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Abstract

We consider the three factor double mean reverting (DMR) model
of Gatheral (2008), a model which can be successfully calibrated to
both VIX options and SPX options simultaneously. One drawback
of this model is that calibration may be slow because no closed form
solution for European options exists. In this paper, we apply modified
versions of the second order Monte Carlo scheme of Ninomiya and
Victoir (2008) and compare these to the Euler-Maruyama scheme with
full truncation of Lord et al. (2010), demonstrating on the one hand
that fast calibration of the DMR model is practical, and on the other
that suitably modified Ninomiya-Victoir schemes are applicable to the
simulation of much more complicated time-homogeneous models than
may have been thought previously.

1 Introduction

It is common knowledge that the Black-Scholes option pricing model is in-
consistent with market pricing of options. Local volatility models, Lévy
models, stochastic volatility models, stochastic volatility models with jumps
and various variants and combinations of these have been proposed to fit
market implied volatilities better and describe the dynamics of the resulting
volatility surface. With the advent of trading in VIX options in 2007 how-
ever, marginal risk-neutral densities of forward volatilities of SPX became
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effectively observable, substantially constraining possible choices of volatility
dynamics. Various authors have since proposed models that price both op-
tions on SPX and options on VIX more or less consistently with the market.
Notable amongst these are the market models of Bergomi (2005) and the
variance curve factor models of Buehler (2006).

In Gatheral (2008), a specific three factor variance curve model was in-
troduced with dynamics motivated by economic intuition for the empirical
dynamics of the variance. This model was simultaneously calibrated to SPX
and VIX option markets.

In this double-mean-reverting or DMR model, the dynamics are given by

dS; = /s SedWL, (1.1a)
dvy = Ky (v} — vg) dt + & v dWZ, (1.1b)
dvp = kg (0 — v}) dt + & vP? dWP, (1.1c)

where the Brownian motions W; are all in general correlated with E[dW} thj ]
Pij dt.

Thus variance mean-reverts to a level that itself moves slowly over time
with the state of the economy. Also, it is a stylized fact that the distribution
of volatility (whether realized or implied) should be roughly lognormal (see
Andersen et al. (2001) for example); when the model is calibrated to market
option prices, we find that indeed aq &~ 1 consistent with this stylized fact.

One drawback of this model is that no closed-form solution for European
options exists so finite difference or Monte Carlo methods need to be used to
price options. Calibration is therefore slow. In Gatheral (2008), the DMR
model is calibrated using an Euler-Maruyama Monte Carlo scheme with the
partial truncation step of Lord et al. (2010).

In this paper, we show how to apply the second order Monte Carlo scheme
of Ninomiya and Victoir (2008) to the calibration of the DMR model, sub-
stantially improving calibration time. In passing, we show that a Ninomiya-
Victoir second order Monte-Carlo scheme with fully closed-form steps can
be achieved for models that are rather more complicated than those (such
as the Heston model) to which the technique has been applied so far.

The plan of the paper is as follows. Section 2 describes how the model
of Gatheral (2008) is calibrated. Section 3 explains the Monte Carlo scheme
of Ninomiya and Victoir (2008), the drift trick of Bayer et al. (2013) and
a subsequent extension by us which we apply to the DMR model. Section
4 presents practical examples of calibration to SPX and VIX options with



numerical results, and in Section 5 we perform a convergence analysis with
reasonable parameters. In Section 6 we present some concluding remarks.

2 Estimating the constants of the DMR model

In Gatheral (2008), the parameters of the DMR model were calibrated to
the VIX and SPX options markets with a sequence of steps that we will now
individually describe.

2.1 Estimation of k1, k3, 6 and po3

As of time ¢, the T-maturity forward variance is given by
&(T) = E [vr|F]

and the T-maturity variance swap by

T
E{/ v ds
t

Variance swaps are traded in the market so forward variance is a traded
asset. Under diffusion assumptions, the fair value of a variance swap is given
by evaluating the so-called log-strip of European puts and calls (see Chapter
11 of Gatheral (2006) for example):

E[/tTvsds ]—"t]:2{/iop(k)dk+/oooc(k)dk}, (2.1)

where k = log(K/F;r) is the log-strike and p and ¢ respectively are put
and call prices expressed as a fraction of the strike price. Thus, given a
database of historical market option prices, market variance swap prices
may be estimated by interpolation, extrapolation and integration.

It is straightforward to verify that in the DMR model (1.1), forward
variances are given by

7.

K1

E(T) = 0+ (v~ 0) ™" + (v] — 0) (=), (22)

K1 — K2

where 7 = T — t. Direct integration then gives us an expression for the spot



variance curvel
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In the DMR model, 0, k; and ky are constants; v; and v; are state
variables. From (2.3), variance swaps depend linearly on the state variables.
Thus, for every choice of 6, k1 and k9, given option prices for various expiries,
we can approximate the spot variance curve and infer v; and v, by linear
regression.

Performing daily regressions for the seven year period from January 2001
to April 2008, and optimizing over @, k1 and ko to minimize the mean squared
error between the fitted curves and actual curves, optimal choices of the
parameters 6, k1 and k2 and also daily time series of v; and v; were obtained.
The optimal choice of parameters was found to be

6 = 0.078,
K1 = 557
ko = 0.10.

The correlation pa3 between W2 and W3 is then estimated as the historical
correlation between the series v; and v;. The estimated value was

p23 = 0.59.

2.2 Estimation of the exponents a; and a-

In order to obtain a1 and ao we need information on how the volatility of
volatility moves with the volatility itself. To obtain a proxy for the volatility
of volatility Gatheral (2008) does the following.

Consider the SABR model for the forward with g = 1:

dF; = oy FydW},
doy = VatthQ,

1(2.2) and (2.3) may be recognized as the Svensson yield curve model, re-used in our
context.



where dW!dW2 = pdt. An approximative Black-Scholes volatility for short
maturities can be computed using the formula

k
ons(h) = o () (2.4
where k := log(K/Fp) is the log-strike and
vy
10g< viys+ /fzg—i— —Vy—P>

see Hagan et al. (2002). It is observed in Gatheral (2008) that the formula
can fit observed volatilities very well, even for longer maturities. On a given
day we have option quotes for a number of different maturities. We can fit
the SABR model using the approximative formula (2.4) and obtain coeffi-
cients o, ", p” for each maturity 7. Gatheral (2008) parametrizes the v”
coefficient for the different maturities with the function
T __ Veff

S
which fits the term structure of the v-parameter remarkedly well. The num-
ber v.s is then used as a proxy for the volatility of volatility in a lognormal
volatility model on that given day. The VIX index is used as a proxy for
volatility.

Using the same dataset as in Section 2.1, Gatheral (2008) collects a time-
series from January 2001 to April 2008 of v, ¢ obtained by calibration to SPX
options. He also collects VIX quotes. Doing a linear regression of log(vesy)
onto log(VIX) he obtains the equation

log(vesr) = —0.125 — 0.127 log(VIX).

We can therefore write an SDE for the volatility:
doy = ca; "2 0 dWy = cad83dWE.

In the DMR model we are looking for a coefficient on the variance v; = a?.
Using Ito’s lemma we obtain

dvy = O(dt) + 2cv 230 dw,.

We will use the rounded coefficient a; = 0.94, which obviously is close to
one. There is insufficient market data to be able to say anything about the
exponent ag so in Gatheral (2008), the choice ag = a1 = 0.94 was made. As
we will see in Section 3.2, various simplifications are possible if a3 = g =1
(the so-called double lognormal model) so that case will also considered in
the following.



2.3 Daily calibration of remaining parameters

Although the volatility of volatility parameters £ and & are in principle
constants of the DMR model, Gatheral (2008) presents empirical evidence
that calibrated parameters are not constant in the data. &; and & are thus
left free to be calibrated daily to VIX options data. The correlations pio and
p13 cannot be imputed from VIX option data; they are left free to improve
the daily calibration of the DMR model to SPX data.

So on any given day, both the state variables v; and v}, and the model pa-
rameters &1, &2, p12 and p13 are calibrated to VIX and SPX options data. vy
and v; are calibrated to variance swaps using linear regression and equation
(2.3). In Gatheral (2008) calibration of &1, &2, p12 and p13 was performed
using Monte-Carlo simulation. The chosen discretization was an Euler-
Maruyama scheme with a partial truncation step, see Lord et al. (2010),
which we can write recursively as

2((k + 1)A) = —%v(k:A)A +VolkA) 2L,
3((k + 1)A) = 5(kA) + ko (' (kA) — 9(kA)) A+ (3(kA) )™ Z7,

7' ((k+ 1)A) =3 (kA) + k2 (0 — 0/ (kA)) A+ (3/(kA)T)** Z},

here A is the time step, v(kA) = 9(kA)T, o'(kA) = ¥/(kA)Y, z(kA) =
log(S(kA)), Zj ~ N(0,A) and E[Z;Z]] = p;;A. This is a general scheme
and we do not need to know moments or asymptotic properties of the den-
sity in order to use it. Lord et al. (2010) finds the full truncation scheme
superior when simulating the Heston model. When a; and aq are close to
one however, our tests suggest that the partial truncation scheme is superior;
this improvement becomes apparent only when time steps are large.

3 The Ninomiya-Victoir scheme and drift trick

In Ninomiya and Victoir (2008) a general second order weak discretiza-
tion scheme for stochastic differential equations was introduced. Consider a
multi-dimensional stochastic differential equation in Stratonovich form

d
dX(t,x) = Vo(X(t,x))dt + Y Vi(X(t,x)) o dB], (3.1)
i=1

where X(0,x) =x € RN, B}, ..., Bf are d independent standard Brownian
motions and V; : RY — RN § =0,...,d, are sufficiently regular vector fields.



In this general setting, the Ninomiya-Victoir scheme based on a uniform grid
with time steps A is recursively given by

XNV (0,x) = x,

XOVI (k4 1)A,x) = { €2 PPV Ve T XV (A x), Ay = -1,
) 02 V0 ZiVa ... oZiVi g2 Vo (NV) (kA,x), Ay = +1.
(3.2)

Here etVx € RY denotes the ODE solution at time ¢ € R to

y=V(y), y(0)=x,

i.e., the flow of the vector field V,2 and the probability space carries in-
dependent random-variables (Ag), with values £1 at probability 1/2, and
independent N (0, A) random variables (Z]). Note that t = Z] can take
negative values, so one has to ensure that the ODE solutions used in an im-
plementation of the NV scheme actually do make sense for positive as well
as for negative ¢. One step in the NV scheme corresponds actually to a (non-
discrete) cubature formula of order m = 5 in the sense of Lyons and Victoir
(2004). When seen from this point of view, the reversal of the order of the
flows depending on the coin-flip Ay serves to improve the approximation of
the Lévy area and higher iterated integrals in the weak sense. On the other
hand, one can also interpret the Ninomiya-Victoir scheme as the stochastic
version of a classical operator splitting scheme, where the infinitesimal gen-
erator Vp + % Zle V2 of the diffusion is split into the first order differential
operator Vy and the second order differential operators %Vf, cee %Vd2.3 The
order-reversal is, in that context, a well known trick which improves the
order of the method and goes back to Strang (1963).

The Ninomiya-Victoir scheme has attracted wide attention since its in-
troduction; it is nowadays found in various sophisticated numerical packages
such as Inria’s software PREMIA for financial option computations. A vari-
ation of the scheme designed to deal with degeneracies arising in some affine
situations is discussed in Alfonsi (2010).

2 (3.2) is to be read from right to left, i.e., eZiVae 2 Vo (NV) (kA, x) means that solution
e2VoxX(VV) (kA,x) of the ODE driven by Vp is then used as initial value for the ODE
driven by the vector field Vy, which is run until the (possibly negative) time Z¢.

3Recall that a vector field V : RN — RY is identified with the first order linear
differential operator acting on smooth functions f : RY — R by Vf(z) = Vf(z) - V().
By iteration, V2 can then be interpreted as a linear second order differential operator.



3.1 Improving the efficiency of the Ninomiya-Victoir method
3.1.1 Changing the driving noise

In terms of numerical efficiency, cubature methods, and the Ninomiya-Victoir
scheme in particular, heavily rely on the ability to solve, fast and accu-
rately, ordinary differential equations. The general cubature methods in-
volve time-inhomogeneous ODEs with a rather complicated structure, in-
volving all vector-fields at all times. Thus, there is usually no alternative
to solving them numerically, often with Runge-Kutta methods. (A detailed
discussion on how Runge-Kutta methods are applied in this context is found
in Ninomiya and Ninomiya (2009).)

Using the canonical splitting induced by the model formulation, the
Ninomiya-Victoir scheme only involves the composition of solution flows to
time-homogeneous ODEs. In particular, there will be “lucky” cases of models
where all (or at least most) ODE flows can be solved exactly — in terms of
easy-to-evaluate expressions. In such a case, one has effectively found a sec-
ond order weak approximation method which can be implemented without
relying on numerical ODE solvers, and the Ninomiya-Victoir method can be
expected to perform especially well in such cases. As was observed by Ni-
nomiya and Victoir (2008), the Heston model is such a lucky case. However,
one soon encounters models (e.g., the popular SABR model) in which some
of the vector-fields do not allow for flows in closed form. In Bayer et al.
(2013), it was found that the class of favorable models can be significantly
enlarged by working with an almost trivial modification of the NV scheme.
This modification is based on the equivalence of (3.1) with

d
dX(t,x) = [ Vo(X(t,x)) = Y 7 Vi(X(t,x)) | dt+
j=1
d .
+ > ViX(tx)) 0 d (B] +4t)

Jj=1

d
=V (X(t,x))dt + Y V;(X(t,x)) od (Bg' + W)

j=1
whatever the choice of drift parameters 1, ...,7v4. Assume that all diffusion
vector-fields (V7,...,Vy) allow for flows in closed form, whereas /"o is not

available in closed form.* The point is that, in a variety of concrete examples,

4 As models are usually devised in the Ito framework and Vj is obtained from the Ito
drift by the Stratonovich correction, this situation is quite common in finance.



one can pick drift parameters ~1,...,7¢ in a way that etvow can be solved
in closed form after all.

Therefore, we propose the following variant of the Ninomiya-Victoir method
(which, following Bayer et al. (2013), shall be referred to as the “Ninomiya-
Victoir scheme with drift (trick)”):

XMV (0,x) =

XNV ((k+1)A, x) =
BNV AV AV BN X OV (kA ), Ay =, g
AU AV ANV XV (kA x), Ap=+1,

where Z} ~ N (A~;, A) independent of each other.
Note that (3.3) corresponds to the splitting of the differential operator
according to

Vo+ = Zv2 v +Z< VE+ vV ,).

3.1.2 Incorporating ODE splitting

The strategy of Section 3.1.1, namely to replace the standard Ninomiya-
Victoir splitting (3.2) by a different one customized to the specific problem
at hand, can be generalized to accommodate for an even wider class of prob-
lems. In particular, one can directly incorporate any splitting scheme (in the
ODE sense) for any of the ODEs involved in (3.2) into the Ninomiya-Victoir
scheme. Let us again assume that (only) the Stratonovich vector field Vj
is too complicated to allow for closed form solutions of the corresponding
ODEs. The structure of the Stratonovich drift vector field

d
Vo) = V(x) — 5 3 DVix) - Vix).
=1

where V : RV — RY denotes the drift vector field of the SDE in the Ito
formulation and DV; denotes the Jacobian of the vector field V;, ¢ = 1,...,d,
motivates to apply a classical ODE splitting scheme in order to solve the
ODE y = W(y), i.e., we try to find vector fields Vp; and Vp2 such that
Vo = Vo1 + Vo2 and the ODEs driven by Vp; and Vj 2 have (closed-form)
solutions et*01 and et"02, respectively. In that case, the solution e2"0 of the
ODE driven by the vector field Vj at time A can be approximated by

eAVOX — €AVO’1€AVO’2X + O(AQ) — €AVO’2€AVO’1X + O(AQ),



a method sometimes known as symplectic Euler scheme, see Hairer et al.
(2006). We can incorporate the symplectic Euler method in the Ninomiya-
Victoir scheme as follows: starting with X(VV#)(0,x) = x, we iterate ac-
cording to

XNV (k4+1)A,x) =

A A A A
e2 V0162 V0204V1 L. o ZiVap 3 V0,203 V0.1 X (NVs) (kA x), A =—1,
A A A A
e2 V015 V02e2Va ... ZiVig2 Vo2 3 V01 X (NVs) (kA,x), Ap = +1.
(3.4)

Even though the symplectic Euler scheme only has local order two, the
Strang trick of repeating the symplectic Euler scheme once while invert-
ing the order of the vector fields, again produces a scheme with local order
three and, hence, global order two. Indeed, note that the Verlet scheme

A A
eAVox = 2V01AV2e3 V0% 4 O(A3)

obtained by omitting the diffusion part in (3.4) has (global) order two. Both
the Verlet and the symplectic Euler scheme are examples of geometric inte-
grators for ODEs, and we again refer to Hairer et al. (2006) for much more
information.

3.1.3 Analysis of the modified Ninomiya Victoir scheme of (3.4)

We give a sketch of the proof that the modified NV algorithm (3.4) has second
order convergence in the weak sense. In particular, in the following we as-
sume sufficient regularity for all involved functions and vector fields. Let Xa
denote the true solution of the SDE at time A and let Xa = X(VV9) (A, x)
denote the output of the modified NV algorithm after one timestep of size A,
both started at x at time 0. By the Markov property, it suffices to show that
the weak local error is of third order (see, for instance, Talay and Tubaro
(1990)), i.e., that

E[f(Xa)] - B[f(Xa)] = O(A%) (3.5)

for sufficiently smooth test functions f. Indeed, denote u(t,y) = E[g (X7) | X; = y]
and assume that we want to approximate E [¢(X7)] = u(0,x) by E [9(X,a)] =
E [u(nA,XnA)] with A = T'/n. Then, by a telescoping sum, we may de-

compose the global error E [g(X,a)] —u(0,x) as the sum of the local errors

n—1

E [9(Xna)] = u(0,x) =Y E [u((k+1)A, Xyna) — u(kA, Xpa)] -
k=0

10



Assuming (3.5), we have
E [u((k + 1A, Xki1)a) — u(kA, Xpa)] = O(A?),

by first conditioning on X;a. However, we sum n = T/A of these terms, so
that the global error is O(A2).

For the proof of (3.5), note that the “multiplication” of vector fields in
the sense of iterative applications of vector fields as differential operators is
certainly non-commutative. Taylor expansion applied to (3.4) implies that

B = 5 (1 58 + gAE ) (14 3000 + gV )

1+ §AV12 + 8A2V14) .. <1 + §Avd2 + 8A2Vd4>

1 1
1+*A‘/0,2+§

2
1 1 1 1 1
5 <1 + §A‘/(],1 + 8A2%2’1> (1 + §A‘/0’2 + 8A2‘/02’2>

L

1
A%V2 1+ =AW
072> ( + 52V + 3

AQVO%) N

1+ 1Avj + 1A2Vd4) <1 - 1Avf - 1A2V14>
2 8 2 8
1 1 1 1
1+ 5AVo,z + 8A2v0%2> (1 + §AV0,1 + 8A2%‘51> f(x) + O(A3)

d

=E[f(Xa)] +0(A%),

where the last equality follows since Vy + % Z?Zl Vi2 is the infinitesimal gen-
erator of the diffusion X(t, x).

11



3.2 The Ninomiya-Victoir scheme for the DMR model
3.2.1 The Stratonovich formulation of the DMR model

Consider again the DMR model (1.1) re-expressed in terms of independent
Brownian motions B’:

dS; = \/v; Sy dBY},
dvy = Ky (V) — vg) dt + Epot (ﬁldetl +4/1— ﬁ%,QdBtz) ,
duvf = 3 (0 = vf) dt + 017 (P84 B} + poad BE + /1 = 35 — 34 4BY)

(3.6)

— P23— 012013
B 1-pty
simulation method of Ninomiya and Victoir (2008) we need to re-express
the It6 SDEs (3.6) in Stratonovich form (see for example Definition 3.13 of
Karatzas and Shreve (1988)).

We first compute the quadratic covariation terms as follows:

where p12 = p12, p13 = p13 and pog In order to apply the

1. el
d[\/'UTLS,Bl]t: {251721}1&1 2 4 Ut} Sy dt

d [51 vyt <ﬁ1,2 B! + m32>} — a2
d [ézvéaz, <ﬁ1,3 B! + pa3 B® + m )} _ 2oyl

We then obtain the Stratonovich form of (3.6):
X(tx)—x—l—/ Vo (X(s,x) ds—i—Z/ ) o dB} (3.7)

where the state vector X(t,x) = (S;, v, v;)T, the initial condition x =
(So,v0,v4)T, and the driving vector fields are given by

1
1(1le ~ 01735
-3 <251P1,2$2 25614-:172!131)

Vo) = —K1 (12 — x3) — 2 & anay™ L

—/12(%3 - ) 5 52 a $§a2 !

12



and
~ ~ T
Vi(x) = (Vzzz1 pr2é&iadt pr3éeas?)

T
Va(x) = (0 L—pfy&1a5" pa3éo 96‘3”) :

T
V)= (0 01—, - Baboni?) .

In order to proceed with the Ninomiya-Victoir splitting, we thus need to
solve the ordinary differential equations

d
“x(t) = Vilx(t)

for all i € {0, 1, 2, 3} and ¢t € R with some given boundary condition.

3.2.2 The flow of the diffusion vector fields

Following Bayer et al. (2013), it is straightforward to verify that the solution
to the (one-dimensional) ODE

%x(t) = h(t)* z(t)’ (3.8)

is given by

where

We can thus solve the ODEs

d
20 = Via(®)

for i € {1,2,3} in closed form. The NV algorithm requires solutions of
the ODEs driven by the diffusion vector fields for negative times ¢. As
da(—t) = —i(—t), this essentially means that the sign of the coefficient
changes. In any case, for a fixed time interval I = [0,7] (or I = [-T,0] in
the negative time case), (3.9) is the unique solution to (3.8), provided that
x(0) # 0. This follows by standard arguments when z > 0 on I. On the
other hand, note that in our case h(t) cannot change its sign on I for the

13



ODEs under considerations here. Thus, H is always a monotonous function
on I. So, for #(0) > 0, we can only get x(t) = 0 for some ¢t € I, if H is
negative and decreasing (increasing for the negative time case). But then
x must stay at 0 for the remaining time to 7' (or —T', respectively) — as
we do not allow for complex-valued solutions. If, however, z(0) = 0, then
there might, indeed, be several real-valued solutions for (3.8). For instance
in the positive time case, when h > 0, both (3.9) and x = 0 are solutions.
However, when paths of the underlying SDE come too close to 0 too often,
then the NV scheme should not be expected to perform any better than the
EM scheme, as has been found in several numerical studies, e.g., by Lord
et al. (2010). Indeed, the whole theory of NV breaks actually down in that
case.

3.2.3 The flow of the Stratonovich drift vector field

Solving the ODE for ¢ = 0 is a little trickier with no obvious closed-form so-
lution for general values of the exponents «;. Whereas a numerical solution
would be possible by for example applying a Runga-Kutta method, by fur-
ther splitting the operator, we may obtain a reasonably simple closed-form
simulation step. That is, we write

Vo=Vo1+ Voo
with
1 1e ~ ar—3
—3 T2T1 —3&p1279 M
Vou(z) = | —rki(v2—z3) |, Voalz) = —L&agaz!
—K2 (:Ug — 0) _% ég a9 xgag—l

and solve the equations

d
ax(t) = V,j(x(t)) with j =1,2.
Solution for j =1

The equation in the third row which reads

%xg(t) sy (w3 — 0)

has the solution
x3(t) =60+ e h2t (z3(0) —0).

14



The second ODE has the solution
t
zo(t) = e lay(0) 4 Ky / e 1 (78) 1a(s) ds
0

which is just the forward variance curve &(7T). The first ODE reads

%xl(t) _ —% 2a(t) 21 (1)

with the solution )
n(t) = 01(0) exp { 3 110

with H(t) = fg x2(s) ds which we recognize as the spot variance swap curve.

Solution for j =2

If a1 # 1 and ag # 1, the second and third ODEs have solutions
1
xg(t) = [x2(0)2(17a1) — o (1 _ Oél)ff t} 2(1—aq) ’
+
1
IEg(t) = [1‘3(0)2(1_0‘2) — (1 _ 042) gg t:| 2(1—ag) ‘
+

The first ODE reads

o=t
4

2

~ [e5]
§1p12%9 * 21

with the solution
L.
x1(t) = z1(0) exp {—4 &1p1,2 H(t)}
where H(t) = f(f xg(s)al_% ds. H(t) can also then be computed explicitly as

2
HO = B e

{x2(0)3/2_0‘1 - xg(t)3/2_°“} .

3.2.4 The double lognormal case: oy =as =1

The special case a1 = 1, ag = 1 gives the double lognormal model of Gatheral
(2008), a model which both fits the empirical SPX and VIX surfaces well and
displays remarkable parameter stability. In this case, we may obtain even
simpler closed-form solutions by applying the drift trick of Bayer et al. (2013)

15



explained in Section 3. This trick involves simplifying Vy by subtracting
components spanned by the the vector fields Vi, Vo, V3. This is achieved by
introducing drift in the Brownian motions. Specifically, with

Vo = Vo — Vi — y2Vo — 13V3,
and choosing

y1 = —&1p1,2,
K1 18+ mp2&

Y2 = > P
§14/1— P12

’Y Ko+ 3563 — praloavi — Pas oo
3= — :

ay/1— P13 — Do

we have the much simpler expression
— S To 1
Vo = K13
Ko 0
The third and second differential equations respectively have solutions
iL'3(t) = $3(0) —+ Ko (9t,
1
xa(t) = x2(0) + K1 <x3(0) t+ 5%2 9752) .

The first ODE reads

with the solution

where



3.3 Summary of the modified Ninomiya-Victoir procedure

Adopting the notation of Bayer et al. (2013), if Ay is a Bernoulli random
variable, the kth NV time step of length A in the modified NV simulation
of Section 3.2.3 is of the form

X((k+1)A,x)
1 1 1 2 3y L 1 .
e2BV01 g2 AV02 o Zp Vi o2 Va o2 Vs 3 AV02 03 AVOIX (K A ) if Ay = —1,

- 1 1 3 2 1 1 1 .
{ 62AVo,l eQAVOQ eZi V3 02 V2 o2 1 62AV0,2 62AVO’1X(]€ A,X) if A, =+1

where the Z} ~ N(0,A) are independent of each other.
Similarly, in the NV procedure with drift trick of Section 3.2.4, the kth
NV time step is of the simpler form
X((k+1)A,x)
_ ez A0 eZi Vi (27 Ve o B Vs e%AVOWX(k Ayx) if Ay =-1
B e3 VY 22V (2R V2 oZ3 Vi o3 AV (kAx) if Ay =+1

where the Z! ~ N(v; A, A) (note the nonzero drift) are independent of each
other.

4 Calibrating the model

4.1 Calibrating daily parameters

As mentioned in Section 2.3 we would like to infer v, v], &1, &2, p12 and pi3
daily. The calibration of these parameters is divided into several steps.

4.1.1 v and v

We saw in Section 2.1 that the prices of variance swaps may be estimated
from the market prices of SPX options using equation (2.1). This computa-
tion requires a continuous set of option prices which we obtain by fitting the
SVI parametrization (see for example Gatheral and Jacquier (2012)) to the
volatility smile for each expiry. Then from (2.3), given k1, k2 and 6, vy and
v, may be obtained by linear regression.

4.1.2 51 and 52

The volatility parameters £; and & of the variance processes are obtained
by calibrating the model to the market prices of VIX options.
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We proxy the underlying of a VIX option by the expected forward vari-
ance in our model. The payoff of a call option on the VIX index with strike
K expiring at time T may therefore be written as

T+A
E [/ veds
T

where A is the length (approximately one month) of the VIX index. For each
Monte Carlo path we have a value for vy and v/, so the expected forward

+

7]k

variance [E [ fg A veds ‘ .FT} may be computed using (2.3). Averaging over
all paths gives the model price of the VIX option.

Our chosen objective function is the sum of squared difference between
market VIX option prices and the model VIX option prices, both expressed
in terms of Black-Scholes implied volatility. Errors are weighted by the
reciprocal of the bid-ask spread:

; 2
<U;nzd _ O.zmodel)
: : ask bid :
g — 0

i

The minimization is performed with a Levenberg-Marquardt algorithm,
setting starting values to &1 = 2.5 and & = 0.4, values typical of those that
we observe.

4.1.3 P12 and P13

We are then left with the two parameters p1o and pi3 to calibrate. These
are used to fit the SPX volatility surface. Our chosen objective function is
again the sum of squared differences between market SPX option prices and
model SPX option prices, all in implied volatility terms and weighted by the
reciprocal of the bid-ask spread.

The objective function can though have multiple local minima, which
lead to poor performance of the Levenberg-Marquardt algorithm. This is
especially true when using the EM algorithm in combination with pseudo
random numbers. To improve performance we need to find a good starting
point before applying the solver. We achieve this by evaluating the function
at a number of points and starting the Levenberg-Marquardt algorithm at
the best point.

When we fit the Heston model to SPX option data, the imputed stock-
volatility correlation parameter is typically around —0.7. It seems reasonable
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then that the two correlation parameters p12 and p13 should be in the same
ballpark. We therefore search for pj2 and pi3 in the region [—1,—0.5] x
[—1, —0.5], restricted by condition that p2; + p33 < 1. A good starting point
can be found by evaluating the objective function at 30 Sobol points in this
region.

4.2 Calibration examples with tests of Monte Carlo schemes

We now consider two calibration examples: One with data from April 3, 2007,
and the other with data from September 15, 2011. In both of these exam-
ples, we will compare the calibration performance of the modified Ninomiya-
Victoir scheme described in Section 3 with that of the Euler-Maruyama
scheme with partial truncation step described in Section 2.3. We thereby
test both the model and the calibration routines in pre- and post-crisis en-
vironments.

Our testing strategy is as follows: With respectively 27 = 512,21 = 2048
and 2!3 = 8192 paths we calibrate the model using 6, 10, 20, . . ., 100, 200, 300,
400, 500, 1000, 2000 time steps, thereby obtaining calibrated values for £; and
&.

For each such calibration we obtain optimal volatility parameters. For
example 7P 63011 and &F t’30’117 are optimal parameters for a calibration with
30 time steps and 2'! paths. Using the optimal parameters we then perform
another Ninomiya-Victoir Monte Carlo simulation with 2'¢ = 65,536 paths
and 500 timesteps. This latter simulation we use to measure how well the
parameters obtained by the calibration fit the market. This is done by
calculating the mean squared error objective function (RMSE) between the
model prices obtained using 2'® = 65,536 paths, 500 timesteps and the
market prices. We can then assess what the minimum required number of
paths and time steps is to obtain a calibration accurate enough for practical
applications.

We also compare the performance of a classic Monte Carlo (MC) scheme
using pseudo random numbers with that of a Quasi Monte Carlo (QMC)
scheme using Sobol quasi random numbers. If the dimension of the inte-
gration problem is small, Quasi Monte Carlo should theoretically result in
a lower integration error compared to Monte Carlo. Increasing the num-
ber of dimensions however decreases the efficiency of the Quasi Monte Carlo
method and at some point the Monte Carlo method beats it with a lower
integration error. In our implementation, the dimension of the integration
problem is the number of time steps times the number of random variables
required per timestep (which is three for EM and four for NV due to the
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coin flip).

There exists a number of heuristic ways to deal with the curse of di-
mensionality of QMC, see for example da Silva and Barbe (2005). These
methods will though not be tried out.

All computations were run on an ASUS desktop with an Intel Core i3 cpu
at 2.40 GHz CPU and 4GB memory. The simulations were done in Java using
the SSJ package, see “http://www.iro.umontreal.ca/ simardr/ssj/indexe.html”.
For the Sobol sequences we used the built in direction numbers up to 360 di-
mensions. Sequences with more dimension were created using direction num-
bers from the webpage “http://web.maths.unsw.edu.au/ fkuo/sobol/new-
joe-kuo-6.212017, these have been obtained using the search criteria D(©)
see Joe and Kou (2008). Pseudo random numbers were generated using the
Mersenne twister, MT19937. Optimization were done using the Levenberg-
Marquardt algorithm present in the SSJ package, this is a Java translation
of the MINPACK routine, see More et al. (1980).

4.3 April 3, 2007
4.3.1 The data

The SPX option dataset contains prices for 421 options, 388 of them include
both bid and ask prices, we only use these options in our calibration. There
are 14 different option maturities in the dataset ranging from 0.005 to 2.71
years, the forward for the first maturity is 1438.62 and for the last maturity
1556.75. The strikes for the different options lie in the interval 600 to 2000.
The VIX option dataset contains prices for 108 options, 96 of them include
both bid and ask prices, again we only use options with both bid and ask
prices. The dataset contains 7 different maturities ranging from 0.04 years
to 1.13 years. The forward for the first maturity is 13.97 and 15.29 for the
last maturity. Strikes lie in the interval 10 to 30.

4.3.2 Calibration of v and vy

As explained in Section 4.1.1, we use linear regression to calibrate model
variance swaps to market variance swaps (proxied by the SVI log-strip) giving
us the parameters

vp = 0.0153,
vy = 0.0224.

The resulting fit is graphed in Figure 1.
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Figure 1: SPX market variance swaps as points together with the calibrated model
variance swap curve (solid line). Data from April 3, 2007.

4.3.3 Calibration of & and &2 to VIX options

In Figure 2 we have graphed the RMSE from the different calibrations as a
function of number of timesteps used.

n
N = EM 9 ]
-
——
—
A
—A
w w
7] 7]
= =
x x
I I I I I I I I I I I I I I I I
10 20 50 200 500 2000 10 20 50 200 500 2000
Time steps Time steps
(a) Pseudo random numbers (b) Quasi random numbers

Figure 2: RMSE from NV and EM calibration of the DMR model to VIX option prices
from the 3rd of April 2007. We have set a1 = a2 = 0.94. Pseudo random number are
used in (a) and quasi random numbers are used in (b). The legend in (a) specifies the
method and the log, number of paths.
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The figure clearly indicate that a lower bound for the calibration RMSE
exists around 0.8. Even with 2! paths we do not get below this barrier. We
see a clear advantage of using the NV scheme compared to the EM scheme.
Using the NV scheme a calibration can be done using 20 — 30 timesteps and
2 or 213 paths. In comparison we need 400 — 500 timesteps if we use the
EM scheme. Therefore we can reduce the number of timesteps by a factor
of 15 or so.

The integration error seems to be negligible at 2! paths. A good com-
promise between calibration quality and computational cost therefore seems
to be an NV scheme using 2! paths and 30 timesteps.

In Figure 3 we graph market VIX Black-Scholes implied volatility smiles
together with model smiles. The model parameters £; and & were calibrated
to the market using MC with 30 NV time steps and 2'' paths. Total cali-
bration time was 1.47 seconds. The resulting calibrated & parameters are:

£ = 2.873,
€5 = 0.302.

Model option prices were then computed using 100 NV QMC time steps and
216 paths. By inspection of Figure 3, the quality of the calibration is quite
acceptable, though VIX option bid-ask spreads are admittedly wide.

4.3.4 Calibration of p12 and pi3 to SPX options

This test consists in fixing all parameters including the values of & and &
found by the MC-NV calibration of section 4.3.3.

Let us start by doing a normal Levenberg-Marquadt calibration started
in (—0.7,—0.7), without an initial search for an optimal point. Figure 4
shows the RMSE results

The NV scheme performs acceptably, especially using 2'2 paths, but
the 29 paths calibration seems to be unacceptably off. The EM scheme
shows strange behavior: note that for the first number of time steps the
29 paths calibration does best of all the methods, while the EM scheme
with more paths shows jumpy behavior, sometimes it finds a good minimum
other times it does not. In order to improve the method we use the simple
search algorithm described in Section 4.1.3. In Figure 5 we have applied
this before the Levenberg-Marquardt optimizer. After the search algorithm
has been applied the EM scheme performs just as well if not better than
the NV scheme. The NV scheme with 2™ paths and 30 time steps could in
principle save us from using the search algorithm but since the NV scheme
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Figure 3: Implied Black volatilities for VIX options on April 3, 2007 (bid price (red
dots), ask price (blue dots) and mid price (green line)) and model prices from a QMC-NV
scheme using 100 time steps and 2'® paths (yellow line). The model parameters & and &2
are obtained by a calibration using a MC-NV scheme with 30 time steps and 2'* Monte
Carlo paths.

is much more involved than the EM scheme we will not obtain a speedup.
The RMSEs reported in Figure 5 clearly show that 2! QMC paths are
sufficient in order to obtain a good calibration. The spikes in figure 5(a)
seems strange, but they only exists for a low number of paths and for pseudo
random number. We conclude that it is best to use quasi random numbers
when calibrating to SPX options.

In Figure 6, we graph market SPX Black-Scholes implied volatility smiles
together with model smiles. The correlation parameters p1o and pi3 were
calibrated to the market using QMC with 30 EM time steps and 2! paths.
Total calibration time was 2.94 seconds in this case. The resulting calibrated
parameters are:

P12 = —0.992,
p13 = —0.615

Model SPX option prices were again computed using a QMC-NV scheme
with 100 time steps and 2'6 paths.

Inspecting Figure 6, we note that the DMR model fits longer expiration
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Figure 4: RMSE from NV and EM calibration of the DMR model to SPX option prices
from the 3rd of April 2007. We have set a1 = a2 = 0.94, & = 2.873, &2 = 0.302 and the
calibration is done with quasi random numbers using a Levenberg-Marquardt optimizer
starting in (—0.7,—0.7). The legend specifies the method and the log, number of paths.
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Figure 5: RMSE from NV and EM calibration of the DMR model to SPX option prices
from the 3rd of April 2007. We have set a1 = az = 0.94, & = 2.873, &2 = 0.302. Pseudo
random number are used in (a) and quasi random numbers are used in (b). The legend
in (b) specifies the method and the log, number of paths.

SPX option smiles very well, shorter expirations somewhat less well. This of
course is not unexpected for a three-factor model of the DMR type. Note the
kinks in the model implied volatilities for 7" = 0.049 and 0.20. These appear
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Figure 6: Implied Black volatilities for SPX options on April 3, 2007 (bid price (red
dots), ask price (blue dots) and mid price (green line)) and model prices from a QMC-NV
scheme using 100 time steps and 2'® paths (yellow line). The parameters for the model
have been obtained using an NV scheme with 30 time steps and 2'' paths to calibrate
the model to the VIX options, and an EM scheme with 30 time steps and 2! paths to
calibrate the model to the SPX options.
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since we use too few paths, the model will therefore produce a time value of
zero for options far from ATM. Finally, we observe that the calibrated pa-
rameters are quite consistent with those reported in Gatheral (2008), except
p12. However the calibration routine described here runs very much faster.

4.3.5 Calibration RMSE

One could argue that the preceeding tests only examine whether or not
the methods produce parameters that are good, and not that the schemes
with the chosen number of paths and time steps fit the market prices. In
figure 7 we graph the RMSE between the market prices and the model prices
calculated with the same number of paths and timesteps that we use in
the calibrations. We have for example obtained §fpt’30’11 and ‘ffpt’so’n the
optimal parameters for a calibration with 30 time steps and 2'! paths. To
obtain the calibration RMSE we first simulate the model using 30 time steps,
211 paths, ffpt’go’n and 5;)}215,30,11. Then we calculate the RMSE between these
model prices and market prices.

For the VIX options we do not observe that big a difference from the
previous RMSE graph. The RMSE only become a bit more bumpy, which
is expected since we have higher integration error. The NV scheme with 2'3
or 2 paths can fit market prices with relatively few steps while the EM
scheme needs at least 200 steps.

For SPX options we observe that the NV scheme with 2! or 2! paths and
relatively few time steps generates good fits to market prices. In contrast,
the EM scheme requires a large number of time steps to achieve the same
fit quality. Nevertheless, if we are concerned only with calibration, the EM
scheme does produce perfectly acceptable parameters with few time steps at
significantly lower computational cost than NV.

4.4 September 15, 2011

The dataset of Section 4.3 is from a period before the 2008 financial crisis.
To investigate whether the model still works under more recent market con-
ditions, and to further compare simulation schemes, we now calibrate the
DMR model to data from September 15, 2011.

4.4.1 The data

The SPX option dataset contains prices for 1176 options, 931 of them with
both bid and ask prices, which we use in our calibration. The dataset con-
tains 14 different maturities ranging from 0.0027 to 2.26 years. The strikes
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Figure 7: RMSE from NV and EM calibration of the DMR model to VIX and SPX
option prices from the 3rd of April 2007. We have set a1 = a2 = 0.94 and for the
calibration to SPX options we have also set £; = 2.873, £&2 = 0.302. Calibration to VIX
options are considered in (a) with pseudo random numbers and in (b) with quasi random
numbers. Calibration to SPX options are considered in (c) with quasi random numbers
but without the search algorithm and in (d) with quasi random number and the search
algorithm. The legend in (a) specifies the method and the log, number of paths.

range from 100 to 3000. The forward for the first maturity is 1207.70 and
for the last maturity 1159.83.
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The VIX option data contains prices for 202 options, 148 of them have
both bid and ask prices, again these are options we consider in our calibra-
tion. The dataset contains 6 different maturities ranging from 0.016 years
to 0.42 years. The strikes ranges from 17 to 100. The forward is 33.23 for
the first maturity and 31.29 for the last maturity.

4.4.2 Calibration of the parameters
Using linear regression to calibrate vy and v, gives us the parameters

vo = 0.114,
vy = 0.110.

We then test how well the various simulation schemes calibrate the model
to VIX options as in Section 4.3.3, presenting the results in figure 8.
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(a) Pseudo random numbers (b) Quasi random numbers

Figure 8: RMSE from NV and EM calibration of the DMR model to VIX option prices
from the 15th of September 2011. We have set a1 = a2 = 0.94. Pseudo random number
are used in (a) and quasi random numbers are used in (b). The legend in (a) specifies the
method and the log, number of paths.

The NV discretization again beats the EM discretization but the differ-
ence is not as significant as in the 2007 example, requiring of the order of a
factor 10 fewer time steps. The reasons for the decrease in relative perfor-
mance are twofold: There are no long-dated VIX options in the 2011 dataset,
and the volatility processes have higher starting values.
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The longest VIX options have a maturity of 1.13 years in the 2007 dataset
and 0.42 years in the 2011 dataset. We therefore expect the EM scheme to
use (1):% = 2.69 as many time steps in 2007 than in 2011, everything else
being equal. Since the NV-scheme is second order convergent it will only use
Vv2.69 = 1.64 as many time steps in 2007 than in 2011.

The higher value for the volatility processes means that they will hit
zero less frequently. This affects both schemes in a positive way. We can
therefore reduce the number of timesteps for both schemes compared to the
2007 calibration. But there exists a lower bound, the number of VIX option
maturities we need to hit. Therefore the number of timesteps cannot be
lower than 6, even though the NV scheme could approximate the longest
maturity well with fewer equidistant timesteps.

In Figure 9 we graph market VIX Black-Scholes implied volatility smiles
together with model smiles. The calibrated £ parameters are

£ = 2.689,
€5 = 0.502.

they were obtained using an MC-NV scheme with 6 time steps and 2!! paths.
Model option prices were then computed using 100 NV QMC time steps and
216 paths.

We observe that the DMR model generates VIX smiles that are too flat.
This suggests that the lognormal DMR model with oy = a9 = 1, which is
faster to simulate, may also fit better. We investigate this in Section 4.5.
The bid-ask spread have also decreased compared to the 2007 data, making
it harder for the model to hit the market prices.

Using & and & just obtained we then calibrate correlation parameters.
Results from this calibration are presented in Figure 10.

Again, we see no advantage in using the NV discretization over the sim-
pler (and less costly) EM discretization. Again we conclude that quasi ran-
dom numbers have to be used when calibrating to SPX options.

In Figure 12 we graph market SPX Black-Scholes implied volatility smiles
together with model smiles. The model parameters p12 and pi3 were cali-
brated to the market using QMC-EM scheme with 14 time steps, 2!! paths
and search for a good starting point. The resulting calibrated p parameters
are:

P12 = —0.982,
p13 = —0.727.

29



T=0.016 T=0.093 T=0.17

n — o
> | <
3 < 3 b 3~ b
> > >
T - T - | - O _] 7z
Sad N Al 0] o | 291 o
E &£ E 4] V E g M
e Ch
T T T 1 T T T 1 T T T 1
-1.0 0.0 1.0 -1.0 0.0 1.0 -1.0 0.0 1.0
Log-Strike Log-Strike Log-Strike
T=0.27 T=0.34 T=0.42
~ N
~ | a -
_ _— - — p—
sTr s T s.T
2 =] M 8 5 %% B ST
£°] « Y B T
—_ - @, —_ , —_
. %‘#y «| & <] -
© T T T T 1 © T T T 1 © T T T 1
-1.0 0.0 1.0 -1.0 0.0 1.0 -1.0 0.0 1.0
Log-Strike Log-Strike Log-Strike

Figure 9: Implied Black volatilities for VIX options on September 15, 2011 (bid price
(red dots), ask price (blue dots) and mid price (green line)) and model prices from a
QMC-NV scheme using 100 time steps and 2'¢ paths (yellow line). The model parameters
& and & are obtained by a calibration using a NV scheme with 6 time steps and 2'!
Monte Carlo paths.

Model option prices were then computed using 100 NV QMC time steps
and 2'6 paths. As with the 2007 calibration, the DMR model fits SPX option
prices well except for very short expirations.

4.5 Lognormal DMR model calibration to 2011 data

In the previous section we saw that a model where a; = as = 0.94 generates
VIX option smiles that are too flat compared to the market prices of our
2011 example. In order to increase the steepness of the smile we calibrate
the simpler lognormal DMR model with a; = as = 1.

In Figure 11 we graph the VIX option smiles obtained from the lognor-
mal model. The volatility parameters have been obtained using an MC-NV
scheme with 10 time steps and 2'' paths. The smiles have steepened com-
pared to the graph in Section 4.4.2, the lognormal DMR model therefore
fits the market better than the more complicated DMR model calibrated in
Section 4.4.2. But the option smiles still seem to be too flat. From Figure
12 we see that calibrating the double lognormal model to the SPX options
yields more or less the same smiles as before.
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Figure 10: RMSE from NV and EM calibration of the DMR model to SPX option prices
from the 15th of September 2011. We have set a1 = a2 = 0.94, £&; = 2.689 and & = 0.502.
Pseudo random number are used in (a) and quasi random numbers are used in (b). The
legend in (b) specifies the method and the log, number of paths.

4.6 Computation times

As we have seen, the NV-scheme can reduce by a large factor the number of
time steps needed to achieve a good calibration of the DMR model to VIX
options. In the 2007 example we got a reduction of a factor 15 — 20 and in
the 2011 example we got a reduction of a factor 10. But this will not lead to
an equivalent reduction in computation time because the NV discretization
involves more computation and is therefore slower.

In Table 1, we present the empirical computational cost of the NV dis-
cretization relative to the EM discretization. The results are obtained using
quasi random numbers, we get almost the same results if we use pseudo ran-
dom numbers. Because of the drift trick, the NV discretization step is much
simpler in the case vy = ao = 1 therefore we present this case separately.
2D is the case where we only simulate the variance processes i.e. when we
have to price VIX options. 3D is the simulation of the full model.

We conclude that it is better to use the EM discretization when calibrat-
ing to SPX options where there is little if any RMSE reduction benefit from
using the NV step. However, for VIX options, we can achieve a speedup of
4 times in the 2007 example, 2 in the 2011 example and 5 in the 2011 log-
normal DMR example. In summary, the optimal calibration recipe appears
to be:
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Figure 11: Implied Black volatilities for VIX option prices on September 15, 2011 (bid
price (red dots), ask price (blue dots) and mid price (green line)) and model prices from
QMC-NV with 100 time steps and 2'® paths (yellow line). The parameters are obtained
by calibration using 10 NV time steps and 2! QMC paths.

2D | 3D
ap =ag =094 | 455 | 6.84
ap =ay =1 1.81 | 3.08

Table 1: Relative computation times for NV steps in terms of EM steps. 2D means
simulation of the variance process only (i.e. for VIX options); 3D means simulation of the
full model. The values are obtained by simulating with 90 time steps and 2'® QMC paths
using the parameters obtained in the 2011 calibrations.

e Calibrate & and & with a Ninomiya-Victoir scheme.
e Calibrate p12 and p13 with an Euler-Maruyama scheme.

Using Java code with 30 time steps and 2'! paths we can typically calibrate
the model to both SPX and VIX option markets in approximately 5 seconds.
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parameters for the model have been obtained using the NV scheme with 6 time steps and
2™ Monte Carlo paths to calibrate the model to the VIX options, and an EM scheme
with 14 time steps and 2*' Quasi Monte Carlo paths to calibrate the model to the SPX

options.
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5 Convergence of the discretization schemes

Having demonstrated in Section 4 that we have fast and accurate calibra-
tion of the DMR model to VIX and SPX options and moreover that fits
to the market are good, we focus in this section on numerical tests of the
convergence of the Ninomiya-Victoir (NV) discretization scheme presented
in Section 3.2 relative to that of the Euler-Maruyama scheme with partial
truncation presented in Section 2.3.

We use parameters resulting from the calibrations of Section 4.4 summa-
rized in Table 2. We consider options with a maturity of one year and three

0 0.078
K1 5.5
K9 0.1
P23 0.59
Vo 0.114
vl 0.110
(651 0.94
a9 0.94
3 2.689
& 0.502
p12 = p12 | —0.982
p13 = p13 | —0.727
P23 —0.656

Table 2: Parameters from the calibration to data from September 15, 2011 with a; =
Qo = 0.94.

different strikes, 0.8 times the forward, ATM and 1.2 times the forward. All
option prices are computed using randomized QMC. The randomization is
done by scrambling the net and then adding a random shift to the QMC
numbers, see Glasserman (2004). This is done in order to obtain a Monte
Carlo error around the price.

The "true" option prices are computed using 8 independent realizations,
each realization is calculated using the NV scheme with 200 time steps and
227 = 134,217,728 QMC paths.

To obtain convergence graphs we calculate option prices using 5, 10, 20, 30, 50, 70
timesteps for the NV scheme and 5, 10, 20, 30, 50, 70, 100, 200, 500 timesteps
for the EM scheme. We simulate 64 indepedent realizations of the NV prices
and 128 indepedent realizations of the EM prices, each price is computed us-
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Figure 13: Pricing error for 1 year VIX and SPX options in a DMR model with param-
eters from 15th of September 2011 where a1 = a2 = 0.94. A confindence interval of two
standard deviations around the error are marked with the dashed lines. The legend in (a)

specifies the method.

The VIX option graphs in Figure 13 clearly show that the NV scheme has
second order convergence while the EM scheme only converges with order
one. For SPX options the picture is blurred a bit by the strange behavior
of the EM scheme. There seems to be a kink in the error graph around 50
timesteps. The kink exists because the EM scheme with a small number of
time steps creates too high option prices, while the EM scheme with a large
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number of steps creates too low option prices. Therefore the EM scheme
price has to cross the "true" price at one point, this point lies around 50
time steps. After the kink we see first order convergence of the EM scheme.
The NV scheme clearly shows second order convergence.

In Lord et al. (2010) the Ninomiya-Victoir scheme was found inferior
to the full truncation scheme when simulating the Heston model. In the
Heston model the stochastic volatility is a CIR process (a3 = 0.5 and no v}),
but in the DMR model we consider a; ~ 1. If the parameters of the CIR
process violate the Feller condition, 0 is an attainable boundary, and even if
they satisfy the Feller condition the process can hit 0 when we simulate the
model discretely. If oy is closer to one this will happen less frequently. We
may therefore expect a method which is second order accurate for smooth
volatility and drift functions with bounded derivatives to perform better
when aq =~ 1.

Figure 13 (d)-(f) clearly show that the Ninomiya-Victoir scheme comes
much closer to the the true price of SPX options for a given number of
timesteps, this is also what we conclude from section 4.3.5. But we do not
need very precise option prices to infer good correlation parameters. Given
its significantly lower computational cost, the EM scheme is therefore to be
preferred when calibrating to SPX options.

As for pricing VIX options, (which Lord et al. (2010) do not consider),
our tests show that the outperformance of the NV scheme is sufficient for it to
be preferred over the EM scheme for the calibration of volatility parameters.

6 Conclusion

In this paper, we have presented two straightforward modifications of the
standard Ninomiya-Victoir discretization scheme that conserve second or-
der weak convergence but permit simple closed-form solutions to the ODE’s,
avoiding the use of numerical integration methods such as Runge-Kutta. Us-
ing these schemes for VIX options and the simpler Euler-Maruyama scheme
for SPX options, we demonstrated that it is possible to achieve fast and ac-
curate calibration of the DMR model of Gatheral (2008) to both SPX and
VIX options markets simultaneously. Moreover, we demonstrated that the
DMR model fits SPX and VIX options market data well for two particular
dates chosen to represent two very different market environments from be-
fore and after the 2008 financial crisis. The fitted parameters of the model
over time appear to be remarkably stable.

Finally we performed an empirical analysis of the convergence of the
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Ninomiya-Victoir (NV) and Euler-Maruyama discretization schemes demon-
strating that the NV scheme was indeed second-order weak convergent.
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