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Abstract. We consider the setting of estimating the mean of a random variable by a sequential
stopping rule Monte Carlo (MC) method. The performance of a typical second moment based
sequential stopping rule MC method is shown to be unreliable in such settings both by numerical
examples and through analysis. By analysis and approximations, we construct a higher moment
based stopping rule which is shown in numerical examples to perform more reliably and only slightly
less efficiently than the second moment based stopping rule.
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1. Introduction. Given i.i.d. random variables X7, Xs,... the typical way of
approximating their expected value p = E[X] using M samples is the sample average
M
— X;

We consider the objective of choosing M sufficiently large so that the error probability
satisfies

P(| X —p| > TOL) <6, (1.1)

for some fixed small constants TOL > 0 and 6 > 0. Clearly, P(| X — u| > TOL)
decreases as M increases, but at the same time the cost of computing X s increases.
From an application and cost point of view it is therefore of interest to derive theory
or algorithms that will give upper bounds on M satisfying (1.1) that are not far too
large. When a-priori information about the distribution of X is available, for example
if X is a bounded r.v. with an explicitly given bound, it is possible to derive good
theoretical upper bounds for M using Hoeffding type inequalities, cf. Hoeffding [7].
In the general case when no or little information of the distribution is given, little
theory is however known, and the typical way of estimating E[X] using a sufficiently
large number of samples M is through a sequential stopping rule. Below we give the
general structure of the class of sequential stopping rules we have in mind.
(I) Generate a batch of M i.i.d. samples X1, Xs,..., Xy/.
(IT) Infer distributive properties of X s from the generated batch of samples through
higher order sample moments, e.g. the sample mean and the sample variance.

*This work was supported by the King Abdullah University of Science and Technology (KAUST)
Strategic Research Initiative (SRI) Center for Uncertainty Quantification in Computational Science;
the Center for Industrial and Applied Mathematics (CIAM) at Royal Institute of Technology, KTH;
and Engineering and the VR project ”Effektiva numeriska metoder for stokastiska differentialekva-
tioner med tillampningar”. R. Tempone is a member of the KAUST SRI UQ Center.

TWeierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany (christian.bayer@wias-berlin.de).
tDivision of Mathematics, King Abdullah University of Science and Technology, Thuwal 23955-
6900, Kingdom of Saudi Arabia (hakon.hoel@kaust.edu.sa, raul.tempone@kaust.edu.sa).
§Department of Numerical Analysis and Computer Science, KTH, SE-100 44, Stockholm, Sweden.
TMATHICSE-CSQI, EPF de Lausanne, Switzerland (erik.vonschwerin@epfl.ch).

1



2 C. Bayer, H. Hoel, E. von Schwerin, and R. Tempone

(IIT) Based on the sample moments, estimate the error probability. When, based on
the estimated probability, (1.1) is violated, increase the number of samples M
and return to step (I).
Else, break and accept M.

Algorithm 1 Sample Variance Based Stopping Rule

Input: Number of samples M, accuracy TOL, confidence §, the cumulative dis-
tribution function of the standard normal distributed r.v. ®(z).
Output: X ;.

Set n = 0, generate M,, samples {Xi}f\i’i and compute the sample variance

M,
1 - -
Tar, = > (Xi — Xar,)”. 1.2
GMn Mn_lizl( 7 Mn) ( )

while 2(1 - @(MTOL/EAln)) > 4§ do
Set n=n+1and M, =2M,_;.
Cenerate a batch of M, i.i.d. samples {X;} 1.
Compute the sample variance 53, as given in (1.2).

end while

Set M = M, generate samples {X;}, and compute the output sample mean
X . (See Section 2 for a motivation of the choice of the stopping criterion in the
while loop above.)

Certainly the most natural and important representative of this class of algorithms
is given in Algorithm 1. The algorithm estimates the error probability by appealing
to the Central Limit Theorem (CLT). Consequently, it only relies on the sample
variance in addition to the sample mean. In particular, the algorithm only requires
mild additional assumptions on X, namely square integrability.

In the literature, various second moment based sequential stopping rules have
been introduced to estimate the steady-state mean of stochastic processes, see for
example Law and Kelton [10, 11] for comparisons of the performance of different
stopping rules and Bratley, Bennet, and Fox [2] for an overview. Second moment based
sequential stopping rules generally tend to perform well in the asymptotic regime when
TOL — 0. In fact, Chow and Robbins [3] proved that under very loose restrictions,
second moment based sequential stopping rules such as Algorithm 1 are asymptotically
consistent, meaning that for a fixed 6,

Télin—mpﬂXM —,u| > TOL) =0,
and in Glynn and Whitt [5] the consistency property is proven to hold for such stop-
ping rules applied to more general stochastic processes. In the non-asymptotic regime
—when TOL and § are finite — Hickernell et al. [6] recently developed a second moment
based MC method which guarantees to meet condition (1.1) under the assumption
that an upper bound is given for the kurtosis of the r.v. to be sampled prior to sam-
pling it. When no moment bounds are given prior to sampling, however, Bahadur
and Savage [1] proved that it is not possible to develop an algorithm guaranteed to
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meet condition (1.1). This is somewhat unsatisfactory as in applications the non-
asymptotic regime with little prior information on the r.v. is a setting we believe is
often encountered. While consistency is clearly a reassuring property in any case, in
many situations one is in dire need of quantitative estimates of the error probability
in the non-asymptotic regime, for instance when one tries to optimize the compu-
tational cost needed to meet a certain accuracy target using an adaptive algorithm.
We could not find such a quantitative, non-asymptotic analysis of sequential stopping
algorithms like Algorithm 1 in the literature.

In this work we demonstrate by numerical examples that second moment based
stopping rules can fail convincingly in the non-asymptotic regime, especially when
the underlying distribution X is heavy-tailed, see Section 2. We proceed by giving an
error analysis of Algorithm 1 specifically in the non-asymptotic regime. We note a-
priori that there are two obvious approximation errors in the underlying assumptions
of Algorithm 1:

(I) The algorithm appeals to the CLT to approximate the tail probabilities for X
even though M is finite.
(IT) In doing so, it uses the sample variance a3, instead of the true variance o2.

To get a hold on the error probability (1.1) despite the fact that the distribution
of the sample mean X j; is unknown, we again appeal to the central limit theorem,
but we adjust the estimate by adding a Berry-Esseen type term, which extends the
validity of the estimate to the non-asymptotic case, thereby dealing with the first
approximation error. As the error probability (1.1) is a tail probability for the dis-
tribution of the sample mean and the Berry-Esseen theorem itself is rather aimed at
being sharp at the center of the distribution, we appeal to non-uniform versions of
the Berry-Esseen theorem, see Theorem 1.1 and Corollary 1.2 below. However, both
intuition and numerical tests suggest that the approximation of the tail probabilities
by the non-uniform Berry-Esseen theorem is far too pessimistic at least when the
second approximation error is small, i.e., when the computed sample variance is ac-
tually close to the true variance. In this case, we adjust the normal distribution by
a less stringent extra term, which is obtained from an Edgeworth expansion of the
distribution function of the sample mean Xy, cf. Feller [4].!

Having identified possible origins of failure of Algorithm 1, we propose an im-
provement of Algorithm 1. However, this variant requires third and fourth sample
moments, see Section 4. Finally, in Section 5, we test the new algorithm numerically.
We find that the new stopping Algorithm 2 indeed satisfies the desired confidence
level § on the error probability (1.1) even when 6 < TOL.

As already discussed above, we need to approximate the unknown distribution of
a sample mean in a general, non-asymptotic regime. The uniform and non-uniform

INote that here we are introducing a gap in the analysis: the estimate based on the non-uniform
Berry-Esseen theorem is reliable in the sense that it always leads to an upper bound of the error prob-
ability (1.1). For the Edgeworth expansion, however, there might be situations when the true error
probability is underestimated, and, consequently, the accuracy target might still be missed. Numer-
ical evidence, however, suggests that the estimate obtained from solely relying on the non-uniform
Berry-Esseen theorem is usually by orders of magnitude too pessimistic. Apart from intrinsic reasons,
one reason might be that the constants known in the non-uniform Berry-Esseen theorems might be
far from being optimal. In the end, we think that the above compromise between Berry-Esseen type
estimations and estimations based on the Edgeworth expansion might be a good compromise which
retains the goal of reliably meeting the accuracy target — except maybe for very extreme situations
— while keeping a certain level of efficiency. We note, however, that it is also possible to construct
even more conservative stopping rules which are only based on the Berry-Esseen theorem.
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Berry-Esseen theorems provide quantitative bounds for the difference between the
true distribution of the sample mean and its asymptotic limit, namely the normal
distribution. The following Berry-Esseen bounds, which can be found in their clas-
sical formulations in Petrov [13], is here presented with the present optimal bound
constants.

THEOREM 1.1 (Uniform and Non-Uniform Berry-Esseen). Suppose X1, Xo, ...

3
are i.i.d. r.v. with E[X] =0, 0? = Var(X) and 8 = E[‘;I ] < 00. Then the following
uniform bound
1 & 0.429
Pl—=> Xi<uz|— ()] <0.3328- p+0.429
ovn P

NG

holds, cf. Shevtsova [14]. Furthermore, the following non-uniform bound holds
B

1 n
P<J\/ﬁ;Xi<x> — o(x) m»

¢f. Hickernell et al. [6], and the references therein. For the purpose of this work, it
will be useful to combine the uniform and non-uniform Berry-Esseen bound as follows.

COROLLARY 1.2 (Berry-Esseen). Suppose X1, Xo, ... are i.i.d. r.v. with E[X] =
0. Then

< 18.1139 -

Ln RS R CgE(z, B)
P(U\/ﬁ;XZ< ) d(x) gi\/ﬁ

where the bound function Cgg : R — [0, Cy] is defined by

Cgg(x, ) := min <0.3328 (B +0.429),18.1139 - 63> .
(1 +[=[")

In the asymptotic regime, the distribution of P(ﬁ Z?Zl X; < x) can be ex-
pressed by so called Edgeworth expansions. Here we present the one-term Edgeworth
expansion.

THEOREM 1.3 (Edgeworth expansion, cf. Feller [4] p. 541). Suppose X1, Xa, ...

are i.4.d. r.v. with o distribution which is not a lattice distribution and E[X] = 0,
0% = Var(X) and E[X?] < co. Then

1 & 2?2 — 1)e~*"/2 E[X?
P<a\/ﬁ;X1<x>—©(I)+( 6\/2)771 [03]+0<n*1/2),

uniformly for x € R.

2. Stopping rule failures. Suppose we seek to estimate ¢ = E[X] using Monte
Carlo simulation and we actually do know the variance o2 = Var(X). As before, our
objective is to achieve P(’YM — M’ > TOL) < ¢, for some fixed, small constants
TOL,§ > 0. The CLT motivates the stopping rule

G2 .02 L (2=0
M = TC(L)TLZ, Corr = @ 1<2), (2.1)
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which would exactly fulfill our objective (1.1) in the asymptotic regime M — co. Of
course, this conflicts with our choice (2.1) for M, since we treat § and TOL as finite
constants. However, we can still estimate the probability in (1.1) using Corollary 1.2
and obtain

§2<1¢<¢MZOL>>+2GE<VMTOLﬁ) 1

=2(1 — ®(Cerr)) + 2CBE(CoLT, B)

Cse(Cerr, B)
oCcrr

POXM—uM>ﬂnn—P<¢M*&é—#L>¢MTOL>

1
Vi

=542 TOL,

(2.2)
_E[X—ul?] . . .-
where 8 = ————. This means that in the worst case, the actual error probability
could be § + O (TOL) instead of 6.2 For instance, in situations where the statisti-
cal confidence in the result is more stringent than the accuracy so that § < TOL,
the asymptotically motivated choice of M in (2.1) could, granted the bound (2.2)
is sharp, fail to deliver the expected level of confidence. For most r.v. however, the
bound (2.2) is far too conservative, and one might ask whether it is reasonable to fear
underestimating the error probability in the fashion we have described. The following
numerical example shows the existence of r.v. for which the stopping rule (2.1) fails
in the non-asymptotic regime
EXAMPLE 2.1. The heavy-tailed Pareto-distribution has the probability distribu-
tion function

2.3
0 else, (23)

art z= (et e > g
(@) = { " fo=
where a, x,, € Ry are respectively the shape and the scale parameter. The moments
of E[X™] for the Pareto r.v. only exists for n < « and, supposing « > 2, its mean and
variance are given by

J)QO[
do* = ——"2
a1 "7 T o 2(a—2)

It is further easy to derive that for a Pareto r.v. with a =3+~ and 0 <y < 1,

B[1X - uf| .
p=— o0,
This implies that there exists r.v. for which the second summand of the bound (2.2)
can become arbitrary large. So for such r.v. the stopping rule (2.1) might fail. Let us
investigate by numerical approzimations. Considering the distribution with o = 3.1
(and x,, = 1), yields a heavy-tailed r.v. with known mean, variance and third moment.

2Note that Copr as defined in (2.1) grows only very slowly as & decreases, since we have Cort <
v/2log(6—1). So as a function of §, the factor in front of TOL is approximately constant.



6 C. Bayer, H. Hoel, E. von Schwerin, and R. Tempone

1.05
1.00
0.95
0.90
0.85
0.80

HEHEPEN
onvbO®O

=
o
N
=
o
-

TOL

Fic. 2.1. MC estimate using the stopping rule (2.1) for i.i.d. Pareto r.v. with parameters
o = 3.1 and xm, = 1. The quantity P(!YM - u| > TOL) /8 (blue line) is plotted for the settings
§(TOL) = TOL® with £ = 0.5 (top), £ =1 (middle), and £ =2 (bottom). The probability of failure
is estimated by py (TOL) = N1 vazl 1|?IVI(W7‘>*N|>TOL with N = 107, and the error bars for the

estimate of By by 1.96y/Pn (1 — Dy )/N. The stopping rule fails when P(| Xy — p| > TOL) /6 > 1.
We observe that the smaller § is relative to TOL, the larger is the probability of failure for the

stopping rule.

For a set of accuracies TOL € [0.0&02] and confidences § = TOL!, ¢ = 1 and 2
we have numerically approrimated P(|XM — u’ > TOL) < § using, in accordance
with (2.1), the stopping rule

_ C(%LTUZ
M= [ TOL?

The results, illustrated in Figure 2.1, show that when § < TOL, the sought confidence
is far from met.

The demonstrated stopping rule failure motivated us to study and develop ways of
constructing more reliable stopping rules. In Section 3, we first analyze the stopping
rule of Algorithm 1, and derive an approximate upper bound for the failure probability
expressed in terms of M, TOL and §. In Section 4, we develop a more reliable stopping
rule algorithm, which in addition to sampled second moments of the r.v. in question
also depends on sampled third and fourth moments. The paper is concluded with
numerical examples comparing the reliability and computational cost of Algorithm 1
with the stopping rule developed in Section 4.

3. Error analysis for Algorithm 1. Example 2.1 illustrate that for some
r.v. the stopping rule in Algorithm 1 does not meet the accuracy-confidence con-
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straint (1.1). To construct a more reliable stopping rule, penalty terms have to be
added to the stopping criterion in Algorithm 1. Some care should be taken to make
the penalty terms of the right size: if too large penalties are added, the new stopping
rule will be reliable but very inefficient, while if too small penalty terms are added,
the algorithm will of course be efficient but unreliable.

In this section, we first derive an approximate upper bound for the failure prob-
ability

P(|Xa — | > TOL|M) (3.1)

corresponding to the stopping rule of Algorithm 1 conditional on the (random) final
number of samples M. Clearly, the bound for (3.1) will also be a r.v. Using the
bound for (3.1), we thereafter construct reasonable penalty terms to be added to the
stopping criterion of our new stopping rule.

As a general idea, we are going to use a weighted average of one very reliable,
but typically overly pessimistic error bound based on the Berry-Esseen theorem, and
another error bound based on the Edgeworth expansion, which is typically too opti-
mistic. The (critical) choice of the weights is based on the following consideration:
If we have successfully estimated the variance of X to high accuracy, then we give
ourselves some leeway for the bias and choose the more optimistic bound. If, on the
other hand, we have already mis-estimated the variance o2, then we want to be highly
conservative in our conditional bias estimate. Thus, our first step towards an upper
bound for (3.1) is partitioning the probability (3.1) into two parts as follows

P(|YM — | > TOL‘M) - P(|YM — | > TOL‘M) P(\a%w —o? > 02/2’M>
+P(|Xn - uf > TOL‘M) P(jo%, - o?l < 02/2‘M> .
(3.2)

In the next step, we will use two different (asymptotic) error bounds for
P(|YM - p| > TOL‘M): a conservative one weighted by P(\E?VI — 02 > 02/2‘M)

and an efficient one weighted by P (|E?V[ —o?| <o?/ 2‘M ) To derive the conservative

error bound, we recall that in Algorithm 1 the samples used in the output estimate
X and for 7, are independent of the samples used to determine M. Keeping this
in mind, we derive the following approximate upper bound

P(|Xn — | > TOL|M) = P([X, — 4| > TOL)] _,,

;2(1—¢<\/M:OL> +CBE<\/M50L,5> L )

VM
(3.3)

Here the Berry-Esseen bound of Corollary 1.2 was used to derive the approximate
bound of the last line.
For the weighting factor, we obtain the following equality

P<|5?\4 —o?| > UQ/Q‘M) = P(|os — 0% > 0-2/2)’77,:JVI'
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Furthermore, using Chebycheff’s inequality for k-statistics to bound the variance of
the sample variance, cf. Keeping [9], we derive that

P<|E?V[ = 02/2’M) = P(|o2 — 0% > 0%/2)|

2 =22
lo? — 52| ]

n=M

2 K

‘74(1\/1 1+M) 2

= K
< = — .
=4 o 4(M—1+M>

ol

§4El

n=M
Here k denotes the kurtosis, i.e.,

L BlIX—plf]

1 3.

g

More generally, we might consider Markov’s inequality for a different p than two — for
instance, because the kurtosis fails to be finite. Then we can use

E[[a3, —o*" | M]
o2p '

P(|&‘§V, — 2> 02/2’1\4) <or

In particular, we are free to choose p < 2, if the fourth moment of the distribution
might not exist. We conclude that

_ ) 2 K 2Pt _ p
P(|0?M—02| ZJQ/Q‘M) <m1n{1, 4 (M— 1 —|—M> ,%E“g?w_gﬂ 1 M} ,
9Pn L -
...,U2an[|0M—J| M}
=:Cp(2,p1,...,0n; M),
(3.4)
for some finite sequence p1,...,p, > 0, with the natural interpretation of x = oo, if

fourth moments do not exist.
Next, we come to the optimistic bound of the error probability

P(|Xa — | > TOL|M)

based on the Edgeworth expansion given in Theorem 1.3. The mild penalty obtained
in this way is of the form

P(|Xa — u| > TOL|M)
_ P(\/ﬁ’Xn_/‘} > \/ETOL>

g g

MTOL? MTOL?
‘0_7 - ].’ exp —0_7 _ 3
<9 1(I)<\/M3“OL>+ : (—2292) B [(x - )|

6vV2rM o3

Combining (3.3), (3.4) and (3.5), and noting that for all x € R} and n € N,

2 1] [B[X — ]

oo 3 < CgE(z, B)

L
v
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we obtain the following approximate bound for failing to meet the accuracy of Algo-
rithm 1 conditioned on the stopped number of samples M:

P(|Xx 4| > TOL|M) £ 2 <1 _y <m>> +
g

vVMTOL 1
+20 , (2, p1s o M

‘M_1‘ B[(X — ]|

o2

* exp (MTOL ) x 3V2rMo3

(1=Cp(2,p1,...,pn; M)).
(3.6)

REMARK 3.1. The bound from equation (3.6) is exact up to the higher order
terms coming from the Edgeworth expansion. Note that 1 — Cp(2,p1,...,pn; M) is

not a lower bound for the complimentary error probability P(|E?M —o?|<o?/2|M),

so we are even more conservative in our approach.

4. A higher moments based stopping rule. From the approximate stochas-
tic error bound (3.6) we will in this section construct a new, more reliable stopping
rule with a stopping criterion based on second, third, and fourth moments of the
r.v. that is sampled. The sampled moments our new algorithm will depend on are
(here represented in biased form)

M —
_ Z X — Xnr)? Z X; — XM
ON = ( M ) 9 ﬁ]\/{ - | M | ? (41)
i=1
B = EM 7(Xi_XM)3 and Ky = E 7()( YM)4 -3
R T Ve PR M M, '

Replacing moments with sample moments in (3.6), we obtain a computable approxi-
mate stochastic error bound

P(|Xu - u| > TOL|M)

vVMTOL vVMTOL 1 =
< _ S T .
%2<1 @( " ZOBE T 7/6M \/MCP(27P17"'7pTLaM)

2
MTOL 1‘ |3M\

+
exp (1\/[227(2)1:2) X 3V 21w E?’w
M

(1 _€P(27p177pn7M))

(4.2)

The resulting approximate stochastic error bound will be implemented as the following
stopping criterion in Algorithm 2:

2
MTOL 1‘ |5M|

exp (M) x 3v2n Mo,

+ (1—=Cp(2,p1,---,pn)) <6, (4.3)
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where Cp(2,p1,...,pn) is obtained from Cp(2,p1,...,pn) by replacing all moments
of @ by their empirical counterparts.

We now present the new stopping rule algorithm.

Algorithm 2 Higher Moments Based Stopping Rule
Input: Accuracy TOL, confidence §, and initial number of samples Mp.
Output: X ;.

Set n = 0, generate i.i.d. samples {Xi}fvi'i and compute the sample moments o, ,
Bar,» B, and Ry, and all (other) moments needed for C'p according to (4.1).
while Inequality (4.3) is not fulfilled. do

Set n=n-+1and M, =2M, _;.

Generate M,, ii.d. samples {Xi}i]‘i’i and compute the sample moments 7y, ,
B, » and Ry, and all (other) moments needed for C'p.

end while

Set M = M,,, generate i.i.d. samples {X;}}, and return the sample mean X ;.

REMARK 4.1. The reasoning in Section 3 could also be used to construct alterna-
tive stopping rule algorithms. For instance, instead of using the respective probabilities
for misestimation of o, P<|E?w —o? > 02/2‘M> andP(\E?M —o?l < 02/2‘M) as re-
spective weights for the conservative and the optimistic bound for the misestimation
error probability for the mean u itself, we could also take the argument more liter-
ally and use the pessimistic error bound if we have misestimated the variance and
the optimistic one otherwise, i.e., using random indicator functions instead of their
expectations as weights. We leave this as a remark.

5. Numerical experiments. In the numerical experiments we will estimate the
mean of four differently distributed r.v. by using three different stopping rules: the
sample variance based stopping rule in Algorithm 1, the new higher moments based
stopping rule in Algorithm 2 and the stopping rule recently introduced by Hickernell
et al. [6] which they prove performs reliably, with guaranteed conservative fixed width
confidence intervals, provided an upper bound for the kurtosis of the sampled r.v. is
known prior to sampling.

5.1. Experimental setup and implementational details. The distributions
of the r.v. we will consider will be the light-tailed Uniform, the Exponential, the heavy-
tailed Normal-inverse Gaussian and the heavy-tailed Pareto distribution. The initial
number of samples used in Algorithm 1 and 2 is set to My = 32 for all experiments.
The version of Algorithm 2 we will implement for these experiments uses the only
sample moments defined in (4.1), i.e., Cp = Cp(2; M). For the implementation of
Hickernell et al.’s algorithm an upper bound on the kurtosis is required, so we will
assume the exact kurtosis of the r.v. is known prior to sampling and set the “variance
inflation factor” € = 1.1, cf. [6]. Let us stress that the assumption of knowing the
exact value of kurtosis prior to sampling is only made in the runs for Hickernell et al.’s
algorithm, and due to this, its performance is presented in a slightly more favorable
light than Algorithm 1 and 2’s.

For each of the three algorithms we will numerically estimate the probability of
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failure P(| X ps — u| > TOL) by the MC outer loop

N
Pn(TOL,6) :=N"'>" 115 (wi)— | >TOL (5.1)
=1

on a 100 x 100 grid of (TOL;,68;) € [1072,107!] x [1073,107!] values where TOL; =
10~ 141/99) and §; = 10~(+2/99) for 4 = 0,1,...,99. The number of outer loop
samples N we are able to use in an experiment will depend on both the cost of
sampling the given r.v. and the cost of the used stopping algorithm. The error in
estimating the probability of failure by py(TOL, ) is estimated by the standard
deviation approximation of a sampled Bernoulli r.v.

VN '
At (TOL;, 0;) points where for a given algorithm p (T'OL;, 6;)/6; > 1, that algorithm

is considered unreliable. So to visualize the domain of reliability for an algorithm we
plot the function p, /é. Furthermore, Table 5.1 provides the following values

A ﬁN(TOLivéj)7 and A VPn(TOL;, 5;)(1 — by (TOL;, 65))

i,j=0,1,...,99 5j i,j=0,1,...,99 ‘/Néj

(5.2)
as estimates of an algorithm’s maximum unreliability and the uncertainty in the un-
reliability estimate, respectively.

The computer code for the algorithms is written in the Java programming lan-
guage and uses the “Stochastic Simulation in Java” library to sample the r.v. in par-
allel with the LFSR258 pseudo random number generator, cf. [12]. The experiments
were run in parallel using 10 threads on an Intel Xeon(R) CPU X5650, 2.66 GHz,
and the plots were made in Python using the open source plotting library Matplotlib,
cf. [8].

5.2. Results. Figures 5.1, 5.2, 5.3, and 5.4 visualize the results of the numeri-
cal experiments and Table 5.1 contains numerical and parameter values used in the
experiments.

For the Pareto distributed r.v. considered in Figure 5.1, we see that while Algo-
rithm 2 is reliable everywhere, Algorithm 1 is not reliable in the region where TOL
is large and § < TOL. Furthermore, the complexity of Algorithm 2 is only slightly
higher than Algorithm 1’s. (Hickernell et al.’s algorithm requires an upper bound on
the kurtosis prior to sampling to be applicable, so that algorithm is not applicable in
this experiment.)

For the Normal-inverse Gaussian distributed r.v. studied in Figure 5.2, we see that
Algorithm 1 is unreliable in the region where TOL is large. Algorithm 2 and Hickernell
et al.’s algorithm are on the other hand both very reliable. Hickernell et al.’s algo-
rithm does however seem to be more reliable than required, and due to this overkill
the complexity of Hickernell et al.’s algorithm is much higher than Algorithm 2’s. The
Normal-inverse Gaussian distributed r.v. is quite expensive to generate computation-
ally, therefore we have had to reduce the number of outer samples NV substantially in
this experiment.

For the uniformly and exponentially distributed r.v. studied in Figure 5.3 and 5.4,
respectively, all three algorithms are reliable and Algorithm 1 and 2 perform very



12 C. Bayer, H. Hoel, E. von Schwerin, and R. Tempone

similarly in terms of reliability. We also see that for both of these experiments the
complexity measured in terms of the average number of r.v. used to generate X 5 is
very similar for Algorithm 1 and 2. This observation is at odds with the corresponding
measured average computer run times given in Table 5.1 which show Algorithm 2’s
average run time is considerably longer than Algorithm 1’s. The reason for the dis-
agreement between the complexity measurements and the run time measurements is
that for uniformly distributed r.v. (and to some weaker degree also for exponentially
distributed r.v.) the generation of r.v. is not so costly for the computer program,
and therefore do also other arithmetical operations contribute considerably to the run
time of the computer program in these experiments.

We further note that the complexity contours of Algorithm 1 and 2 in the figures
seem proportional to

—1p 2
M(TOL,8) = (W) ,

up to rounding. This property, which by the CLT is expected in the asymptotic
regime, can be verified by comparing the contour of the function M(TOL,?¢) to the
complexity contour of Algorithm 1 and 2, respectively. The sharp changes in com-
plexity that we observe in the contour plots for Algorithm 1 and 2, especially visible
in Figure 5.3 and 5.4, are due to the doubling procedure (M, = 2M,,_1) which is
implemented in these two algorithms.

Algorithm performance
Considered r.v. Algorithm N maxpy /6 ‘ max(py (1 —py)/N)2/S ‘ runtime/N
Pareto, cf. Figure 5.1 Alg 1 5106 3.529600 0.026522 0.124712s
(0 =1and kK = 00) Alg 2 5.10° 0.686309 0.009506 0.189077s
Normal-inv. Gaussian | Alg 1 5-10° [ 12.014000 0.154076 3.019442s
cf. Figure 5.2 Alg 2 5-10° 0.755712 0.028699 3.048026 s
(0 =1, k=123) Hick. et al.’s | 5-10% 0.000419 0.000296 77.322941s
Uniform U(—v/3,v3), | Alg1 5-10° 0.970623 0.013598 0.008996 s
cf. Figure 5.3 Alg 2 5-10° 0.970600 0.013597 0.048990 s
(60 =1and k = —6/5) | Hick. et al.’s | 5-10° 0.278880 0.001089 0.097067 s
Exponential A =1, Alg 1 5. 100 0.919659 0.012642 0.033680's
cf. Figure 5.4 Alg 2 5-10° 0.912216 0.012040 0.076942 s
(0 =1and Kk =6) Hick. et al.’s | 5-10° 0.206530 0.000676 0.229495 s
TABLE 5.1

We compare the reliability and complezity of three MC algorithms approzimating the mean of
gwen r.v. The function pn(TOL, ) is an esitmate of the probability of failure and N is the number
samples samples used to compute By, cf. (5.1). The values max Py /8 and max(Py(1—By)/N)V/2/6
are estimates of the mazimum unreliability and its uncertainty, cf. (5.2). The expression runtime/N
is an estimate of the average time it takes for one thread of the computer program to compute a
single output X 5y at all points (TOL;,6;), 4,5 =0,1,...,99.
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TOL

Fi1c. 5.1. (Pareto Distribution) We sample a Pareto distributed r.v. with parameters o = 3.1
and xm = (o — 1)y/(a — 2)/a. Top two plots: Plots of by (TOL, )/, cf. (5.1), where where X pr
respectively is computed by Algorithm 1 in the top plot, Algorithm 2 in the bottom plot. We consider
the algorithm unreliable at (TOL, §) points where Dy /6 > 1. The bottom two plots are corresponding

plots of the respective algorithms’ complexity in terms of the average number of r.v. samples required
to generate X pr at the given (TOL,J).
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Fic. 5.2. (Normal-inverse Gaussian Distribution) We sample a Normal-inverse Gaussian
distributed r.v. with parameters a = 3, B = Va2 -1,y =1, 6 = a=2, and mu = —B/v. This
yields a r.v. with standard deviation o = 1 and k = 123. Top three plots: Plots of pn(TOL,6)/6,
cf. (5.1), where samples of X py respectively are computed by Algorithm 1 in the top plot, Algorithm 2
in the middle plot, and Hickernell et al.’s algorithm in the bottom plot. We consider the algorithm
unreliable at (TOL,5) points where Py /6 > 1. The bottom three plots are corresponding plots of
the respective algorithms’ complexity in terms of the average number of r.v. samples required to
generate X py at the given (TOL,§) point.
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Fic. 5.3. (Uniform Distribution) We sample a U(—+/3,/3) uniformly distributed r.v. Top
three plots: Plots of DN (TOL,8)/S, cf. (5.1), where samples of X pr respectively are computed by
Algorithm 1 in the top plot, Algorithm 2 in the middle plot, and Hickernell et al.’s algorithm in the
bottom plot. We consider the algorithm unreliable at (TOL, ) points where p /6 > 1. The bottom
three plots are corresponding plots of the respective algorithms’ complexity in terms of the average
number of r.v. samples required to generate X pr at the given (TOL,§) point.
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Fic. 5.4. (Exponential Distribution) We sample an exponentially distributed r.v. with p = 1.
Top three plots: Plots of pn(TOL,3)/5, cf. (5.1), where samples of X pr respectively are computed
by Algorithm 1 in the top plot, Algorithm 2 in the middle plot, and Hickernell et al.’s algorithm
in the bottom plot. We consider the algorithm unreliable at (TOL, ) points where Dy /6 > 1. The
bottom three plots are corresponding plots of the respective algorithms’ complexity in terms of the
average number of T.v. samples required to generate X p; at the given (TOL, ) point.

6. Conclusion. We have shown that second moment based sequential stopping
rules such as Algorithm 1 run the risk of using too few samples in MC estimates,
especially when sampling heavy-tailed r.v. in settings with very stringent confidence
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requirements, i.e., 6 < TOL. Algorithm 2, a higher moment based stopping rule
algorithm is proposed in this work, and, according to the numerical examples of
Section 5, our new stopping rule performs much more reliable than Algorithm 1 while
only moderately increasing the computational cost. In short, we believe that our
new stopping rule presented in Algorithm 2 is well worth considering in settings with
heavy tailed r.v. and/or § < TOL.
Note that our analysis of the original Algorithm 1 critically depends on three
main ingredients:
(I) a general, non-asymptotic estimate of the tail probabilities for the sample mean
X ps, for which we used either the non-uniform Berry-Esseen theorem given in
Corollary 1.2 or the Edgeworth expansion given in Theorem 1.3,

(IT) a choice between the more conservative Berry-Esseen bound and the approxi-
mate Edgeworth bound made depending on whether the sample variance of the
samples used to generate the output MC estimate is close to, or far from the
true variance,

(ITI) an estimate of the conditional distribution function of the sample variance given
the output M of the stopping algorithm given in (3.4).

There is clearly room for improvement in all these steps. First of all, the second
ingredient above is dangerous as we do not know how to estimate the correlation
between X, and the events |73, — 0?| > 02/2 and |73; — 02| < ¢%/2. This is
problematic, as these approximations can potentially have the wrong sign, i.e., it is
possible that the right-hand sides of (3.3) and (3.5) are smaller than their respective
left-hand sides even though we actually seek upper bounds. It is however our hope
that these approximation errors are compensated by the the overly pessimistic non-
uniform Berry-Esseen estimate and by using Chebychev’s inequality to bound the
conditional distribution function of the sample variance. Even though the numerical
evidence obtained in Section 5 seems to confirm that the compensations work well,
we would prefer an analysis in which each estimation step can be controlled, at least
in the sense that we indeed obtain an upper bound for the error probability.

To a lesser extent, it is not clear that the truncation of the o(n_l/ 2) of the
Edgeworth expansion will lead to an upper bound for the error probability, either.
In this case, the approximation error is however of higher order, so a stronger case
can be made on why the effect will finally be negligible. In fact, when we used the
truncated Edgeworth expansion also for the estimation of (3.3) — instead of the non-
uniform Berry-Esseen theorem — then the corresponding stopping rule turned out
to be not much more reliable than Algorithm 1, indicating that there is a delicate
balance between reliability in meeting the accuracy target (1.1) and maintaining an
acceptable efficiency.
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