A renewal theorem 00

The sub-ballistic regime

Aging for 1D transient RWRE in the sub-ballistic regime

Olivier Zindy (WIAS, Berlin)

with Nathanaël Enriquez and Christophe Sabot

A renewal theorem 00

The sub-ballistic regime

The model

Environment : ω = (ω_x, x ∈ Z) i.i.d. random variables in (0,1).
 P ≡ law of ω. E ≡ expectation under P.

A renewal theorem 00

The sub-ballistic regime

The model

- Environment : ω = (ω_x, x ∈ Z) i.i.d. random variables in (0,1).
 P ≡ law of ω. E ≡ expectation under P.
- ω fixed, <u>RWRE</u> : $X = (X_n, n \ge 0)$:

$$P_{\omega} (X_{n+1} = x + 1 | X_n = x) = \omega_x,$$

$$P_{\omega} (X_{n+1} = x - 1 | X_n = x) = 1 - \omega_x.$$

 $P_{\omega} \equiv$ law of X in the environment ω : **quenched law**.

A renewal theorem

The sub-ballistic regime

The model

- Environment : ω = (ω_x, x ∈ Z) i.i.d. random variables in (0,1).
 P ≡ law of ω. E ≡ expectation under P.
- ω fixed, <u>RWRE</u> : $X = (X_n, n \ge 0)$:

$$P_{\omega} (X_{n+1} = x + 1 | X_n = x) = \omega_x,$$

$$P_{\omega} (X_{n+1} = x - 1 | X_n = x) = 1 - \omega_x.$$

 $P_{\omega} \equiv$ law of X in the environment ω : **quenched law**.

• $\mathbb{P} \equiv \text{joint law of } (\omega, (X_n)) :$ annealed law. $\mathbb{E} \equiv \text{expectation}$ under \mathbb{P} .

A renewal theorem

The sub-ballistic regime

Transition probabilites

A renewal theorem 00

The sub-ballistic regime

Transience-recurrence criterion

Notations :

$$\rho_x := \frac{1 - \omega_x}{\omega_x}, \qquad x \in \mathbb{Z}.$$

A renewal theorem

The sub-ballistic regime

Transience-recurrence criterion

Notations :

$$\rho_x := \frac{1 - \omega_x}{\omega_x}, \qquad x \in \mathbb{Z}.$$

Theorem (Solomon, 1975)

If $E[\log \rho_0]$ is defined, $(X_n, n \ge 0)$ is recurrent iff $E[\log \rho_0] = 0$.

The sub-ballistic regime

Law of large numbers

Theorem (Solomon, 1975)

There exists $v \in [-1, 1]$, which depends only on the environment, such that, \mathbb{P} -a.s.,

$$\frac{X_n}{n} \longrightarrow v, \qquad n \to \infty,$$

The sub-ballistic regime

Law of large numbers

Theorem (Solomon, 1975)

There exists $v \in [-1, 1]$, which depends only on the environment, such that, \mathbb{P} -a.s.,

$$\frac{X_n}{n} \longrightarrow v, \qquad n \to \infty,$$

where v satisfies

$$v := \begin{cases} \frac{1-E[\rho_0]}{1+E[\rho_0]} > 0 & \text{if } E[\rho_0] < 1, \\ 0 & \text{if } (E[\rho_0^{-1}])^{-1} \le 1 \le E[\rho_0], \\ \frac{E[\rho_0^{-1}]-1}{E[\rho_0^{-1}]+1} < 0 & \text{if } 1 < (E[\rho_0^{-1}])^{-1}. \end{cases}$$

A renewal theorem

The sub-ballistic regime

The recurrent case : Sinai's walk

Theorem (Sinai, 1982)

If $E[\log \rho_0] = 0$ (and technical conditions), then

$$\frac{\sigma^2}{(\log n)^2} X_n \xrightarrow{law} b_\infty \,,$$

where $\sigma^2 := \operatorname{Var}[\log \rho_0] > 0$.

The sub-ballistic regime

Potential

<u>Potential</u> : $V = (V(x), x \in \mathbb{Z})$:

The sub-ballistic regime

Potential

<u>Potential</u> : $V = (V(x), x \in \mathbb{Z})$:

$$V(x) := \begin{cases} \sum_{i=1}^{x} \log\left(\frac{1-\omega_i}{\omega_i}\right) & \text{if } x \ge 1, \\ 0 & \text{if } x = 0, \\ -\sum_{i=x+1}^{0} \log\left(\frac{1-\omega_i}{\omega_i}\right) & \text{if } x \le -1. \end{cases}$$

The sub-ballistic regime

Potential

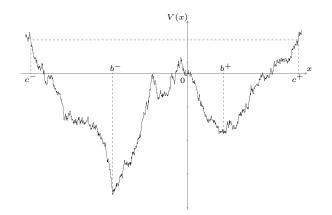
<u>Potential</u> : $V = (V(x), x \in \mathbb{Z})$:

$$V(x) := \begin{cases} \sum_{i=1}^{x} \log \rho_i & \text{if } x \ge 1, \\ 0 & \text{if } x = 0, \\ -\sum_{i=x+1}^{0} \log \rho_i & \text{if } x \le -1. \end{cases}$$

A renewal theorem

The sub-ballistic regime

Example of potential



The sub-ballistic regime

Valleys and localization

• <u>Valleys</u> : (a, b, c) such that a < b < c and :

$$\begin{split} \min_{\substack{a \leq x \leq c}} V(x) &= V(b), \\ \max_{\substack{a \leq x \leq b}} V(x) &= V(a), \\ \max_{\substack{b \leq x \leq c}} V(x) &= V(c). \end{split}$$

The sub-ballistic regime

Valleys and localization

• <u>Valleys</u> : (a, b, c) such that a < b < c and :

$$\begin{split} & \min_{a \leq x \leq c} V(x) &= V(b), \\ & \max_{a \leq x \leq b} V(x) &= V(a), \\ & \max_{b \leq x \leq c} V(x) &= V(c). \end{split}$$

• <u>Height</u> : $H = H_{(a,b,c)} := \min(V(c) - V(b), V(a) - V(b)).$

The sub-ballistic regime

Valleys and localization

• <u>Valleys</u> : (a, b, c) such that a < b < c and :

$$\min_{a \le x \le c} V(x) = V(b),$$

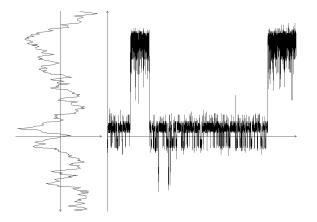
$$\max_{a \le x \le b} V(x) = V(a),$$

$$\max_{b \le x \le c} V(x) = V(c).$$

- <u>Height</u> : $H = H_{(a,b,c)} := \min(V(c) V(b), V(a) V(b)).$
- **<u>Golosov</u>** (1984) : Exit time $\simeq e^H$.

The sub-ballistic regime

Valley and localization in the recurrent case



The sub-ballistic regime

The sub-ballistic regime

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E\left[\rho_0^{\kappa}\right] = 1$ (and technical conditions).

The sub-ballistic regime

The sub-ballistic regime

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E\left[\rho_0^{\kappa}\right] = 1$ (and technical conditions).

Theorem (Kesten-Kozlov-Spitzer, 1975)

Under (a), we have :

$$\begin{array}{ccc} \frac{\tau(n)}{n^{1/\kappa}} & \xrightarrow{\mathrm{law}} & c_{\kappa} \mathcal{S}_{\kappa}^{ca}, & n \to \infty, \\ \\ \frac{X_n}{n^{\kappa}} & \xrightarrow{\mathrm{law}} & c_{\kappa}' \left(\frac{1}{\mathcal{S}_{\kappa}^{ca}}\right)^{\kappa}, & n \to \infty \end{array}$$

where S_{κ}^{ca} is a completely asymmetric stable law of index κ .

A renewal theorem

The sub-ballistic regime

The sub-ballistic regime

 $\underline{\mathsf{Proof}}$: Branching process in random environment with immigration.

No potential!

The sub-ballistic regime

Main result : aging phenomenon

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E\left[\rho_0^{\kappa}\right] = 1$ (and technical conditions).

Main result : aging phenomenon

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E\left[\rho_0^{\kappa}\right] = 1$ (and technical conditions).

Theorem (Enriquez-Sabot-Z., 2007)

Under assumption (a), we have, for all h > 1 and all $\eta > 0$,

$$\lim_{t \to \infty} \mathbb{P}(|X_{th} - X_t| \le \eta \log t) = \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa - 1} (1 - y)^{-\kappa} \, \mathrm{d}y.$$

Main result : aging phenomenon

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E[\rho_0^{\kappa}] = 1$ (and technical conditions).

Theorem (Enriquez-Sabot-Z., 2007)

Under assumption (a), we have, for all h > 1 and all $\eta > 0$,

$$\lim_{t \to \infty} \mathbb{P}(|X_{th} - X_t| \le \eta \log t) = \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa - 1} (1 - y)^{-\kappa} \, \mathrm{d}y.$$

Remark

Universality of the Bouchaud's trap model.

A renewal theorem $\circ\circ$

The sub-ballistic regime

A renewal theorem of Dynkin

A renewal theorem $\bullet \circ$

The sub-ballistic regime

A renewal theorem of Dynkin

• $(Y_i)_{i\geq 1}$ i.i.d. and heavy tailed : $\mathbb{P}(Y_i\geq u)\sim u^{-\alpha}$, with $\alpha\in(0,1)$.

A renewal theorem $\bullet \circ$

A renewal theorem of Dynkin

- $(Y_i)_{i\geq 1}$ i.i.d. and heavy tailed : $\mathbb{P}(Y_i\geq u)\sim u^{-\alpha}$, with $\alpha\in(0,1)$.
- Renewal process : $S_n := \sum_{i=1}^n Y_i$, for $n \ge 0$.

A renewal theorem of Dynkin

- $(Y_i)_{i\geq 1}$ i.i.d. and heavy tailed : $\mathbb{P}(Y_i\geq u)\sim u^{-\alpha}$, with $\alpha\in(0,1)$.
- Renewal process : $S_n := \sum_{i=1}^n Y_i$, for $n \ge 0$.
- Last renewal epoch before time t defined by

$$N_t := \sup\{n \ge 0 : S_n \le t\}, \qquad t \ge 0.$$

A renewal theorem $\bullet \circ$

A renewal theorem of Dynkin

- $(Y_i)_{i\geq 1}$ i.i.d. and heavy tailed : $\mathbb{P}(Y_i\geq u)\sim u^{-\alpha}$, with $\alpha\in(0,1)$.
- Renewal process : $S_n := \sum_{i=1}^n Y_i$, for $n \ge 0$.
- Last renewal epoch before time t defined by

$$N_t := \sup\{n \ge 0 : S_n \le t\}, \qquad t \ge 0.$$

• Spent waiting time and residual waiting time :

$$A_t := t - S_{N_t}, \quad t \ge 0, R_t := S_{N_t+1} - t, \quad t \ge 0.$$

A renewal theorem $\circ \bullet$

The sub-ballistic regime

A renewal theorem of Dynkin

Theorem (Dynkin)

For all $0 \le x_1 < x_2 \le 1$, we have

$$\lim_{t \to \infty} \mathbb{P}\left(x_1 \le \frac{A_t}{t} \le x_2\right) = \frac{\sin(\alpha \pi)}{\pi} \int_{x_1}^{x_2} \frac{x^{-\alpha}}{(1-x)^{\alpha-1}} \,\mathrm{d}x.$$

For all $0 \le x_1 < x_2$, we have

$$\lim_{t \to \infty} \mathbb{P}\left(x_1 \le \frac{R_t}{t} \le x_2\right) = \frac{\sin(\alpha \pi)}{\pi} \int_{x_1}^{x_2} \frac{\mathrm{d}x}{x^{\alpha}(1+x)}$$

A renewal theorem 00

The sub-ballistic regime

The sub-ballistic regime : analysis of the potential

A renewal theorem

The sub-ballistic regime

Assumptions

(a) There exists $0 < \kappa < 1$ such that $E[\rho_0^{\kappa}] = 1$ (and technical conditions).

A renewal theorem

The sub-ballistic regime ○●○ ○○○ ○○○ ○○○

Potential

$$V(x) := \begin{cases} \sum_{i=1}^{x} \log \rho_i & \text{if } x \ge 1, \\ 0 & \text{if } x = 0, \\ -\sum_{i=x+1}^{0} \log \rho_i & \text{if } x \le -1. \end{cases}$$

A renewal theorem 00

The sub-ballistic regime ○●○ ○○○ ○○○○○○

Potential

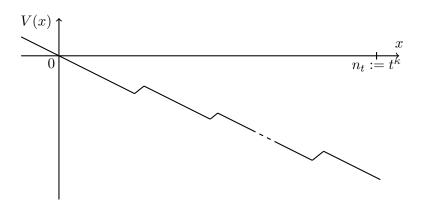
$$V(x) := \begin{cases} \sum_{i=1}^{x} \log \rho_i & \text{if } x \ge 1, \\ 0 & \text{if } x = 0, \\ -\sum_{i=x+1}^{0} \log \rho_i & \text{if } x \le -1. \end{cases}$$

<u>Remark</u> : Assumption (a) implies $E[\log \rho_0] < 0$.

A renewal theorem

The sub-ballistic regime

Potential and valleys



A renewal theorem 00

The sub-ballistic regime

Potential and valleys

• Excursions of the potential above its past minimum

$$e_0 := 0,$$

 $e_i := \inf\{n > e_{i-1} : V(n) \le V(e_{i-1})\}, \quad i \ge 1.$

A renewal theorem 00

The sub-ballistic regime

Potential and valleys

• Excursions of the potential above its past minimum

$$e_0 := 0,$$

$$e_i := \inf\{n > e_{i-1} : V(n) \le V(e_{i-1})\}, \quad i \ge 1.$$

•
$$(V(x) - V(e_{i-1}), e_{i-1} \le x \le e_i)_{i \ge 1}$$
 are i.i.d.

A renewal theorem 00

The sub-ballistic regime

Potential and valleys

• Excursions of the potential above its past minimum

$$e_0 := 0,$$

$$e_i := \inf\{n > e_{i-1} : V(n) \le V(e_{i-1})\}, \quad i \ge 1.$$

•
$$(V(x) - V(e_{i-1}), e_{i-1} \le x \le e_i)_{i \ge 1}$$
 are i.i.d.

• Under (a), we have $E[e_1] < \infty$.

A renewal theorem 00

The sub-ballistic regime

Potential and valleys

• Excursions of the potential above its past minimum

$$e_0 := 0,$$

$$e_i := \inf\{n > e_{i-1} : V(n) \le V(e_{i-1})\}, \quad i \ge 1.$$

•
$$(V(x) - V(e_{i-1}), e_{i-1} \le x \le e_i)_{i \ge 1}$$
 are i.i.d.

• Under (a), we have
$$E[e_1] < \infty$$
.

• Iglehart's result : $P\{H > h\} \sim C_I e^{-\kappa h}, h \to \infty$.

A renewal theorem 00

Potential and valleys

• Excursions of the potential above its past minimum

$$e_0 := 0,$$

$$e_i := \inf\{n > e_{i-1} : V(n) \le V(e_{i-1})\}, \quad i \ge 1.$$

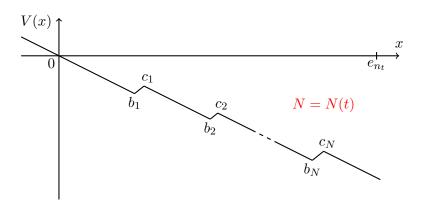
•
$$(V(x) - V(e_{i-1}), e_{i-1} \le x \le e_i)_{i \ge 1}$$
 are i.i.d.

- Under (a), we have $E[e_1] < \infty$.
- Iglehart's result : $P\{H > h\} \sim C_I e^{-\kappa h}, h \to \infty$.
- Deep valleys : boxes constructed around excursions higher $\overline{\text{than } h_t := \log t \log \log t}$.

A renewal theorem 00

The sub-ballistic regime

Potential and valleys



A renewal theorem

The sub-ballistic regime

Valleys' properties

• "Directed" property.

A renewal theorem 00

The sub-ballistic regime

Valleys' properties

- "Directed" property.
- The time spent between deep valleys is negligible :

$$\tau(d_N) \simeq \tau(b_1, d_1) + \tau(b_2, d_2) + \dots + \tau(b_N, d_N).$$

A renewal theorem

The sub-ballistic regime

Valleys' properties

- "Directed" property.
- The time spent between deep valleys is negligible :

$$\tau(d_N) \simeq \tau(b_1, d_1) + \tau(b_2, d_2) + \dots + \tau(b_N, d_N).$$

• The valleys are well separated : "i.i.d." property.

A renewal theorem

The sub-ballistic regime

Occupation time

• Height :
$$H_k := V(c_k) - V(b_k)$$
, for $k \ge 1$.

A renewal theorem

The sub-ballistic regime

Occupation time

- Height : $H_k := V(c_k) V(b_k)$, for $k \ge 1$.
- Exact computation : $\forall \lambda > 0$,

$$E_{\omega}\left[\mathrm{e}^{-\lambda\tau(b_k,d_k)}\right] \approx \frac{1}{1+\lambda\mathrm{e}^{H_k}\underline{M}_k\overline{M}_k},$$

where

$$\underline{M}_k := \sum_{i=a_k}^{c_k} e^{-(V(i)-V(b_k))},$$
$$\overline{M}_k := \sum_{i=b_k}^{d_k} e^{V(i)-V(c_k)}.$$

A renewal theorem 00

The sub-ballistic regime

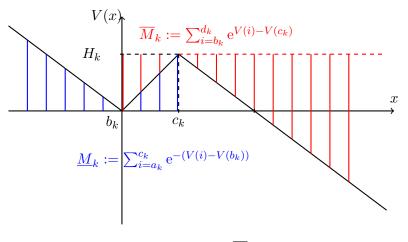


FIG.: \underline{M}_k et \overline{M}_k .

A renewal theorem

The sub-ballistic regime

Properties

• Occupation time : asymptotically (quenched result)

 $\tau(b_k, d_k) \stackrel{\text{law}}{\approx} (\underline{M}_k \overline{M}_k e^{H_k}) \exp\{1\}.$

A renewal theorem

The sub-ballistic regime

Properties

• Occupation time : asymptotically (quenched result)

$$\tau(b_k, d_k) \stackrel{\text{law}}{\approx} (\underline{M}_k \overline{M}_k e^{H_k}) \exp\{1\}.$$

• Asymptotic independence between e^{H_k} , \underline{M}_k and \overline{M}_k : coupling arguments.

A renewal theorem 00

The sub-ballistic regime

Properties

• Occupation time : asymptotically (quenched result)

$$\tau(b_k, d_k) \stackrel{\text{law}}{\approx} (\underline{M}_k \overline{M}_k e^{H_k}) \exp\{1\}.$$

- Asymptotic independence between e^{H_k} , \underline{M}_k and \overline{M}_k : coupling arguments.
- Iglehart's result $+ \underline{M}_k$ and \overline{M}_k "nice" r.v. $\Rightarrow \tau(b_k, d_k)$ is heavy tailed under the annealed law.

A renewal theorem

The sub-ballistic regime

Proof

• $\tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N)$ sum of "i.i.d." heavy-tailed random variables.

A renewal theorem 00

The sub-ballistic regime

Proof

- $\tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N)$ sum of "i.i.d." heavy-tailed random variables.
- Occupation time : $T_i := \tau(b_i, d_i)$.

A renewal theorem 00

The sub-ballistic regime

Proof

- $\tau(b_1, d_1) + \tau(b_2, d_2) + \cdots + \tau(b_N, d_N)$ sum of "i.i.d." heavy-tailed random variables.
- Occupation time : $T_i := \tau(b_i, d_i)$.
- Time between deep valleys negligible + "directed" property :

$$\{a_j \le X_t \le d_j\} = \left\{\sum_{i=1}^{j-1} T_i \le t < \sum_{i=1}^j T_i\right\}$$

A renewal theorem

The sub-ballistic regime

Proof

• Last visited deep valley : $\ell_t := \sup\{j \ge 0 : \tau(b_j) \le t\}.$

A renewal theorem

The sub-ballistic regime ○○○ ○○○○ ○○○○

Proof

- Last visited deep valley : $\ell_t := \sup\{j \ge 0 : \tau(b_j) \le t\}.$
- As for renewal processes :

$$\{a_{\ell_t} \le X_t, X_{th} \le d_{\ell_t}\} = \left\{\sum_{i=1}^{\ell_t - 1} T_i \le t$$

A renewal theorem 00

The sub-ballistic regime ○○○ ○○○○

Proof

- Last visited deep valley : $\ell_t := \sup\{j \ge 0 : \tau(b_j) \le t\}.$
- As for renewal processes :

$$\{a_{\ell_t} \le X_t, X_{th} \le d_{\ell_t}\} = \left\{\sum_{i=1}^{\ell_t - 1} T_i \le t$$

• New version of Dynkin's theorem !

A renewal theorem

The sub-ballistic regime

Proof

• Residual waiting time :

$$\left\{ \sum_{i=1}^{\ell_t - 1} T_i \le t$$

A renewal theorem 00

The sub-ballistic regime

Proof

• Residual waiting time :

$$\left\{ \sum_{i=1}^{\ell_t - 1} T_i \le t$$

• Then, we have, when $t \to \infty$,

$$\mathbb{P}(a_{\ell_t} \le X_t, X_{th} \le d_{\ell_t}) \to \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa - 1} (1 - y)^{-\kappa} \, \mathrm{d}y.$$

A renewal theorem 00

The sub-ballistic regime ○○○ ○○○○

Proof

• Residual waiting time :

$$\left\{ \sum_{i=1}^{\ell_t - 1} T_i \le t$$

• Then, we have, when $t \to \infty$,

$$\mathbb{P}(a_{\ell_t} \le X_t, X_{th} \le d_{\ell_t}) \to \frac{\sin(\kappa \pi)}{\pi} \int_0^{1/h} y^{\kappa - 1} (1 - y)^{-\kappa} \, \mathrm{d}y.$$

• Control around the bottom of the last visited deep valley : arguments of **invariant measure** for a Markov chain on a finite state space + geometrical properties of the valleys.