PDEs and Variational Problems with random coefficients

Nicolas Dirr

Cardiff School of Mathematics Cardiff University DirrNP@cardiff.ac.uk

WIAS Berlin, November 14th, 2013

- A TE N - A TE N

Introduction

- Setting: Random integrands/PDEs with random coeff.
- Motivation: Interface evolution in random media
- Existence/Nonexistence: Nonnegative solutions for semilinear random PDE
- Uniqueness: Unique minimizer for random functional with double-well structure.
- Review of random homogenization

(日)

Introduction

- Setting: Random integrands/PDEs with random coeff.
- Motivation: Interface evolution in random media
- Existence/Nonexistence: Nonnegative solutions for semilinear random PDE
- Uniqueness: Unique minimizer for random functional with double-well structure.
- Review of random homogenization

・ 白 ト ・ ヨ ト ・ ヨ ト

Introduction

- Setting: Random integrands/PDEs with random coeff.
- Ø Motivation: Interface evolution in random media
- Existence/Nonexistence: Nonnegative solutions for semilinear random PDE
- Uniqueness: Unique minimizer for random functional with double-well structure.
- Review of random homogenization

A (10) A (10)

Introduction

- Setting: Random integrands/PDEs with random coeff.
- Ø Motivation: Interface evolution in random media
- Existence/Nonexistence: Nonnegative solutions for semilinear random PDE
- Uniqueness: Unique minimizer for random functional with double-well structure.
- Review of random homogenization

A (10) A (10)

Introduction

- Setting: Random integrands/PDEs with random coeff.
- Ø Motivation: Interface evolution in random media
- Existence/Nonexistence: Nonnegative solutions for semilinear random PDE
- Uniqueness: Unique minimizer for random functional with double-well structure.
- Review of random homogenization

A (10) A (10)

Introduction

- Setting: Random integrands/PDEs with random coeff.
- Ø Motivation: Interface evolution in random media
- Existence/Nonexistence: Nonnegative solutions for semilinear random PDE
- Uniqueness: Unique minimizer for random functional with double-well structure.
- Review of random homogenization

< 回 > < 回 > < 回 >

General form:

$$F(D^2u, Du, u, x, \omega) = 0,$$

where the random function

$$\boldsymbol{F}:\mathbb{R}_{\text{sym}}^{\textit{nxn}}\times\mathbb{R}^{n}\times\mathbb{R}\times\Omega\rightarrow\mathbb{R}^{m}$$

(here m = 1) satisfies **deterministic bounds**/structural conditions. (E.g. continuous, uniformly elliptic etc.) Probability measure \mathbb{P} on all equations with these bounds Not considered:

Random initial conditions
 SPDEs

Usually: Law **translation invariant and ergodic**, so "almost sure" results for large-scale behaviour.

Homogenization: Behaviour of solns. for $F(D^2u, Du, u, x/\epsilon, \omega) = 0$,

General form:

$$F(D^2u, Du, u, x, \omega) = 0,$$

where the random function

$$F: \mathbb{R}_{\text{sym}}^{n \times n} \times \mathbb{R}^n \times \mathbb{R} \times \Omega \to \mathbb{R}^m$$

(here m = 1) satisfies **deterministic bounds**/structural conditions. (E.g. continuous, uniformly elliptic etc.) Probability measure \mathbb{P} on all equations with these bounds **Not** considered:

- Random initial conditions
- SPDEs

Usually: Law **translation invariant and ergodic**, so "almost sure" results for large-scale behaviour.

Homogenization: Behaviour of solns. for $F(D^2u, Du, u, x/\epsilon, \omega) = 0$, on bounded domain as $\epsilon \to 0$.

General form:

$$F(D^2u, Du, u, x, \omega) = 0,$$

where the random function

$$F: \mathbb{R}_{\text{sym}}^{n \times n} \times \mathbb{R}^n \times \mathbb{R} \times \Omega \to \mathbb{R}^m$$

(here m = 1) satisfies **deterministic bounds**/structural conditions. (E.g. continuous, uniformly elliptic etc.) Probability measure \mathbb{P} on all equations with these bounds **Not** considered:

- Random initial conditions
- SPDEs

Usually: Law **translation invariant and ergodic**, so "almost sure" results for large-scale behaviour.

Homogenization: Behaviour of solns. for $F(D^2u, Du, u, x/\epsilon, \omega) = 0$, on bounded domain as $\epsilon \to 0$.

Nicolas Dirr (Cardiff University)

General form:

$$F(D^2u, Du, u, x, \omega) = 0,$$

where the random function

$$F: \mathbb{R}_{\text{sym}}^{n \times n} \times \mathbb{R}^n \times \mathbb{R} \times \Omega \to \mathbb{R}^m$$

(here m = 1) satisfies **deterministic bounds**/structural conditions. (E.g. continuous, uniformly elliptic etc.) Probability measure \mathbb{P} on all equations with these bounds **Not** considered:

- Random initial conditions
- SPDEs

Usually: Law **translation invariant and ergodic**, so "almost sure" results for large-scale behaviour.

Homogenization: Behaviour of solns. for $F(D^2u, Du, u, x/\epsilon, \omega) = 0$, on bounded domain as $\epsilon \to 0$.

Nicolas Dirr (Cardiff University)

General form:

$$F(D^2u, Du, u, x, \omega) = 0,$$

where the random function

$$F: \mathbb{R}_{\text{sym}}^{n \times n} \times \mathbb{R}^n \times \mathbb{R} \times \Omega \to \mathbb{R}^m$$

(here m = 1) satisfies **deterministic bounds**/**structural conditions**. (E.g. continuous, uniformly elliptic etc.) Probability measure \mathbb{P} on all equations with these bounds **Not** considered:

- Random initial conditions
- SPDEs

Usually: Law **translation invariant and ergodic**, so "almost sure" results for large-scale behaviour.

Homogenization: Behaviour of solns. for $F(D^2u, Du, u, x/\epsilon, \omega) = 0$, on bounded domain as $\epsilon \to 0$.

Nicolas Dirr (Cardiff University)

Random Functionals

Find minimizer in a suitable function space (e.g. $H^{1,2}(D)$) of

$$u(x)\mapsto \int_D F(Du,u,x,\omega)dx$$

Minimizer will be random function.

- $D = \mathbb{R}^n$: Minimizer under compact perturbations.
 - Existence
 - Uniqueness
 - Homogenization: $\int_D F(Du, u, x/\epsilon, \omega) dx$

・ロット (日本) (日本) (日本)

Random Functionals

Find minimizer in a suitable function space (e.g. $H^{1,2}(D)$) of

$$u(x)\mapsto \int_D F(Du,u,x,\omega)dx$$

Minimizer will be random function.

- $D = \mathbb{R}^n$: Minimizer under compact perturbations.
 - Existence
 - Uniqueness
 - Homogenization: $\int_D F(Du, u, x/\epsilon, \omega) dx$

・ロット (日本) (日本) (日本)

Random Functionals

Find minimizer in a suitable function space (e.g. $H^{1,2}(D)$) of

$$u(x)\mapsto \int_D F(Du,u,x,\omega)dx$$

Minimizer will be random function.

- $D = \mathbb{R}^n$: Minimizer under compact perturbations.
 - Existence
 - Uniqueness
 - Homogenization: $\int_D F(Du, u, x/\epsilon, \omega) dx$

Key features of Models:

Evolution decreases free energy

- Free energy is surface energy, i.e. area of interface
- Heterogeneities influence free energy locally (on small scale)

(日)

Key features of Models:

- Evolution decreases free energy
 - Free energy is surface energy, i.e. area of interface
- Heterogeneities influence free energy locally (on small scale)

A D N A B N A B N A B N

Key features of Models:

- Evolution decreases free energy
 - Free energy is surface energy, i.e. area of interface
- Heterogeneities influence free energy locally (on small scale)

Key features of Models:

- Evolution decreases free energy
 - Free energy is surface energy, i.e. area of interface
- Heterogeneities influence free energy locally (on small scale)

Zoom in on scale of heterogeneities

Perturbed Area Functional/Forced MCF

Zoom in on scale of heterogeneities: Liapunov functional (formal):

Area
$$(\Sigma) + \int_{\mathbb{R}^{n+1} \cap E} f(X) dX$$
 where $\Sigma = \partial E$.

Perturbed Area Functional/Forced MCF

Zoom in on scale of heterogeneities: Liapunov functional (formal):

Area
$$(\Sigma \cap \Lambda) + \int_{\Lambda \cap E} f(X) dX$$
 where $\Sigma = \partial E$.

Perturbed Area Functional/Forced MCF

Zoom in on scale of heterogeneities: Liapunov functional (formal):

1

Area
$$(\Sigma \cap \Lambda) + \int_{\Lambda \cap E} f(X) dX$$
 where $\Sigma = \partial E$.

Gradient flow:

$$V_X = \kappa_X + f(X), \ X \in \Sigma(t) \subset \mathbb{R}^{n+1}$$

 κ_X mean curvature of Σ at point X, V_X normal velocity at point X.

Behaviour on Large Scale:

("Undo zooming in")

$$V_X = \kappa_X + f(X, \omega), \ X \in \Sigma(t) \subset \mathbb{R}^{n+1}$$

 κ_X mean curvature of Σ at point X, V_X normal velocity at point X. **Questions:**

De-pinning Threshold F_c

Scaling law for effective velocity as function of F and for "oscillation" of interface.

Behaviour on Large Scale:

("Undo zooming in")

$$V_X = \kappa_X + f(X, \omega), \ X \in \Sigma(t) \subset \mathbb{R}^{n+1}$$

 κ_X mean curvature of Σ at point X, V_X normal velocity at point X. **Questions:**

Subscript{ Effective Velocity (
$$t = e^{-1}T$$
, $x = e^{-1}Y$)

De-pinning Threshold *F_c*

Scaling law for effective velocity as function of F and for "oscillation" of interface.

(日)

Behaviour on Large Scale:

("Undo zooming in")

$$V_X = \kappa_X + f(X, \omega), \ X \in \Sigma(t) \subset \mathbb{R}^{n+1}$$

 κ_X mean curvature of Σ at point X, V_X normal velocity at point X. **Questions:**

Subscript{ Effective Velocity (
$$t = e^{-1}T$$
, $x = e^{-1}Y$)

- **De-pinning Threshold** *F_c*
- Scaling law for effective velocity as function of F and for "oscillation" of interface.

(日)

Motivation

Related Homogenization Problem

Interface as level set: $\Sigma(t) = \{x \in \mathbb{R}^{n+1} : w(x, t) = 0\}$

$$V = \epsilon \kappa + f\left(\frac{x}{\epsilon}\right) \Rightarrow w_t = \epsilon \operatorname{tr}\left[\left(I - \frac{1}{|\nabla w|^2} \nabla w \otimes \nabla w\right) D^2 w\right] + f\left(\frac{x}{\epsilon}\right) |\nabla u|$$
$$V = c(\nu) \Rightarrow \bar{w}_t = c\left(\frac{\nabla \bar{w}}{|\nabla \bar{w}|}\right) |\nabla \bar{w}|$$

"Singular" Homogenization: Averaging and singular limit.

- Degenerate, nonlinear
- f(x) may change sign

Forcing f(x) strictly positive (+additional conditions), not random:

P.-L. Lions, P.E. Souganidis, (2005),

Additional conditions: Caffarelli, Monneau

Connection: Level sets evolve by (forced) MCF (Chen-Giga-Goto) Random case mostly open! Look for simplified model:

Random Obstacle Model.

Nicolas Dirr (Cardiff University)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
 Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic PL, Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change).
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with 4-dependence:

・ロット (日本) (日本) (日本)

Introduction

Motivation

Related work

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
 Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Catlarelli, P.E. Souganidis, L. Wang (random, strictly elliptic PL. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change).
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with ²-dependence

(日)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
 Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - E. Galdarelli, P.E. Souganidis, L. Wang (Fahuuni, sinday elli P.L. Lions, P.E. Souganidis (estimates from positive forcing
 - P. Cardaliaguel, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
 Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - RL. Lions, R.E. Souganidis (estimates from positive forcing)
 R Compliance: RL Lippe RE Souganidis (rise doese)
 - e Caffarelli Monneau
 - . D.; G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
 Homogenization of (fully) nonlinear PDE/MCF (periodic/random)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - P.L. Canarelli, P.E. Sougarilois, E. Wang (random, strictly ellipside)
 P.L. Lions, P.E. Sougarildis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with ^u/₂-dependence:
 - C. Imbert, R. Monneau, E. Rouy; G. Barles

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with ^u/_e-dependence:
 - C. Imbert, R. Monneau, E. Rouy; G. Barles

(日)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with $\frac{u}{\epsilon}$ -dependence:
 - C. Imbert, R. Monneau, E. Rouy; G. Barles

(日)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with $\frac{\mu}{\epsilon}$ -dependence:
 - C. Imbert, R. Monneau, E. Rouy; G. Barles

・ロット (日本) (日本) (日本)
- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with ^u/₂-dependence:
 - C. Imbert, R. Monneau, E. Rouy; G. Barles

・ロット (日本) (日本) (日本)

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with $\frac{u}{\epsilon}$ -dependence:

イロト 不得 トイヨト イヨト

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with $\frac{u}{\epsilon}$ -dependence:
 - ...

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with ^u/_e-dependence:
 C. Imbert, R. Monneau, E. Rouy; G. Barles

...

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with ^μ/_ε-dependence:
 C. Imbert, R. Monneau, E. Rouy; G. Barles

...

- Physics: QEW ($\partial_t u = \Delta u + f(x, u, \omega)$)
 - S. Brazovsii, Th. Nattermann (et al.) (FRG)
- Material Science
 - K. Bhattacharya
 - B. Craciun, K. Bhattacharya (conditional result)
- MCF and dislocations: F. Da Lio. N. Forcadel R. Monneau
- Homogenization of (fully) nonlinear PDE/MCF (periodic/random)
 - L. Caffarelli, R. De la Llave (minimizers under compact pert.)
 - L. Caffarelli, P.E. Souganidis, L. Wang (random, strictly elliptic)
 - P.L. Lions, P.E. Souganidis (estimates from positive forcing)
 - P. Cardaliaguet, P.L. Lions, P.E. Souganidis (sign change)
 - Caffarelli, Monneau
 - D., G. Karali, N.K. Yip (graph, periodic)
 - A. Cesaroni, M.Novaga, E. Valdinoci (periodic)
 - Homogenization with ^μ/_ε-dependence:
 C. Imbert, R. Monneau, E. Rouy; G. Barles

o ...

Introduction

Motivation

(x,u(x,

(a)

Forced Mean Curvature Flow/Semilinear "Approx."

Forced MCF (Gradient flow of perturbed surface energy): $V_{x,u} = \kappa_{x,u} + f(x, u) + F$ $\uparrow u$

If surface is graph (x, u(x, t)) then $u(x, t) : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ solves

$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) + \sqrt{1 + |\nabla u|^2} (f(x, u) + F).$$

gradient small, then (heuristic) approximation: semilinear PDE

 $u_t = \Delta u + f(x, u) + F$, $F \ge 0$: external driving force.

Forced Mean Curvature Flow/Semilinear "Approx."

Forced MCF (Gradient flow of perturbed surface energy): $V_{x,\mu} = \kappa_{x,\mu} + f(x, \mu) + F$

$$\begin{array}{c}
 u \\
 (x,u(x,t)) \\
 \hline
 x
\end{array}$$

If surface is graph (x, u(x, t)) then $u(x, t) : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ solves

$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) + \sqrt{1 + |\nabla u|^2} (f(x, u) + F).$$

Gradient flow with Lyapunov functional:

$$\int \left(\sqrt{1+|\nabla u|^2} + \left[\int_0^{u(x)} f(x,s,\omega)ds\right] + Fu\right) dx$$

Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall, T. J. Yang, Venkatraman Gopalan, P. J. Swart, U. Mohideen, Physical Review Letters 82, 1999

Nicolas Dirr (Cardiff University)

Random Coefficients

Introduction

Motivation

(x.u(x.

(日)

Forced Mean Curvature Flow/Semilinear "Approx."

Forced MCF (Gradient flow of perturbed surface energy): $V_{x,u} = \kappa_{x,u} + f(x, u) + F$ $\uparrow u$

If surface is graph (x, u(x, t)) then $u(x, t) : \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}$ solves

$$\partial_t u = \sqrt{1 + |\nabla u|^2} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}}\right) + \sqrt{1 + |\nabla u|^2}(f(x, u) + F).$$

gradient small, then (heuristic) approximation: semilinear PDE

 $u_t = \Delta u + f(x, u) + F$, $F \ge 0$: external driving force.

The Random Obstacle Model

$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

Quenched Edwards-Wilkinson Model (QEW)

Dynamic phase transitions in ferroic systems with pinned domain walls. W. Kleemann. MFO Phasenübergänge, 20.-26. 06. 2004

Nicolas Dirr (Cardiff University)

< 6 b

The Random Obstacle Model

$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

Important: Comparison Principle. If u, v solns., $u(T) \le v(T)$, (+b.c.) then $u(T + s) \le v(T + s)$ for all $s \ge 0$.

The Random Obstacle Model

$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

Nicolas Dirr (Cardiff University)

11/28

A >

The Random Obstacle Model

$$\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F$$
 on \mathbb{R}^n
 $u(x,0) = 0$

A

Introduction

Motivation

The Random Obstacle Model

$$\partial_t u(x, t, \omega) = \Delta u(x, t, \omega) + f(x, u(x, t, \omega), \omega) + F$$
 on \mathbb{R}^n
 $u(x, 0) = 0$

Questions: Pinning/De-pinning: Is it true that

- \bullet 0 < F < F_ $_{*}$: nonnegative stationary solution exists
- $F > F_*$: **no** nonnegative stationary solution exists?

4 D N 4 B N 4 B N 4

$$\partial_{\tau} v(y,\tau,\omega) = \epsilon \Delta v(y,\tau,\omega) + f(\epsilon^{-1}y,\epsilon^{-1}v(y,\tau,\omega),\omega) + F$$

$$v(x,0) = 0$$

Questions: Pinning/De-pinning: Is it true that

• 0 < *F* < *F*_{*} : nonnegative stationary solution exists • *F* > *F*_{*} : **no** nonnegative stationary solution exists? "effective velocity" on scale $\tau = \epsilon^{-1}t$, $y = \epsilon^{-1}x$. $\partial_{\tau}\bar{v}(y,\tau,\omega) = \bar{c}$

4日 > 4 個 > 4 回 > 4 回 >

$$\partial_{\tau} v(y,\tau,\omega) = \epsilon \Delta v(y,\tau,\omega) + f(\epsilon^{-1}y,\epsilon^{-1}v(y,\tau,\omega),\omega) + F$$

$$v(x,0) = 0$$

Questions: Pinning/De-pinning: Is it true that

- $0 < F < F_*$: nonnegative stationary solution exists
- $F > F_*$: **no** nonnegative stationary solution exists?
- "effective velocity" on scale $\tau = \epsilon^{-1} t$, $y = \epsilon^{-1} x$. $\partial_{\tau} \bar{v}(y, \tau, \omega) = \bar{c}$ • Periodic: Such F_* exists, velocity $\sim \sqrt{F - F_*}$
- $F = F^*$? Periodic: Stationary solution due to compactness (D.-Yip)

What happens at F = F*?

• Periodic environment (compactness): Stationary solution exists as u.c. limit of stationary solutions for $F < F_*$.

• Random environment: Zero Velocity **AND** non-existence of stationary solution possible

 $\dot{X} = F + \sin(2\pi x)$

 $F_* = 1$ χ cut-off, $\chi = 1$ near x = 0, $\chi = 0$ on $\mathbb{R} \setminus [-1/8, 1/8]$. Z_i i.i.d., $Z_i > 0$ a.s., $\mathbb{E}Z_0 = \infty$. (square-root behavior)

Time to cross obstacle at $i:\sim Z_i$

What happens at F = F*?

• Periodic environment (compactness): Stationary solution exists as u.c. limit of stationary solutions for $F < F_*$.

Random environment: Zero Velocity AND non-existence of stationary solution possible

 $\dot{X} = F + \sin(2\pi x)$

 $F_* = 1$ χ cut-off, $\chi = 1$ near x = 0, $\chi = 0$ on $\mathbb{R} \setminus [-1/8, 1/8]$. Z_i i.i.d., $Z_i > 0$ a.s., $\mathbb{E}Z_0 = \infty$. (square-root behavior)

Time to cross obstacle at $i:\sim Z_i$

(a)

What happens at F = F *?

- Periodic environment (compactness): Stationary solution exists as u.c. limit of stationary solutions for $F < F_*$.
- Random environment: Zero Velocity **AND** non-existence of stationary solution possible

$$X = F + \sin(2\pi x)$$

 $F_* = 1$ χ cut-off, $\chi = 1$ near x = 0, $\chi = 0$ on $\mathbb{R} \setminus [-1/8, 1/8]$. Z_i i.i.d., $Z_i > 0$ a.s., $\mathbb{E}Z_0 = \infty$. (square-root behavior)

Time to cross obstacle at $i: \sim Z_i$

ヘロト ヘ部ト ヘヨト ヘヨト

What happens at F = F *?

- Periodic environment (compactness): Stationary solution exists as u.c. limit of stationary solutions for $F < F_*$.
- Random environment: Zero Velocity **AND** non-existence of stationary solution possible

$$\dot{X} = F + \sin(2\pi x)$$

*F*_{*} = 1

 χ cut-off, $\chi = 1$ near x = 0, $\chi = 0$ on $\mathbb{R} \setminus [-1/8, 1/8]$. Z_i i.i.d., $Z_i > 0$ a.s., $\mathbb{E}Z_0 = \infty$. (square-root behavior)

Time to cross obstacle at $i: \sim Z_i$

イロト 不得 トイヨト イヨト

Random vs. Periodic: Loss of compactness and behaviour at critical forcing in zero dim.

What happens at F = F *?

- Periodic environment (compactness): Stationary solution exists as u.c. limit of stationary solutions for $F < F_*$.
- Random environment: Zero Velocity **AND** non-existence of stationary solution possible

$$\dot{X} = F + \sin(2\pi x) + \sum_{i} \frac{1}{Z_{i}^{2}(\omega)} \chi(X - 3/4 - i)$$

 $F_* = 1$ χ cut-off, $\chi = 1$ near x = 0, $\chi = 0$ on $\mathbb{R} \setminus [-1/8, 1/8]$. Z_i i.i.d., $Z_i > 0$ a.s., $\mathbb{E}Z_0 = \infty$. (square-root behavior)

Time to cross obstacle at $i: \sim Z_i$

イロト 不得 トイヨト イヨト

Random vs. Periodic: Loss of compactness and behaviour at critical forcing in zero dim.

What happens at F = F*?

- Periodic environment (compactness): Stationary solution exists as u.c. limit of stationary solutions for $F < F_*$.
- Random environment: Zero Velocity **AND** non-existence of stationary solution possible

$$\dot{X} = F + \sin(2\pi x) + \sum_{i} \frac{1}{Z_{i}^{2}(\omega)} \chi(X - 3/4 - i)$$

 $\begin{array}{l} F_* = 1\\ \chi \text{ cut-off, } \chi = 1 \text{ near } x = 0, \, \chi = 0 \text{ on } \mathbb{R} \setminus [-1/8, 1/8].\\ Z_i \text{ i.i.d., } Z_i > 0 \text{ a.s., } \mathbb{E}Z_0 = \infty. \text{ (square-root behavior)} \end{array}$

Time to cross obstacle at $i: \sim Z_i$

・ロット (日本) (日本) (日本)

Random Obstacle Model: Precise Setting

$$\partial_t u(x, t, \omega) = \Delta u(x, t, \omega) + f(x, u(x, t, \omega), \omega) + F$$
 on \mathbb{R}^n
 $u(x, 0) = 0$

$$\begin{split} F \geq 0, & \text{(driving force), } \phi \text{ mollifier of } \mathbf{1}_{[-\delta,\delta]^{n+1}}(x,u), \\ & f(x,u) = \sum_{(i,j) \in \mathbb{Z}^n \times (\mathbb{Z} + \frac{1}{2})} \left(\mathbb{E}(\ell_{ij}) - \ell_{i,j}(\omega) \right) \phi(x-i,u-j) \\ & (\ell_{i,j}(\omega))_{(i,j) \in \mathbb{Z}^n \times (\mathbb{Z} + \frac{1}{2})} \text{ are a family of i.i.d. exponential random variables.} \end{split}$$

・ロット (日本) (日本) (日本)

$$0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$$
 on \mathbb{R}^n , $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$, there is almost surely no solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

Theorem (P. Dondl, M. Scheutzow)

$$0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$$
 on \mathbb{R}^n , $u(x) \ge 0$ (*)

Barrier for/limit of

 $\partial_t u(x,t,\omega) = \Delta u(x,t,\omega) + f(x,u(x,t,\omega),\omega) + F \text{ on } \mathbb{R}^n, \quad u(x,0) = 0$

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$ there is almost surely **no** solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow) Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

 $0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$ on \mathbb{R}^n , $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$ there is almost surely **no** solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

$$0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$$
 on \mathbb{R}^n , $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$ there is almost surely **no** solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

 $0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$ on \mathbb{R}^n , $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$ there is almost surely **no** solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

Theorem (P. Dondl, M. Scheutzow)

 $0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$ on \mathbb{R}^n , $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$ there is almost surely **no** solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

Theorem (P. Dondl, M. Scheutzow)

- Let n = 1 There ex. $0 < F_1$ and $C_1 > 0$ such that for $F > F_1$, there ex. almost surely a solution with $\mathbb{E}[u(x, t, \omega)] \ge C_1 t$ for all $x \in \mathbb{R}$.
- Uniformly for x₁, x₂ in a fixed compact:

$$\lim_{t\to\infty}t^{-1}\big(u(x_1,t,\omega)-u(x_2,t,\omega)\big)=0$$

Nicolas Dirr (Cardiff University)

 $0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$ on \mathbb{R}^n , $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$ there is almost surely **no** solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

Theorem (P. Dondl, M. Scheutzow)

• Let n = 1 There ex. $0 < F_1$ and $C_1 > 0$ such that for $F > F_1$, there ex. almost surely a solution with $\mathbb{E}[u(x, t, \omega)] \ge C_1 t$ for all $x \in \mathbb{R}$.

Uniformly for x₁, x₂ in a fixed compact:

$$\lim_{\to\infty} t^{-1} \big(u(x_1, t, \omega) - u(x_2, t, \omega) \big) = 0$$

Nicolas Dirr (Cardiff University)

 $0 = \Delta u(x,\omega) + f(x,u(x,\omega),\omega) + F$ on \mathbb{R}^n , $u(x) \ge 0$ (*)

Theorem (N.D., J. Coville, S. Luckhaus)

Let n = 1 and u solve (*) Then there exist $F_0 > 0$ such that for $F > F_0$ there is almost surely **no** solution of (*).

Theorem (N.D., P. Dondl, M. Scheutzow)

Let n = 1, 2. There ex. $0 < F_1$ such that for $0 < F < F_1$, (*) has almost surely a solution with $\mathbb{E}[u(x, \omega)] = c < \infty$ for all $x \in \mathbb{R}^n$.

Theorem (P. Dondl, M. Scheutzow)

- Let n = 1 There ex. $0 < F_1$ and $C_1 > 0$ such that for $F > F_1$, there ex. almost surely a solution with $\mathbb{E}[u(x, t, \omega)] \ge C_1 t$ for all $x \in \mathbb{R}$.
- Uniformly for x₁, x₂ in a fixed compact:

$$\lim_{t\to\infty}t^{-1}\big(u(x_1,t,\omega)-u(x_2,t,\omega)\big)=0$$

Nicolas Dirr (Cardiff University)

$$\mathbb{P}\Big\{\omega: u(x,\omega)) \geq KN - K|x|\Big\} \geq 1 - Ce^{-rac{N}{C}}$$

- Coarse-graining: Discretise → v³, using that path between obstacles determined by values on boundary of obstacles.
- Estimate discrete Laplacian against obstacle:
 - $\Delta_d(i) + F \le G\ell_{i,[\bar{v}^\delta(i)]}(\omega)$
 - Problem: Path may pass several obstacles above same integer
- Auxiliary random measure on paths:
 - $\mathbb{P}(U(\omega) \text{ compatible with } \tilde{v}^{\delta}(l)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{i} (\Delta_{d}(l) + l)_{i}} \right\}$
- Conclusion: Path crosses $KN = K|x| \Rightarrow \sum_{i} (\Delta_d(i) + F) = O(N)$ • Borel-Cantelli Lemma

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{KN} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C}e^{-rac{N}{C}}$$

- Coarse-graining: Discretise $\rightarrow \bar{v}^{\delta}$, using that path between obstacles determined by values on boundary of obstacles.
- Estimate discrete Laplacian against obstacle: $\Delta_d(i) + F \leq C\ell_{i,[\bar{\nu}^{\delta}(i)]}(\omega)$ Problem: Path may pass several obstacles above same integer • Auxiliary random measure on paths
 - $\mathbb{P}(u(\omega) \text{ compatible with } \overline{v}^{\delta}(i)) \leq GZ \left\{ Z^{-1} e^{-C\sum_{i}(\Delta_{\delta}(i)+F)_{+}} \right\}$

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{KN} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C}e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: Discretise $\rightarrow \bar{v}^{\delta}$, using that path between obstacles determined by values on boundary of obstacles.
- Estimate discrete Laplacian against obstacle:
 Δ_d(i) + F ≤ Cℓ_{i,[v̄^δ(i)]}(ω)
 Problem: Path may pass several obstacles above same integer

 $\mathbb{P}(u(\omega) ext{ compatible with } ar{v}^{\delta}(l)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{l} (\Delta_d(l) + F)_+}
ight\}$

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{KN} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C}e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: Discretise $\rightarrow \bar{v}^{\delta}$, using that path between obstacles determined by values on boundary of obstacles.
- Estimate discrete Laplacian against obstacle: Δ_d(i) + F ≤ Cℓ_{i,[ν̄^δ(i)]}(ω) Problem: Path may pass several obstacles above same integer
- Auxiliary random measure on paths: $\mathbb{P}(u(\omega) \text{ compatible with } \bar{v}^{\delta}(i)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{i} (\Delta_d(i) + F)_+} \right\}$
 - Conclusion: Path crosses $KN K|X| \Rightarrow \sum_{i} (\Delta_d(i) + F) = O(N)$

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{KN} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C}e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: Discretise $\rightarrow \bar{v}^{\delta}$, using that path between obstacles determined by values on boundary of obstacles.
- Estimate discrete Laplacian against obstacle:
 Δ_d(i) + F ≤ Cℓ_{i,[ν̄^δ(i)]}(ω)
 Problem: Path may pass several obstacles above same integer
- Auxiliary random measure on paths: $\mathbb{P}(u(\omega) \text{ compatible with } \bar{v}^{\delta}(i)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{i} (\Delta_{d}(i) + F)_{+}} \right\}$
- Conclusion: Path crosses $KN K|x| \Rightarrow \sum_i (\Delta_d(i) + F) = O(N)$
- Borel-Cantelli Lemma
Non-Existence

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{KN} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C}e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: Discretise $\rightarrow \bar{v}^{\delta}$, using that path between obstacles determined by values on boundary of obstacles.
- Estimate discrete Laplacian against obstacle:
 Δ_d(i) + F ≤ Cℓ_{i,[ν̄^δ(i)]}(ω)
 Problem: Path may pass several obstacles above same integer
- Auxiliary random measure on paths: $\mathbb{P}(u(\omega) \text{ compatible with } \bar{v}^{\delta}(i)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{i} (\Delta_{d}(i) + F)_{+}} \right\}$

• Conclusion: Path crosses $KN - K|\dot{x}| \Rightarrow \sum_{i} (\Delta_d(i) + F) = O(N)$

Non-Existence

$$\mathbb{P}\Big\{\omega: \ u(x,\omega)) \geq \mathcal{KN} - \mathcal{K}|x|\Big\} \geq 1 - \mathcal{C}e^{-rac{N}{\mathcal{C}}}$$

- Coarse-graining: Discretise $\rightarrow \bar{v}^{\delta}$, using that path between obstacles determined by values on boundary of obstacles.
- Estimate discrete Laplacian against obstacle:
 Δ_d(i) + F ≤ Cℓ_{i,[ν̄^δ(i)]}(ω)
 Problem: Path may pass several obstacles above same integer
- Auxiliary random measure on paths: $\mathbb{P}(u(\omega) \text{ compatible with } \bar{v}^{\delta}(i)) \leq CZ \left\{ Z^{-1} e^{-C \sum_{i} (\Delta_{d}(i) + F)_{+}} \right\}$
- Conclusion: Path crosses $KN K|x| \Rightarrow \sum_i (\Delta_d(i) + F) = O(N)$
- Borel-Cantelli Lemma

• □ ▶ • @ ▶ • E ▶ • E ▶ •

Essential probabilistic step: Lipschitz percolation, i.e. a discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ ex. with (z, w(z)) good for all $z \in \mathbb{Z}^n$ if $\mathbb{P}(bad)$ small, (D., Dondl, Grimmett, Holroyd, Scheutzow, Electr. J. of Prob.,)

Analyst's approach: Fixed point iteration

A (10) A (10)

Proofs

Existence

Essential probabilistic step: Lipschitz percolation, i.e. a discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ ex. with (z, w(z)) good for all $z \in \mathbb{Z}^n$ if $\mathbb{P}(bad)$ small, (D., Dondl, Grimmett, Holroyd, Scheutzow, Electr. J. of Prob.,)

Proofs

Existence

Essential probabilistic step: Lipschitz percolation, i.e. a discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ ex. with (z, w(z)) good for all $z \in \mathbb{Z}^n$ if $\mathbb{P}(bad)$ small, (D., Dondl, Grimmett, Holroyd, Scheutzow, Electr. J. of Prob.,)

Essential probabilistic step: Lipschitz percolation, i.e. a discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ ex. with (z, w(z)) good for all $z \in \mathbb{Z}^n$ if $\mathbb{P}(bad)$ small, (D., Dondl, Grimmett, Holroyd, Scheutzow, Electr. J. of Prob.,)

Essential probabilistic step: Lipschitz percolation, i.e. a discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ ex. with (z, w(z)) good for all $z \in \mathbb{Z}^n$ if $\mathbb{P}(bad)$ small, (D., Dondl, Grimmett, Holroyd, Scheutzow, Electr. J. of Prob.,)

< 回 > < 三 > < 三

Essential probabilistic step: Lipschitz percolation, i.e. a discrete 1-Lipschitz graph $w : \mathbb{Z}^n \to \mathbb{N}$ ex. with (z, w(z)) good for all $z \in \mathbb{Z}^n$ if $\mathbb{P}(bad)$ small, (D., Dondl, Grimmett, Holroyd, Scheutzow, Electr. J. of Prob.,)

Branching process on cones: Dies out if "closed" cells rare.

A D N A B N A B N A B N

Idea: Approximate Lipschitz graph by function s.t. $\Delta u + f(x, u, \omega) + F \leq 0$. ("convex" corners at obstacles)

 Discretization: Fix threshold R, call a box open if it contains obstacle with strength > R.

- Suppose: There exists Lipschitz graph w ≥ 1 which is contained in the open set.
- From *w* construct function $v \ge 0$ with Lipschitz-constant C(F) which solves $\Delta v = -F$ outside strong obstacles.
- Inside strong obstacles: Paraboloids.

Idea: Approximate Lipschitz graph by function s.t. $\Delta u + f(x, u, \omega) + F \leq 0$. ("convex" corners at obstacles)

 Discretization: Fix threshold *R*, call a box open if it contains obstacle with strength > *R*.

- Suppose: There exists Lipschitz graph w ≥ 1 which is contained in the open set.
- From *w* construct function $v \ge 0$ with Lipschitz-constant C(F) which solves $\Delta v = -F$ outside strong obstacles.
- Inside strong obstacles: Paraboloids.

Idea: Approximate Lipschitz graph by function s.t. $\Delta u + f(x, u, \omega) + F \leq 0$. ("convex" corners at obstacles)

 Discretization: Fix threshold *R*, call a box open if it contains obstacle with strength > *R*.

- Suppose: There exists Lipschitz graph *w* ≥ 1 which is contained in the open set.
- From *w* construct function *v* ≥ 0 with Lipschitz-constant *C*(*F*) which solves Δ*v* = −*F* outside strong obstacles.
- Inside strong obstacles: Paraboloids.

Idea: Approximate Lipschitz graph by function s.t. $\Delta u + f(x, u, \omega) + F \leq 0$. ("convex" corners at obstacles)

 Discretization: Fix threshold *R*, call a box open if it contains obstacle with strength > *R*.

- Suppose: There exists Lipschitz graph *w* ≥ 1 which is contained in the open set.
- From *w* construct function *v* ≥ 0 with Lipschitz-constant *C*(*F*) which solves Δ*v* = −*F* outside strong obstacles.
- Inside strong obstacles: Paraboloids.

Area
$$(\Sigma \cap \Lambda) + \int_{\Lambda \cap E} f(X) dX$$
 where $\Sigma = \partial E$.
 $F_{\epsilon}(u) = \int_{\Lambda} \left(\frac{\epsilon}{2} |\nabla u(x)|^2 + \frac{1}{\epsilon} W(u(x)) + \frac{\alpha_{\epsilon}}{\epsilon} h\left(\frac{x}{\epsilon}, \omega\right) u(x)\right) dx$

h bounded random field, short correlation length *W* double-well potential, two minimizers ± 1 .

• Idea: u^{ϵ} minimiser $\Rightarrow u^{\epsilon} \rightarrow \pm 1$ on $\mathbb{R}^{d} \setminus \Sigma$ as $\epsilon \rightarrow 0$, F_{ϵ} converges to (possibly anisotropic) area functional.

$$F_{\epsilon}(u) = \int_{\Lambda} \left(\frac{\epsilon}{2} |\nabla u(x)|^2 + \frac{1}{\epsilon} W(u(x)) + \frac{\alpha_{\epsilon}}{\epsilon} h\left(\frac{x}{\epsilon}, \omega\right) u(x) \right) dx$$

h bounded random field, short correlation length *W* double-well potential, two minimizers ± 1 .

• Idea: u^{ϵ} minimiser $\Rightarrow u^{\epsilon} \rightarrow \pm 1$ on $\mathbb{R}^{d} \setminus \Sigma$ as $\epsilon \rightarrow 0$, F_{ϵ} converges to (possibly anisotropic) area functional. $\alpha_{\epsilon} \sim \log(1/\epsilon)$, $d \geq 3$ or O(1) and periodic (D-Lucia-Novaga)

< □ > < 同 > < 回 > < 回 > < 回 >

$$F_{\epsilon}(u) = \int_{\Lambda} \left(\frac{\epsilon}{2} |\nabla u(x)|^2 + \frac{1}{\epsilon} W(u(x)) + \frac{\alpha_{\epsilon}}{\epsilon} h\left(\frac{x}{\epsilon}, \omega\right) u(x) \right) dx$$

h bounded random field, short correlation length *W* double-well potential, two minimizers ± 1 .

• Idea: u^{ϵ} minimiser $\Rightarrow u^{\epsilon} \rightarrow \pm 1$ on $\mathbb{R}^{d} \setminus \Sigma$ as $\epsilon \rightarrow 0$, F_{ϵ} converges to (possibly anisotropic) area functional. $\alpha_{\epsilon} \sim \log(1/\epsilon)$, $d \geq 3$ or O(1) and periodic (D-Lucia-Novaga)

• $\alpha_{\epsilon} = O(1)$, i.e. d2: Unique transl. cov. minimizer (under comp. pert.), effect of b.c. lost as as $\Lambda \nearrow \mathbb{R}^d$

$$F_{\epsilon}(u) = \int_{\Lambda} \left(\frac{\epsilon}{2} |\nabla u(x)|^2 + \frac{1}{\epsilon} W(u(x)) + \frac{\alpha_{\epsilon}}{\epsilon} h\left(\frac{x}{\epsilon}, \omega\right) u(x) \right) dx$$

h bounded random field, short correlation length *W* double-well potential, two minimizers ± 1 .

• Idea: u^{ϵ} minimiser $\Rightarrow u^{\epsilon} \rightarrow \pm 1$ on $\mathbb{R}^{d} \setminus \Sigma$ as $\epsilon \rightarrow 0$, F_{ϵ} converges to (possibly anisotropic) area functional. $\alpha_{\epsilon} \sim \log(1/\epsilon)$, $d \geq 3$ or O(1) and periodic (D-Lucia-Novaga)

• $\alpha_{\epsilon} = O(1)$, i.e. d2: Unique transl. cov. minimizer (under comp. pert.), effect of b.c. lost as as $\Lambda \nearrow \mathbb{R}^d$

Replace gradient term by nonlocal term

$$E_{\Lambda}(m,m_0) = \int_{\Lambda \times \Lambda} dx dy \frac{|\mathbf{m}(\mathbf{x}) - \mathbf{m}(\mathbf{y})|^2}{|\mathbf{x} - \mathbf{y}|^{d+2s}} + \underbrace{2 \int_{\Lambda} dx \int_{\mathbb{R}^{n+1} \setminus \Lambda} dy \frac{|\mathbf{m}(\mathbf{x}) - \mathbf{m}_0(\mathbf{y})|^2}{|\mathbf{x} - \mathbf{y}|^{d+2s}}}_{\text{boundary cond. } \mathbf{m}_0}$$

$$d=2, s \in (\frac{1}{2}, 1)$$
 or $d=1, s \in [\frac{1}{4}, 1)$: Unique minimiser (comp. pert.)

The functional

Randomness: $(g(z, \omega))_{z \in \mathbb{Z}^d}$, *d* space dimension family of uniformly bounded i.i.d. r.v. with mean zero and variance 1 and **Lebesgue-continuous** and symmetric distribution.

$$g(x,\omega) := \sum_{z \in \mathbb{Z}^d} g(z,\omega) \mathbf{1}_{(z+[-rac{1}{2},rac{1}{2}]^d) \cap \Lambda}(x),$$

Energy:

$$\mathcal{K}(\mathbf{v},\omega,\Lambda) = \int_{\Lambda} d\mathbf{x} \int_{\Lambda} d\mathbf{y} \frac{|\mathbf{v}(\mathbf{x}) - \mathbf{v}(\mathbf{y})|^2}{|\mathbf{x} - \mathbf{y}|^{d+2s}} + \int_{\Lambda} W(\mathbf{v}(\mathbf{x})) d\mathbf{x} - \int_{-\infty}^{\infty} g(\mathbf{x},\omega) v(\mathbf{x}) d\mathbf{x}.$$

Boundary Cost:

$$\mathcal{W}((\mathbf{v},\Lambda),(\mathbf{u},\Lambda_1)) = 2 \int_{\Lambda} \mathrm{d}x \int_{\tilde{\mathbf{v}}_1} \mathrm{d}y \frac{|\mathbf{v}(\mathbf{x}) - \mathbf{u}(\mathbf{y})|^2}{|\mathbf{x} - \mathbf{y}|^{d+2s}}$$

$$G^{\mathbf{v}_0}(\mathbf{v},\omega,\Lambda) = \mathcal{K}(\mathbf{v},\omega,\Lambda) + \mathcal{W}((\mathbf{v},\Lambda)(\mathbf{v}_0,\Lambda^c))$$

Nicolas Dirr (Cardiff University)

Minimizer under compact perturbation

 $u : \mathbb{R}^d \to \mathbb{R}$ Minimizer under compact perturbations: For any compact subdomain $U \subset$ we have

$$G^{u}(u,\omega,U)<\infty,$$
 a.s.

and

$$G^{u}(u,\omega,U) \leq G^{v}(v,\omega,U)$$
 a.s.

for any *v* which coincides with *u* in $\mathbb{R}^d \setminus U$.

 $u : \Lambda \to \mathbb{R}$ is v^0 -minimizer if it minimizes G^{v_0} among all functions which coincide with v^0 on $\mathbb{R}^d \setminus \Lambda$. These exist by standard arguments.

(a)

Minimizer under compact perturbation

 $u : \mathbb{R}^d \to \mathbb{R}$ Minimizer under compact perturbations: For any compact subdomain $U \subset$ we have

$$G^{u}(u,\omega,U)<\infty, \quad a.s.$$

and

$$G^{u}(u,\omega,U) \leq G^{v}(v,\omega,U)$$
 a.s.

for any *v* which coincides with *u* in $\mathbb{R}^d \setminus U$.

 $u : \Lambda \to \mathbb{R}$ is v^0 -minimizer if it minimizes G^{v_0} among all functions which coincide with v^0 on $\mathbb{R}^d \setminus \Lambda$. These exist by standard arguments.

(a)

Minimizers are ordered

u min. of $G^{u}(\cdot, \Lambda)$, *v* min. of $G^{v}(\cdot, \Lambda)$, then

- if u = v on $\Lambda^c \Rightarrow u \leq v$ on Λ or $v \leq u$ on Λ
- if u < v on open subset of Λ^c , then $u \leq v$ on Λ .

In general no uniqueness even on compact domains! Idea:

$$G(u \lor v, \Lambda) + G(u \land v, \Lambda) \leq G(u, \Lambda) + G(v, \Lambda).$$

・ロット (日本) (日本) (日本)

Extremal K-minimizers

On compact domain with b.c. in general no uniqueness, but there exists maximal and minimal minimizer.

Consider now constant b.c. $\pm K$ for $K \gg 1$ and let u^{\pm,K,Λ_n} be the extremal min. with b.c. $\pm K$ on $\Lambda_n := (-n, n)^d$.

Define:

$$u^{\pm K}(x,\omega) := \lim_{n \to \infty} u^{\pm,K,\Lambda_n}(x,\omega)$$

Pointwise increasing bounded sequence, converges in better function spaces, consequence:

 $u^{\pm K}(x,\omega)$ are min. under compact perturbations!

Moreover: Translation covariant i.e. $u^{\pm K}(x,\omega)$ and $u^{\pm K}(y,\omega)$ are the same in law.

Extremal ergodic states

WANTED: Extremal min. under compact pert. on \mathbb{R}^n . If they are unique, all min. are equal.

Consequence of min. property of $u^{\pm K}$ and translation covariance: uniform bounds on $||u^{\pm K}||_{\infty}$ which do not depend on *K*.

Consequence:

$$u^{\pm}(x,\omega) := \lim_{K \to \infty} u^{\pm K}(x,\omega)$$

well defined, uniformly bounded and min. under compact pert. Show: $u^+ = u^-$ a.s. Now adapt ideas of Aizenman/Wehr

(日)

Extremal ergodic states

WANTED: Extremal min. under compact pert. on \mathbb{R}^n . If they are unique, all min. are equal.

Consequence of min. property of $u^{\pm K}$ and translation covariance: uniform bounds on $||u^{\pm K}||_{\infty}$ which do not depend on *K*.

Consequence:

$$u^{\pm}(x,\omega) := \lim_{K \to \infty} u^{\pm K}(x,\omega)$$

well defined, uniformly bounded and min. under compact pert. Show: $u^+ = u^-$ a.s. Now adapt ideas of Aizenman/Wehr

(日)

Bound on difference of optimal energies

$$ig| G^{m{v}^+}(m{v}^+,\Lambda) - G^{m{v}^-}_1(m{v}^-,\Lambda) ig| \leq C \left\{egin{array}{cc} |\Lambda|^{rac{d-1}{d}} & ext{if }m{s} \in (rac{1}{2},1) \ |\Lambda|^{rac{d-2s}{d}} & ext{if }m{s} \in (0,rac{1}{2}) \ |\Lambda|^{rac{d-1}{d}} \log |\Lambda| & ext{if }m{s} = rac{1}{2} \end{array}
ight.$$

Note: $|\Lambda_n| \sim n^d$.

Idea: Interpolate on the boundary between u^+ and u^- , estimate "cost" by estimating singular integrals.

(日)

Central Limit Theorem: Set-up

Note: Minimal energy and minimizer depend in complicated way on all random variables $g(z, \omega)$.

 σ -algebras:

• $\mathcal{B}_{n,i} = \sigma(\{g(z), z \in \Lambda_n, z \leq i\})$ where \leq refers to lexicographic ordering in \mathbb{Z}^d .

•
$$\mathcal{B}_{\Lambda_n} = \sigma\left(\{g(z), z \in \Lambda_n\}\right)$$

•
$$\mathcal{B}(\mathbf{0}) = \sigma\left(g(\mathbf{0})\right)$$

Consider

$$\begin{aligned} F_n(\omega) &:= & \mathbb{E}\left[\left\{G(v^+(\omega), \omega, \Lambda_n) - G(v^-(\omega), \omega, \Lambda_n)\right\} | \mathcal{B}_{\Lambda_n}\right] \\ &= & \sum_{i \in \mathbb{Z}^d \cap \Lambda_n} \left(\mathbb{E}[F_n | \mathcal{B}_{n,i}] - \mathbb{E}[F_n | \mathcal{B}_{n,i-1}]\right) := \sum_{i \in \mathbb{Z}^d \cap \Lambda_n} Y_{n,i}. \end{aligned}$$

Martingale Difference: $CLT \Rightarrow F_n \sim \sqrt{|\Lambda|}N(0, D^2)$ where

$$D^2 = \mathbb{E}\left[\left(\mathbb{E}\left[F_n|\mathcal{B}(0)\right]\right)^2\right]$$

Central Limit Theorem: Result

Deterministic bound:

$$|F_n| \leq C \left\{ egin{array}{ccc} n^{d-1} & ext{if } s \in (rac{1}{2},1) \ n^{d-2s} & ext{if } s \in (0,rac{1}{2}) \ n^{d-1} \log n & ext{if } s = rac{1}{2} \end{array}
ight. .$$

Fluctuations: $n^{d/2}$ unless $D^2 = 0$.

Contradiction if $d = 2, s \in (\frac{1}{2}, 1)$ or $d = 1, s \in [\frac{1}{4}, 1)$ unless $D^2 = 0$.

3

イロト 不得 トイヨト イヨト

"derivative" w.r.t. randomness

$$\omega(\mathbf{0})\mapsto \int_{Q(\mathbf{0})} \mathbf{v}^+(\omega(\mathbf{0}),\omega^{(\mathbf{0})})\mathrm{d}\mathbf{x}$$

is nondecreasing.

$$rac{\partial G(m{v}^{\pm}(\omega),\omega,\Lambda)}{\partial \omega(0)} = -\int_{(-1/2,1/2)^d}m{v}^{\pm}(x,\omega)\mathrm{d}x.$$

Absolutely cont. random variables!

Heuristic: Suppose $u(\omega)$ minimises $F(u, \omega)$.

$$\frac{\partial F(u(\omega),\omega)}{\partial \omega}|_{(u(\omega),\omega)} = \frac{\partial F(u,\omega)}{\partial u}|_{(u(\omega),\omega)} + \frac{\partial F(u,\omega)}{\partial \omega}|_{(u(\omega),\omega)}$$
$$= \frac{\partial F(u,\omega)}{\partial \omega}|_{(u(\omega),\omega)}$$
$$G(u,\omega) = \dots - \int_{\Lambda} g(x,\omega)u(x)dx$$

Nicolas Dirr (Cardiff University)

Central Limit Theorem: Conclusion

$$0 = D^2 = \mathbb{E}\left[\left(\mathbb{E}\left[F_n | \mathcal{B}(0)\right]\right)^2\right] = \mathbb{E}\left[f^2(\omega(0))\right]$$
) a.s.

so 0 = f(s) a.s.

$$f'(s) = \frac{\partial G(v^+(\omega), \omega, \Lambda)}{\partial \omega(0)} \Big|_{\omega(0)=s} - \frac{\partial G(v^-(\omega), \omega, \Lambda)}{\partial \omega(0)} \Big|_{\omega(0)=s}$$
$$= \int_{(-1/2, 1/2)^d} (v^+(x, \omega) - v^-(x, \omega)) dx.$$

 $f(s) = 0 \Rightarrow (\text{mon.}) f'(s) = 0 \text{ a.s.} \Rightarrow (\text{ordered}) v^+ = v^- \text{ a.s.}$

Nicolas Dirr (Cardiff University)

28/28

<ロト < 回 > < 回 > < 回 > < 三 > 三 三