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1 Stochastic processes “far” from equilibrium

Closed system of interacting particles occupying a bounded spatial
domain Q).

BUTTA, LEBOWITZ: The free energy of such a system is — in the
macroscopic picture — a density functional of the form

E(n) = ®*(n) +¥(n). (1)
The short-range interaction energy
O*(n) = [ 9" (n(x))dx @

is a strictly convex functional, and the long-range interaction energy

o) =3 [ [ keymndyds+ [ ko@ne)dy,

is a quadratic functional, where k is a symmetric integral kernel.
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Minimization of the free energy

Minimizing E under the constraint of particle number conservation.
Lagrange functional:

Eq(n) ™ E(n)+ | (no(x) = n(x))¢ (x) dx
= &% (n) +¥(n) + [ (mo(x) = n(x))Z(x) dx
(=v+w Lagrange parameter

v =0®%(n) chemical potential
w=0¥(n) (long-range) interaction potential

Evolution of the density

LEBOWITZ ET AL.: Applying diffusive hydrodynamic scaling to the
microscopic dynamics one obtains in the limit a drift-diffusion-type
transport equation describing the evolution of the density n:

n+V-j=0 in(0,t)xQ, (4a)
jrv=0 on(0,¢t) xaQ, (4b)
n(0) =ng onQ. (4c)
Current density:
j=—xV§ ®)

k is the mobility of the system with only short-range interactions.
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Einstein relation

SPOHN, LEBOWITZ:
The diffusivity u is given in terms of the free energy density ¢*, in
such a way that the Einstein relation holds true:

u(n) = x(n) 3*®*(n), (6)

Hence, the current density j can be written as a sum of a semi-linear
diffusion and a non-linear, non-local drift part:

j=—uVn—xVuw.

2 Drift-diffusion models with local state equations
Thermodynamic design of semiconductor models

VAN ROOSBROECK [1950]: macroscopic model describing drift, dif-
fusion, and reaction processes of charge carriers in a semiconductor

GAJEWSKI, GROGER [1989, 1996]: van Roosbroeck’s system has free
energy of type

E(n) = ®*(n) +¥(n)
as a Lyapunov functional

GLITZKY, HUNLICH [1997]: thermodynamic approach to more gen-
eral electro-reaction-diffusion systems

ALBINUS, GAJEWSKI, HUNLICH [1999]: thermodynamic design of
energy models of semiconductor devices
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Van Roosbroeck’s system |

Evolution equation (unipolar case, no reactions)
n+V.ji=0 in(0,t)xQ
jrv=0 on(0,t) x 00}
n(0) =ng onQ)
Structure of current and Einstein relation
j=-xVe,  p(n) = x(n)o*®*(n)

State equation

(x) ii(x) exp(v(x)) Boltzmann statistics
n _=

fi(x) Fp sp(v(x)) Fermi-Dirac statistics
1 € L(();R™") represents a given density of states.

dt
exp(T—s)

The Fermi integral to the index « > —1 is defined by F,(s) = r(al+1) N =

Chemical potential

The convex functional ®* is the dual of

O(0) % [ n(x)p(0(x))dx

where
exp(x) Boltzmann statistics
¢(x) = {

F3/0(x) Fermi-Dirac statistics

Hence, the state equation can be written as

that means
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Van Roosbroeck’s system lI

Poisson equation

—V - (eVoyg) =p—n in(0,t) x Q
v- (eVrg) + 109 =0 on (0,t) x 0Q)

1
e € L°(O;RT)  dielectric permittivity, 2 € L (4 R)
T € L®(d;RT) capacitance of the boundary, || 7| L1(@R) > 0
p given doping profile

Interaction potential

The (long-range) interaction potential is given by
W = Ve — U,
where

vc band edge offset,
vy electrostatic potential.

Correspondingly, the (long-range) interaction energy is

€ 2 T\ 2 /
¥ v =
(n) / |V dx—i—/a lvg|“do + | nvedx,
such that indeed,

w =¥ (n).

DRAFT 5 DRAFT



H.-CHR. KAISER WIAS-CoLLoQuIiuM, BERLIN, APRIL 16, 2007

Analysis of drift-diffusion semiconductor models
Weak solutions

GAJEWSKI/ GROGER 1989-1996
GLITZKY/HUNLICH 1997
ALBINUS/GAJEWSKI/HUNLICH 1999

free energy of the system is a convex functional
exponential decay of the free energy along trajectories
energetic estimates

existence and uniqueness of bounded weak solutions of the evolu-
tion system which asymptotically converge to an equilibrium state

In order to obtain uniqueness GAJEWSKI introduced the concept of
E-monotonicity.

Analysis of drift-diffusion semiconductor models
Classical solutions

HCK/NEIDHARDT/REHBERG 2006

existence and uniqueness of local in time classical solutions of the
drift-diffusion system for semiconductors
(rather general reaction terms)

methods for quasi-linear parabolic equations in Lebesgue spaces

GAJEWSKI/SKRYPNIK 2006

global in time (unique) classical solutions
(under restricting conditions on the reaction terms)
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3 The stationary problem with non-local state equations
Density Functional Theory (DFT)

e aims at ground states of a quantum mechanical system

e is precise for systems in equilibrium

e treats many-particle systems with one-particle equations
e identifies the particles in equilibrium, and

e accounts for the interaction of particles by an additional operator
in a one-particle Hamiltonian (the xc-potential)

Fundamental applications of DFT in
e nuclear physics, and physical chemistry

e solid state physics, and in particular semiconductor physics

DFT and Kohn-Sham system

KOHN [1965] (1998 half a Nobel Prize in Chemistry for DFT)

DFT calculations are based on the Kohn-Sham system, and have
been performed for a long time.

Mathematical analysis of Kohn—-Sham systems started only in the
1990s: HCK /REHBERG [1997], PRODAN/NORDLANDER [2003].

Solutions of the Kohn-Sham system describe the stationary states of
the evolution system under consideration here.

The Kohn-Sham system is a stationary Schrodinger-Poisson system
with self-consistent effective Kohn—-Sham potential.
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Kohn-Sham equations

for a heterogeneous semiconductor material:
2
BV (m V) + (ve + vxe —v0) g0 = Etpy
—V - (eVyg) =p—n
n=Yeen f(Ee =) lel?

m position-dependent effective mass tensor

Uxc = Uxc(n) exchange-correlation potential

€ dielectric permittivity

p given doping profile

¢ =1{(n) normalizing shift which fixes the number of particles

f describes the distribution of the particles on the energy scale;
in the three-dimensional case f is the Fermi function.

Analysis of the Kohn—-Sham system
Without xc-potential:

unique solution depending boundedly Lipschitz continuous on the
reference potential v¢ in the Schrodinger operator

System is a non-linear Poisson eq. with fully non-local state egs.

Non-linear Poisson operator is strongly monotone and boundedly
Lipschitz continuous

With xc-potential:

Kohn-Sham system has at least one solution (Schauder)

Sufficient conditions on the xc-potential for unique solution
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4 Von Neumann-type trace functionals

The analysis for the Kohn-Sham system rests upon the following
property:
The quantum mechanical carrier density operator depending on the

potential of the defining Schrodinger operator is anti-monotone and
boundedly Lipschitz continuous.

CAUSSIGNAC, NIER, HCK/REHBERG [1990-1997]

All these results are special cases of a general result on the convexity
and differentiability of von Neumann-type trace functionals.

HCK/NEIDHARDT / REHBERG [2003]

Von Neumann-type trace functionals

Notations

H  separable, infinite-dimensional Hilbert space

B space of bounded linear operators on H

B1 subspace of trace class operators

B®  subspace of self-adjoint operators from B

B}  subspace of self-adjoint operators from Bq

B;r the cone of self-adjoint non-negative trace class operators
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Von Neumann-type trace functionals
Convexity

Proposition (VON NEUMANN [1932], LIEB/ PEDERSEN [2002])

If H is a self-adjoint operator with compact resolvent which is semi-
bounded from below, and

G : R — R is continuous, decreasing, convex, and such that

G(H + 1) is nuclear for each v € R,

then the functional

B> U +— tr (G(H+ U))

1S convex.

Von Neumann-type trace functionals
Differentiability

Proposition (BIRMAN AND SOLMYAK [1973])

If H is a self-adjoint operator with compact resolvent which is semi-
bounded from below, and

G : R — R s continuously differentiable, and such that

G’ is bounded, integrable, and Holder continuous on all (v, o),
then for each W € Bj the function

R >s+—— G(H+sW) € By

is continuously differentiable, and

A (GH +sw))|

I — tr (G'(H + tW)W) forallt € R.

s=t
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Von Neumann-type trace functionals
Gradient

Proposition (HCK /NEIDHARDT/REHBERG [2003])

If H is a self-adjoint operator with compact resolvent which is semi-
bounded from below, and

G:R —>Rtis continuously differentiable, decreasing, convex, and
such that G(H + 7) is nuclear for each vy € R,

then the functional

B 5 U+ O(U) E tr (G(H + U))
is Fréchet differentiable, and its gradient

o0 : B® — Bj C (B%)%, od(U) = G'(H+U) is monotone.

5 The model with fully non-local state equation
We aim at a drift-diffusion model of semiconductor heterostructures.
Bulk material:

averaging over a fundamental cell of the translational lattice yields

n(x) =9y 5(0(x) —ve +vp(x)).
At the interface of different semiconductor materials this averaging
is not justified anymore!

We propose a drift-diffusion model for heterogeneous semiconduc-
tor materials with the non-locally defined particle density from DFT.
This regularizes the discontinuities of the band edge offset v..
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5.1 The free energy of the system

We assume that the free energy of the system is a density functional
E: (B°)" — R of the following form

E(N) = ®*(N) +¥(N) + A(N) for N € dom(E),

®* dual of a von Neumann functional
Y  a quadratic functional
A xc-energy functional

A : (B%)* — R is the so-called exchange-correlation energy which
makes good for passing from a multi-particle picture to a one-particle
representation in Density Functional Theory.

Assumption: A is Fréchet differentiable on 0®[B®].

Notations

JH  separable, infinite-dimensional Hilbert space

B space of bounded linear operators on H

B1 subspace of trace class operators

B®  subspace of self-adjoint operators from B

B}  subspace of self-adjoint operators from Bq

B{L cone of self-adjoint non-negative trace class operators

H  self-adjoint, compact resolvent, semi-bounded from below
f  thermodynamic equilibrium distribution function

o [T

Generically, f is the Fermi function f(s) = ; _|_e>1<p Ok
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The generalized von Neumann functional

If F(H+ y) € Bq for each v € R, then the von Neumann functional
d : B®* — R is well-defined by

def

®(V) € tr (NF(H-V)) forV e B )

N is fixed such that NF(H — V') becomes a statistical operator (up to
normalization).

Looking for minimal assumptions on F and H such that...
The von Neumann functional ® is convex and Fréchet differentiable.
0P : B® — Bj C (B*)* is given by

0®(V) = ~NF(H-V)=Nf(H-V) forV € B° (8)

0® is monotone, takes its values in Bf’ — essentially is a statistical
operator, namely the particle density N = 0® (V).

The dual of the von Neumann functional

def

®*(N) = sup ((N,U)g —®(U)) for N e (B%)" )
UeBs
® and ®* are convex and Fréchet differentiable.

0®* : (B®)* — B°is given by
9d* = 9>~ ! onad[B%] C B C (B%)*.
Moreover,
®*(N)+P(V) = (N,V)g =tr(NV)
where
N =0®d(V), Ve B°
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The 2nd derivative of the von Neumann functional

If the function F is twice continuously differentiable,
then the operator function

B*>V— NFH-V) € B
is twice Fréchet differentiable (HANSEN [2006]).
We aim at the representation

?*®(V) = NF'(H-V) e B forallV e B° (10)

Quadratic interaction energy

Y:(B)* - R
¥(N) = J(N—P,K(N - P))g for N € dom(K) (11)
P € dom(K) is given

K : (B®)* — B°is a bounded linear operator on the linear subset
dom(K) C (B®)* such that

(N,K(M))g = (M,K(N))g forall M, N € dom(K).
Y is Fréchet differentiable on dom(K):
0¥ (N) = K(N —P) forall N € dom(K). (12)
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Minimization of the free energy

The free energy of the system is the density functional E : (B%)* — R
E(N) ¥ ®*(N)+¥(N) + A(N) for N € dom(E),
dom(E) = o®[B°] N dom(K).
In the sense of Density Functional Theory we are looking for the
minima of the free energy E subject to the constraint

tr(N — Np) =0, where Ng € B" C (B°)*is fixed.  (14)
Lagrange multiplier Z € B®; Lagrange functional Ey : (B®)* — R

(13)

def

Ez(N) =E(N)+ (Ngo— N, Z)g

(15)
=E(N)+tr ((Ng—N)Z) for N € dom(E).
The Euler-Lagrange equation dEz(N) = 0 yields
Z = 9E(N) = 0®*(N) + 0¥ (N) + dA(N). (16)

Real-space representation of QM

We illustrate the setting in the real-space representation of quantum
mechanics:

H = L>(Q;C)

O c R? bounded Lipschitz domain, d < 3

H = —%ZV IV + v Schrodinger operator

L®(;R) space of potentials
Each element u from the space L*°(€); C) induces a bounded multi-
plication operator on L?(Q); C).
In this sense L*°((); R) embeds into B".
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Lemma:

(HCK, NEIDHARDT, REHBERG 2007)
Let (Y, S, ) be a o—finite measure space, and let

LN () = L () — B
be the natural embedding. Then the dual mapping
B — LY = L ()
has the following properties:
1. the restriction of 7* to the sub-space By C B* maps onto L! (1)
2. the restriction of 77* to the sub-space B{ C (B*)* maps onto LllR( i)

3. the restriction of 7t* to the self-adjoint, non-negative trace-class
operators maps onto the real-valued, non-negative functions from

L(p)

Density and chemical potential

Let N = 7t(71) be given by a positive function 7 € L*°((); R), and
n=m*oddon(v) = 7*(— NF(H - n(v))) = " (f(H—7(v))).

If v is a chemical potential from the space L*((Q); R) then, n belongs
to the non-negative cone of L!((; R).

Fenchel-Moreau identity:
O*(N)+d(V) = /Q nodx
n=mn"(N),N=09®(V),V=rmn(v),veL°(R).
ko : L®°(;R) — L®(;R)*
ko(v) = ¥ 0 @ o 7t(v) = At (F'(H — n(v))),
takes its values in the non-negative cone of L1((); R) [L®(C; R)].
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Quadratic interaction energy

K & 710 A o * with the solution operator

A:L®(O;R) — HY(O;R) N L®(O;R)

of the Poisson equation

v .Vd+/ d:/ dx forally € HY(O;R),
| evoo- Vipds+ | coppdo = [ opdx forally € HY(O;R)

where vy = A(o).

A is bounded and symmetric, and these properties pass over to K,
where

dom(K) = {N € (B°)* : *(N) € L*((;R)}.
p € L=((;R) fixed background charge density in the volume, then
P = n(p).

Electrostatic interaction energy and potential

Electrostatic interaction energy:

_ [ & 2 T2
‘P(N)—/Qz\VUO\ dx+/802\vo\ do
with vy = A(p — m*(N)) € HY((;R), N € dom(K).

Electrostatic potential: vg = A(p — 7*(N)) € L*®((); R)
0¥ (N) = n(—A(p— n*(N))) = n(—vg), N € dom(K).

Exchange-correlation energy and potential

For each N € 0®[B°] C BIL there is a vxc € L®((Q; R) with
aA(N) - n(vxc).
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Electrochemical potential and current

In the real-space representation of quantum mechanics the Lagrange
parameter (16) can be represented by an electrochemical potential {:

Z=n(), {=0—0v)+0x. (17)

Thermodynamic principles: The driving force to equilibrium is the
antigradient of the electrochemical potential (.

j=—xVg (18)
The mobility x can be modeled by the Einstein relation
k(v) = pro(v), p € LZ(GR),  p=po >0, (19)

with a diffusivity y, SPOHN, LEBOWITZ.

5.2 The evolution system

Analogous to the (unipolar) van Roosbroeck system the closed sys-
tem is described by the following initial-boundary value problem:

n'—V-(xV) =0 in (0,t) x Q, (20a)
v-(xV{) =0 n (0,t) x 00}, (20b)

n(0) = ng on (), (20c)

—V - (eVyg) =p—n in(0,t) x Q, (20d)

v- (eVrg) + 109 =0 on (0,t) x 0Q), (20e)

supplemented by the non-local state equation

n=an*(f(H - n(0)))

and the Einstein relation

x(v) = uxg(v) = pat*(F"(H — 7(v))).
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Solutions of the evolution system

We expect solutions from the class:

n e C([0,t; L (4, R))

[
n' € L?((0,t); H(Q;R)*)
g € L2((0,t); H(Q;R)) N C([0,4]; L°(O; R))
vo € C([0,4]; HL(O;R)) N C([0, £]; L® (4 R))

Conservation of the number of particles along trajectories

Let t — N(t) be a trajectory in B{r such that 7*(N(t)) = n(t) for
a solution (n,{,vg) of the evolution system. (20a) and (20b) yield
Jan(t,x)dx = [ny(x)dx fort € RT.

Decay of the free energy along trajectories

Let t — N(t) be a trajectory in Bfr such that 7*(N(t)) = n(t) for a
solution (1, {,vg) of the evolution system. The chain rule yields

E(N(t)) — E(Np) = /Ot tr (N'(s) 9E(N(s))) ds

= [ 06,86 ey

and employing (20a) and (20b) gives

E(N(t)) — E(Np) = // IV(s)Pdxds <0 forte R,

that means, the free energy decays along trajectories.
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Links

Stochastic processes “far” from equilibrium:
LEBOWITZ, SPOHN, VARADHAN,...

Thermodynamic design of DD models of semiconductor devices:
ALBINUS, GAJEWSKI, GROGER, HUNLICH

Phase separation processes:
GAJEWSKI, GARTNER, GRIEPENTROG, ZACHARIAS

Quantum corrected drift-diffusion models:
ARNOLD, BEN ABDALLAH, DEGOND, JUNGEL, MEHATS, VOGL,...

Time-dependent Density Functional Theory: GROSS, MARQUES,. ..

Reaction-diffusion equations for electrically charged species:
GAJEWSKI, GROGER; GLITZKY, HUNLICH; GAJEWSKI, SKRYPNIK

Schrodinger-Poisson systems: NIER, HCK, REHBERG,...

Von Neumann trace functionals:
L1EB, HANSEN, HCK, NEIDHARDT, REHBERG

Nonsmooth elliptic and parabolic problems:
ELSCHNER, HCK, KNEES, MAZ’YA, REHBERG, SCHMIDT,. ..

...in particular in Sobolev-Morrey spaces: GRIEPENTROG, RECKE

Doubly non-linear evolution equations: MIELKE, OTTO, SAVARE,. ..
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