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Option pricing in the moderate deviation regime

Friz, Gerhold, Pinter (2016) study MOTM (moderately out of the

money) options. For diffusion models, they find call option price
asymptotics:

ATM AATM MOTM OTM
oWd | ot oxp(~52) | exp(-pe)
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Option pricing in the moderate deviation regime

Friz, Gerhold, Pinter (2016) study MOTM (moderately out of the
money) options. For diffusion models, they find call option price
asymptotics:

ATM AATM MOTM OTM
K=35 10g§~ﬁ8,ﬁ>% 10g%~t’8,ﬁ<% logsﬁozconst
oWd | oD oxp(~52) | exp(-pe)

» MOTM regime reflects the reality that the range of strikes of
liquidly traded options decreases with maturity

» const in the OTM case is related to the energy A(k) of the
underlying LDP, which may be hard to compute

» const in the MOTM case is, essentially, A”(0), which is often
much easier to compute
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Setting

dS—‘i’ = o (B,)d (0B, + pW,)

t
Bl‘ = f K(t, S)dBS
0

K is a Volterra kernel with fol fot K(t, s)*dsdt < oo
B, W are standard Brownian motions, p? + p* = 1
o : R — R.g “smooth”

B is “small-time self-similar”: for any small 7 > 0 there is € > 0 s.t.

law —
B, 277
[0,7] [0,1]

> For example: K(t,s) = |t — s/"""2, 0 < H < {
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Pricing formula

Theorem
For x > 0 the call option price satisfies

c (ix, t) =F (exp (X;) —exp (%x))Jr

€

Ji
= exp (—g) exp (%x) J(,x), x>0,
z
') 776 ETTE ’
J(,x) = E [e_ 2 U (e?U - l)eI (X)Rzlggzo],

where U® = g1 + &R, for a centered Gaussian r.v. g; and a
remainder term R,. Moreover, forany 6§ > 0 and 0 < 8 < H,

£ log J(g, xs?P) =9, 0

“uniformly in x around x = 0”.
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Moderate deviations

Consider the rough volatility regime e = 2/, 0 < H < % and moderate
deviations k, = kt'/> B 0 <p < H

I"(0) k?
—log c(ks, t) = ch_zﬁ?(l +o(1)), t\0
with |
I"0)= ——.
0) (02
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Moderate deviations

Consider the rough volatility regime = £, 0 < H < 1 and moderate
deviations k; = kt'/>"H*# 0 <p < 2H

Theorem

I//(O) k2 II/I(O) k3
—logc(ks, t) = 225 A 23 g(l +o(l)), tN\0

with

V4 0) =

0 (0)%’

(0 1 t
77(0) = —@Z(f))i fo fo K(t, s)dsdt.
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Moderate deviations

Consider the rough volatility regime e = 2/, 0 < H < % and moderate
deviations k, = kt'/>"H*, 0 < B < 3H

Theorem

I//(O) k2 II//(O) k3

—logc(ks, t) = 225 A 23 g(l +o(l)), tN\0

with
1"0) = ——, I'"(0) = -6 7, f 1 f t K(t, s)dsdt
" (02 S0 o Jo T '

Corollary
The implied volatility satisfies

’ 1 t
Timpi(ks, 1) = 0(0) — p‘;((g)) fo fo K(t, s)dsdt k"' 2(1 + o(1)).
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Numerical evidence

H=0.3,3=0.175
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Large deviations [Forde and Zhang 2016]
dX, = o(B,)d (oW, + pB,) Fdift.

Short time asymptotics: X; law X¢, &= 1, =&, with

dX; = o (£B,) ed (W, + pB,)

X2 := £X? satisfies LDP with speed and rate function

R 2
I(x) = inf l(x_p<G(K],c)’ /) +%|If||§,é

Notation:
> ||f||Hé = ||f||L2[O,1]
> (KN = Jy K@, 9)f(s)ds, f € Hy
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Large deviations [Forde and Zhang 2016]
dX, = o(B,)d (oW, + pB,) Fdift.
Short time asymptotics: X; law X¢, &= 1, g=¢&, with
dX{ = o (€B,) ed (pW; + pB;)

X2 := £X? satisfies LDP with speed and rate function

(1= {e®D A

I(x) := inf { = - . + S IA15, ¢ -
rery |2 PP (oK f), 1) 27 M

= d??f = o (€B,)ad (pW; + pB;) . Hence, 5(719 = ®,(EW, B, €B).

> Use (extended) extension principle based on LDP for (W, B, E). o)
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Energy expansion

C(1(=plokp 1) 1 .
I(X)zf}?zfé{i AL L

1) First order optimality condition

T :Rx Hy — R, (x, f) = I.(f) is smooth in Fréchet sense. Hence,
any local minimizer f satisfies

H(x, f) = DgI(f)- f=0.
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Energy expansion

C(1(=plokp 1) 1 .
I(x) = flégé {5 /_)2 <0'2(Kf), 1> + E ”f”ilé = flenl-fé I.(f).

1) First order optimality condition

2) Local uniqueness and smoothness of minimizer

By the implicit function theorem, there is a unique f = f* satisfying
the first order condition in a neighborhood of x =0, f =0. x > f*is
smooth.
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Energy expansion

(1(x=plo®p 1) g .
I(x) = flég(l) {5 /_)2 <0'2(Kf), 1> + E ”f”ilé = flenlgé I.(f).

1) First order optimality condition

2) Local uniqueness and smoothness of minimizer

3) Existence of a minimizer

“Local convexity”: DfJ +(0)-(g,8) > 0forany g € Hy.
Remark: This point is not completely obvious, see the following
minimization problem:

1
6= [ [ 1)+ 72| s — mins
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Energy expansion

C(1(=plokp 1) 1 .
I(x) = flégé {5 /_)2 <0'2(Kf), 1> + E ”f”ilé = flenl-fé I.(f).

1) First order optimality condition

2) Local uniqueness and smoothness of minimizer
3) Existence of a minimizer

4) Expansion of minimizer f*in x — 0.

Make ansatz f;* = a;x + ,8,’“—22 +0(x*) and plug into first order condition
H(x, f*) = 0, yields formulas for a, 3, ...
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Pricing formula

+ . 1 .
c(%x, t) =E [(esxl —eF ) ], X = f o (eB)ed(pW + pB)
0
1) Perturbation & Girsanov transform

Change measure &(W, B) — &W, B) + (h, f), h, f € H} with Girsanov
transform G, transforming X7 — Z7 with

1
Gazexp(—%f de—éf th—— i* + f?) dt)
0

1
Z = fO o (B + f)[&d (W + pB) + d (ph + pf)]
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Pricing formula

eye & + —, 1 —
c(%x, t) =E [(e?xl - e?x) ], X = f o (eB)ed(pW + pB)
0
1) Perturbation & Girsanov transform

2) Stochastic Taylor expansion f‘f = x+€g1 +&R»

For h, f with @,(h, /) = x we have the above stochastic Taylor
expansion with

l —_ —_
o= [ [oBa@Wi+pB)+ o B G+ o).
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Pricing formula

£ye s\t —, 1 e
c(%x, t) =FE [(e?xl - e?x) ], X = f o(eB)ed(pW + pB)
0
1) Perturbation & Girsanov transform
2) Stochastic Taylor expansion Z& = x +8g1 + 2R,

3) [ idw + [ f*dB =I'(x)g
Following Ben Arous, we can show that

1 1
f W dW + f f*dB = I'(x)g;
0 0

when (A%, f*) is optimal configuration.
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Pricing formula

c(%x, t) =FE [(egxf —ef )+], 5(\‘18 = j(;l a’(EE)Ed@W + pB)

1) Perturbation & Girsanov transform

2) Stochastic Taylor expansion 2;9 = Xx+Eg + R,
3) [ iAW + [ f*dB = I'(x)g
4) Estimates for J(g, x)
Steps 1-3 lead to the remainder term
Je.x) = E[ L e( £ge 1) I (x)R21ﬁ€>0] Ue = Zie _

which is then estimated from above and below.
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Pricing formula

Se

c(%x, t) =E [(eéx. — e%x)+], 5(\‘18 = j(;l o (@B)ad(pW + pB)
1) Perturbation & Girsanov transform
2) Stochastic Taylor expansion Zf = Xx+Eg +ER,
3) ['idW + [ f*dB =I'(x)g
4) Estimates for J(g, x)

5) Example: Black-Scholes case

’ ’ 3.3
I(x)0'+8o_)_M(_I(x)0')~ 1 o’¢

J(a,x):M(— - or 2 5

with M(a) = e*/2F(a), F being the c.d.f. of N(0, 1)
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Estimating the remainder term

» Stochastic Taylor expansion gives

PR = & f (6B, + £2) — o(£)] d[pWs + pB.] + BV process
0
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Estimating the remainder term

» Stochastic Taylor expansion gives

82R‘§(f) = Sf [o(eBs + fy) — o(f)] d [pWs + pBy|+BV-process =: M;
0

> For M*® := M™ with 7 := inf { 7 | |eB,| > « }, we have

d[M**],

—— = [oeBi+ ) - o (W) <& o[ BT
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Estimating the remainder term

» Stochastic Taylor expansion gives

RN = ¢ f 0B, + £ - ()] d [PW, + pB,]+BY-process = M?
0

> For M*® := M™ with 7 := inf { 7 | |eB,| > « }, we have

d[M**],
dt

=g2 [oc(eB; + f1) — U'(ft)]z <& “Ul”io;[( |B:'2

> As e M~ = 0(|BK’E|§o;[O,1]), which has exponential tails, BDG
inequality implies (for some ¢y, ¢z > 0)

P(|R§(f)| >, |SB|00;[0,1] < K) <cy exp (—Czl") J
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Complete price expansion

e I'(x)Ryq
G l)e ZIUSZO]’

W7
J(g, x) = E[e =z U (e

> Ut =zg; +§2R2
> g1 given explicitly in terms of optimal configuration f*

> R, remainder term in stochastic Taylor expansion; not given
explicitly, but we have control of tail behaviour

Obtain precise asymptotics/expansion of J(g, x), x = x(g), as € \, 0. l

» So far, we have polynomial upper and lower bounds.
» Advantage: no need for heat kernel asymptotics.
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