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6. Outlook

TU Braunschweig Institute of Scientific Computing



3

Motivation

• Mathematical model of some physical process / system

(often described by PDEs) may contain uncertain or random

parameters (e.g. random coefficient fields)

• Solution of PDE (state of system) is also

a function of parameters / a random field

• Of interest are functionals of the solution

(Quantities of Interest / QoI)

• It is advantageous to apply theory and computational

methodology which abstractly looks like deterministic method.

This allows abstractly similar error estimation, etc.

• Observe: computational challenge is high dimensionality.
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Why probabilistic or stochastic models?

Systems may contain uncertain elements, as some

details are not precisely known.

• Incompletely known parameters, processes or fields.

• Heterogeneous, not completely known material.

• Small or unresolved scales, a kind of background noise.

• Systems with imprecisely known components.

• Action from the surrounding environment, noisy signals.

• Loading of the system, e.g. due to wind, waves, etc.

All these items introduce some uncertainty in the model.
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Ontology and uncertainty modelling

A bit of ontology: Uncertainty may be

• aleatoric, which means random and not reducible, or

• epistemic, which means due to incomplete knowledge.

Stochastic models give quantitative information about uncertainty,

they are used for both types of uncertainty.

Possible areas of use: Reliability, heterogeneous materials, upsca-

ling, incomplete knowledge of details, uncertain [inter-]action with

environment, random loading, etc.
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Model problem
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2D Model

simple stationary model of groundwater flow (Darcy)

−∇ · (κ(x) · ∇v(x)) = f(x), x ∈ G ⊂ Rd,

v(x) = 0 for x ∈ ∂G.
v hydraulic head, κ conductivity, f sinks and sources.
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Theory reminder: variational form

Diffusion problem:

Solution v ∈ W = H̊(G) satisfies variational equation (weak form):

for all test functions w ∈ W :

a(w, v) :=

∫
G
∇w(x) · κ(x) · ∇v(x) dx =

∫
G
f(x)w(x) dx =: 〈f, w〉.

Here equivalently: solution v ∈ W minimises Φ over W, where

Φ(v) =
1

2

∫
G
∇v(x) · κ(x) · ∇v(x) dx−

∫
G
f(x)v(x) dx.

PDE in weak form is stationarity condition (Euler-Lagrange eq.) for Φ:

∀w ∈ W : 〈δΦ(v), w〉 = 0,

with Gâteaux derivative denoted by δΦ(v).

Lax-Milgram lemma shows well-posedness.
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Model stochastic problem

Aquifier
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flow out 

Dirichlet b.c. 

flow = 0 Sources

2D Model

same model with stochastic data, P-a.s. in ω ∈ Ω
−∇ · (κ(x, ω) · ∇u(x, ω)) = f(x, ω) x ∈ G ⊂ Rd

u(x, ω) = 0 for x ∈ ∂G, ω ∈ Ω

κ stochastic conductivity, f stochastic sinks and sources.
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Realisation of κ(x, ω)
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Stochastic model

• Uncertainty of system parameters—e.g.

κ(x, ω) = κ̄(x) + κ̃(x, ω), f(x, ω) are stochastic fields,

(Ω,A,P) probability space of all realisations,

with probability measure P, and expectation functional

φ̄ := 〈φ〉 := E (φ) :=

∫
Ω

φ(ω) P(dω)

• Input quantities (e.g. fields κ) are functions of

– Space: κ(·, ω) ∈ Xx as a function of x,

– Sample: κ(x, ·) ∈ Sω as a function of ω,

– Together κ ∈ K := Xx ⊗ Sω in a tensor product space

:= {κ | κ(x, ω) =
∑
`ϕ`(x)ξ(`)(ω), ϕ` ∈ Xx, ξ(`) ∈ Sω}

• Example: approximate ϕ`(x) by FEM,

and ξ(`)(ω) by Wiener’s polynomial chaos expansion (PCE).
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Theory: Stochastic PDE and variational form

Stochastic diffusion problem:

Stochastic solution u(x, ω) is a stochastic field—in tensor product space

W :=W ⊗S 3 u(x, ω) =
∑
m

vm(x)η(m)(ω); e.g. S = L2(Ω).

Variational formulation: u ∈ W =W ⊗S satisfies ∀w ∈ W

a(w, u) :=

∫
Ω

∫
G
∇w(x, ω)·(κ(x, ω) · ∇u(x, ω)) dx P(dω) = E (a(u,w))

= E (〈f, w〉) =

∫
Ω

[∫
G
f(x, ω)w(x, ω) dx

]
P(dω) =: 〈〈f, w〉〉.

Here equivalently u minimises Φ over W :

Φ(u) = E (Φ(u)) =

∫
Ω

Φ(u(·, ω)) P(dω).

Weak form of SPDE is stationarity condition for Φ.
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Mathematical results

If κ and κ−1 are in L∞(G ×Ω), finding a solution u ∈ W =W ⊗S

• is guaranteed by Lax-Milgram lemma, problem is well-posed in the

sense of Hadamard (existence, uniqueness, continuous dependence on

data f in L2- and on κ in L∞-norm).

• Numerical solution may be achieved by Galerkin methods,

convergence established with Céa’s lemma

• Galerkin methods are stable, if no variational crimes are committed

Good approximating subspaces of W =W ⊗S have to be found,

as well as efficient numerical procedures worked out.

Note that as W ⊗S ∼= L2(Ω;W), solutions are

automatically measurable w.r.t. ω.
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Possible difficulties

The condition that κ and κ−1 are in L∞(G ×Ω) may

sometimes be too strong,

e.g. a lognormal field κ = exp(g) — with g a Gaussian field —

does not satisfy it.

Such (and other cases) can be covered by using other spaces

W and S in the tensor product W =W ⊗S.

Especially S = L2(Ω) with norm ‖ · ‖2 has to be replaced by

completions w.r.t. norm ‖u‖2,s := ‖Asu‖2,

where A is a suitable s.p.d. operator, related to covariance opertor.

Similar to usual Sobolev spaces, where norm on Hs(Ω)

comes from above construction with A = (I −∆)1/2.
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Quantities of interest

Desirable: Uncertainty quantification (UQ) or

probabilistic information on solution / state u ∈ W :

The goal is to compute functionals of the solution:

quantities of interest (QoI)

Ψu = 〈Ψ(u)〉 := E (Ψ(u)) :=

∫
Ω

∫
G

Ψ(u(x, ω), x, ω) dx P(dω)

e.g.: ū = E (u), or varu = E
(
(ũ)2

)
, where ũ = u− ū,

or P{u ≤ u0} = P({ω ∈ Ω|u(ω) ≤ u0}) = E
(
χ{u≤u0}

)
All desirables are usually expected values of some functional, to be

computed via (high dimensional) integration over Ω.
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Example solution
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Realization of κ
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Example: Cook’s membrane

Large strain elasto-plasticity: uncertain shear modulus
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Results Cook’s membrane

a) E (σVM) b) P({σVM ≤ 50})

Shear modulus is uncertain (coefficient of variation 10%).

Material is a Saint Venant-Kirchhoff model.
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Results Cook’s membrane II

P({σVM > 150}) P({σVM > 200}) P({σVM > 250})
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Example: Plate with hole

Large strain elasto-plasticity: uncertain bulk modulus
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Results plate with hole II

P({σVM < 150}) P({σVM < 200}) P({σVM < 250})
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General approaches to computation

Alternative Formulations / Approaches

• Moments: Derive equations for the moments of the quantities of

interest (QoI) Ψ . Usually Perturbation.

• Probablity distributions / densities: Derive equations for the

probability densities of u(x, ω), e.g. Master-Equation, Fokker-Planck.

• Direct Integration: Compute desired QoI Ψ via direct integration over

Ω—high dimensional (e.g. Monte Carlo, quasi Monte Carlo, Smolyak

(= sparse grids)).

• Direct Approximation: Compute an approximation to u(x, ω), use this

to compute everything else (traditional response surface methods,

surrogate models, stochastic Galerkin, stochastic collocation)
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Random Variables vs Measures

The Fokker-Planck equation computes measures (densities).

The last two — direct — approaches deal directly with random variables.

Measures live — geometrically speaking — in the positive cone on the

unit ball in the Banach space of bounded measures.

Extreme points of this convex set are Dirac-δ’s.

The random variables in the direct approach live in vector spaces;

upon discretisation, computation via linear algebra.
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Computational requirements

• How to represent a stochastic process for computation, both

simulation or otherwise?

• Best would be as some combination of countably many independent

random variables (RVs).

• How to compute the required integrals or expectations numerically?

• Best would be to have probability measure as a product measure

P = P1 ⊗ . . .⊗ P`, then integrals can be computed as iterated

one-dimensional integrals via Fubini’s theorem,∫
Ω

Ψ(ω) P(dω) =

∫
Ω1

. . .

∫
Ω`

Ψ(ω1, . . . , ω`) P1(dω1) . . .P`(dω`)
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Stochastic discretisation of fields

• Connected with the decompositions of the covariance:

kernel: cκ(x, y) := E (κ(x, ·)⊗ κ(y, ·))
operator: Cκ : φ→ ψ(x) =

∫
G cκ(x, y)φ(y) dy

• Best known is the spectral or eigen decomposition of Cκφm = λmφm,

leading to singular value decompostion (SVD) of int.op. assoc. with κ,

a.k.a. the Karhunen-Loève expansion:

κ(x, ω) = κ̄(x) +
∑
m

√
λm φm(x)ξ(m)(ω).

• Uncorrelated RVs ξ(m)(ω) can be expanded in polynomials of

independent Gaussian RVs θ`(ω) ⇒ PCE in Hermite polynomials Hα:

ξ(m)(ω) =
∑
α

κ(α)
m Hα(θ1(ω), . . . , θ`(ω), . . . )

• Integration then over independent Gaussian measures P` = Γ`
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Spectral representation

Although the Karhunen-Loève expansion relies on

the spectral decomposition of Cκ, the name “spectral representation” is

usually reserved for the special case where cκ(x, y) = cκ(x+ h, y + h)

is invariant under translations (then cκ(x, y) = c(x− y));

i.e. Cκ commutes with the translation operator, and

the KLE eigenvalue equation becomes (e.g. with G = Rd) a convolution:∫
G
cκ(x, y)φ(y) dy =

∫
G
c(x− y)φ(y) dy = λφ(x).

• Recall that commuting operators have same spectral resolution, and

translation operator Th satisfies Theik·x = eik·(x+h) = eik·h eik·x

• or recall that convolution equations are solved via Fourier transform
In any case, we have found the eigenfunctions eik·x, eigenvalues are ĉ(k)

(FT of c), and as c(h) = c(−h)⇒ ĉ(k) = ĉ(−k) (same eigenvalue),

(eik·x, e−ik·x) combine to (cos(k · x), sin(k · x)).
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Karhunen-Loève Expansion I
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KLE: Other names: Proper Orthogonal Decomposition (POD), Singular

Value Decomposition (SVD), Principal Component Analalysis (PCA):

spectrum of {λ2} ⊂ R+ and orthogonal KLE eigenfunctions φm(x):∫
G
cκ(x, y)φm(y) dy = λm φm(x) with

∫
G
φm(x)φk(x) dx = δmk.

⇒ Mercer’s representation of cκ:

cκ(x, y) =
∞∑
m=1

λm φm(x)φm(y)
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Karhunen-Loève Expansion II
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Representation of κ (convergence in — basically L2):

κ(x, ω) = κ̄(x) +

∞∑
m=1

λm φm(x)ξm(ω) =:

∞∑
m=0

λm φm(x)ξm(ω)

with centred, normalised, uncorrelated random variables ξm(ω):

E (ξm) = 0, E (ξmξk) =: 〈ξm, ξk〉L2(Ω) = δmk.
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Karhunen-Loève Expansion III

Realisation with:
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Truncate after M largest eigenvalues

⇒ optimal—in variance—expansion in M RVs.
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First Summary

• Motivation, Probabiliy, aleatoric and epistemic Uncertainty

• Formulation as a well-posed problem

• RVs and Random Fields

• Karhunen-Loève Expansion — special case “spectral representation”

• Still open:

– How to discretise RVs ?

– How to actually compute u(ω) ?

– How to perform integration ?
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Polynomial Chaos Expansion in Gaussians

Each ξm from KLE may be expanded in plynomial chaos expansion

(PCE) ξm(ω) =
∑
α ξ

(α)
m Hα(θ(ω)), with orthogonal polynomials of

independent Gaussian RVs {θm(ω)}∞m=1 =: θ(ω):

Hα(θ(ω)) =

∞∏
=1

hα(θ(ω)),

where h`(ϑ) are the usual Hermite polynomials, and

J := {α |α = (α1, . . . , α, . . .), α ∈ N0, |α| :=
∞∑
=1

α <∞}

are multi-indices, where only finitely many of the α are non-zero.

Here 〈Hα, Hβ〉L2(Ω) = E (HαHβ) = α! δαβ, where α! :=
∏∞
=1(α!).
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Functions of Simpler RVs

What kind of simpler RVs ?

What kind of functions? — Usually polynomials or other algebras.

• Gaussian RVs —classical Wiener Chaos

• Poissonian RVs —discrete Poisson Chaos

• other RVs, e.g. uniform, exponential, Gamma, Beta, etc.

This is called generalised Polynomial Chaos (gPC).

Best is to use orthogonal polynomials w.r.t. relevant measure, i.e.

Hermite polynomials for Gaussian RVs, Charlier polynomials for

Poisson RVs, Legendre polynomials for uniform RVs, Laguerre

polynomials for exponential RVs, etc. ⇒ Askey scheme.
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Why White Noise Analysis?

Comes from directly constructing Ω as (a subset of) S ′(G)

(tempered distributions) with a Gaussian or Poissonian measure P
⇒ Gaussian or Poissonian white noise.

Elements from S(G) (rapidly falling test functions) are then naturally

Gaussian or Poissonian RVs.

Let F = F({ξ(ω)}=1,...,∞) be the σ-algebra generated by ξ(ω).

Want to approximate L2(Ω,F,P) ⊆ L2(Ω,P).

Density results: Polynomial algebra, algebra of exponentials, and algebra

of trigonometric polynomials of Gaussian RVs is dense in L2(Ω,F,P),

polynomial algebra of Poissonian RVs is dense in L2(Ω,F,P).
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Choices

Stochastic discretisation can be performed at different solution stages:

• In a(w, u) on W =W ⊗S, replace κ with its Karhunen-Loève

expansion, giving aKLE(w, u); truncate at L terms, giving aL(w, u).

Q: How does aKLE(w, u) approximate a(w, u),

how does aL(w, u) approximate aKLE(w, u)?

Is uKLE = u, how does uL converge to uKLE or u?

Then discretise W to WN,M =WN ⊗ SM by choosing a

N -dimensional subspace WN ⊂ W and M -dimensional subspace

SM ⊂ S.

• Or first discretise W to WN,M , and then in a(w, u) on WN,M replace

κ by truncated KLE. Simpler, as WN,M is finite dimensional.

TU Braunschweig Institute of Scientific Computing
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Computational path

Principal Approach:
1. Discretise / approximate deterministic model

(e.g. via finite elements, [your favourite method]),

and approximate stochastic model (processes, fields) in finitely many

independent random variables (RVs), ⇒ stochastic discretisation.

2. Special case: Low variance ⇒ perturbation.

3. Very special case: All linear, Gaussian ⇒ analytic solution.

4. Direct:Compute QoI via integration over Ω—high dimensional

(e.g. Monte Carlo, Quasi Monte Carlo, Smolyak (= sparse grids)).

5. Proxy: construction of approximate solution (functional /

spectral approx., response surface) as function of known RVs

⇒ e.g. polynomial chaos expansion (PCE).
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Sketch of solution

• For the solution make ansatz: u(x, ω) =
∑
m

∑
α u

(α)
m Hα(θ)Nm(x),

where Nm(x) are FEM functions. u(x, ω) represented by tensor u
(α)
m .

• Solution u
(α)
m by inserting ansatz into SPDE, and applying

Collocation ⇒ Interpolation, i.e. solve SPDE on interpolation points

ωi — decoupled, non-intrusive solve.

Projection: Simple as Hα are orthogonal. Compute projection inner

product (integral) by quadrature, i.e. solve SPDE on quadrature

points ωn — decoupled, non-intrusive solve.

Galerkin: Apply Galerkin weighting. Coupled equations, is it intrusive?

When solved in a partitioned way, residua computed by quadrature,

it is non-intrusive, needs only residua on quadrature points.

TU Braunschweig Institute of Scientific Computing
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Galerkin matrix

Matlab spy picture of block-structure
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Computational cost

We have to integrate over θ1, . . . , θs. For simplicity assume

I :=
∫
[0,1]s

f(θ1, . . . , θs) ≈
∑N
n=1wnf(θ1,n, . . . , θs,n) =: Q.

Q1: What is E = |I −Q| in relation to N and s?

Q2: How much does evaluation of f(x1, . . . , xs) cost?

A1: Deterministic quadrature rules can have very fast E → 0 as N →∞,

these worst case bounds depend on regularity of f , but grow

(often exponentially) as s→∞; e.g. for QMC: E = O((logN)s)/N .

Random(ised) quadratures (e.g. MC) can have E independent of s,

e.g. for MC: std dev(E ) =
√

var(f)/N .

A2: One evaluation of f(x1, . . . , xs) costs at least O(s). For direct

methods and spectral projection each evaluation is one PDE solve.

For Galerkin it is one residual evaluation.

QoI computation is cheap evaluation for all proxy methods.

TU Braunschweig Institute of Scientific Computing
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Early references (incomplete)

Stochastic FEM: Belytschko, Liu; Kleiber; M., Bucher; Deodatis, Shinozuka; Der

Kiureghian;, Kleiber, Hien; Ladevèze; Papadrakakis; Schuëller

Formulation of SPDEs: Babuška, Tempone, Nobile; Holden, Øksendal; Karniadakis,

Xiu, Lucor; Lions; M., Keese; Rozanov; Roman, Sarkis; Schwab, Tudor; Zabaras

Spatial/temporal expansion of stochastic processes/ random fields:

Adler; Grigoriu; Karhunen, Loève; Krée, Soize; Vanmarcke

White noise analysis/ polynomial chaos (PCE): Wiener; Cameron, Martin;

Hida, Potthoff; Holden, Øksendal; Itô; Kondratiev; Malliavin; Galvis, Sarkis

Galerkin / collocation methods for SPDEs: Babuška, Tempone, Nobile; Benth,

Gjerde; Cao; Eiermann, Ernst; Elman; Ghanem, Spanos; Galvis, Sarkis; Knio, Le Mâıtre;

Karniadakis, Xiu, Wan, Hesthaven, Lucor; M., Keese; Schwab, Tudor; Zabaras
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Recent developments

• Try and keep a sparse (usually low-rank) tensor approximation

troughout, from input fields to output solution.

• One possibility: Iterate (cheaply) on low-rank representation.

⇒ Perturbed / truncated iterations.

• Build solution rank-one by rank-one, i.e. with already computed

uR(x, ω) =
∑R
r=1w(x)r η

(r)(ω) alternate in w(x)R+1 and η(R+1)(ω):

min
wR+1,η

(R+1)
Φ(uR(x, ω) + w(x)R+1 η

(R+1)(ω))

⇒ successive rank-one updates (SR1U),

proper generalised decomposition (PGD).

• This Galerkin procedure only solves “small” problems, good

approximations often with small R.

TU Braunschweig Institute of Scientific Computing
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Outlook

• Stochastic problems at very beginning (like FEM in the 1960’s),

when to choose which stochastic discretisation?

• Non-linear problems possible.

• Time dependend problems straight forward—Itō-integral via PCE

• Development of framework for stochastic coupling and parallelisation.

• Computational (low-rank) algorithms have to be further developed.

• Bayesian identification possible.

TU Braunschweig Institute of Scientific Computing
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