conclude (3.4). The estimate (3.5) just follows
from

‖X(k)‖∞ ≤ ‖X(k)‖p−ω‖Z‖p−var + |X(k)
0 |. �
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[11] Aurélien Deya, Andreas Neuenkirch, and Samy Tindel. A Milstein-type scheme without Lévy area terms
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2012.

[12] Joscha Diehl, Peter Friz, and Wilhelm Stannat. Stochastic partial differential equations: a rough paths view
on weak solutions via Feynman-Kac. Annales de la faculté des sciences de Toulouse Sér. 6, 26(4):911–947,
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[27] Étienne Pardoux. Filtrage non linéaire et équations aux dérivées partielles stochastiques associées. In Ecole
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