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Introduction and motivation 2

Recently, significant advance has been made towards the rigorous
derivation of wave kinetic theory , related to wave turbulence, for the
nonlinear Schrödinger equation (NLS):

(continuum NLS, subkinetic times) T Buckmaster, P Germain,
Z Hani, J Shatah, Invent. math. 225, 787–855 (2021)

(continuum NLS, kinetic times) Y Deng and Z Hani
[arXiv:2104.11204 and arXiv:2110.04565]

(NLS with stochastic forcing) A Dymov, S Kuksin, A Maiocchi,
S Vladuts [arXiv:2104.11967 and arXiv:2110.13873]

Also recent contributions of other groups to closely related models:
Staffilani & Tran, Ampatzoglou & Collot & Germain, etc.
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In addition, we have techniques from previous results:

(Controlling oscillatory integrals in discrete NLS) JL and H Spohn
Invent. Math. 183 (2011) 79–188, and earlier work by Erdős,
Salmhofer, Yau, etc

(Wick polynomials) JL, M Marcozzi, A Nota, e.g., J. Math. Phys.
57 (2016) 083301

(Propagation of regularity by Grönwall-type inequalities) Chong,
Lafleche, Saffirio [arXiv:2103.10946], and earlier work by Pickl,
Schlein, etc

The aim of this talk (joint with S Pirnes and A Vuoksenmaa):

How far can we go wish these ideas to control the cumulant hierarchy
and understand the origins and accuracy of kinetic equations?

Spoiler: The story is now essentially complete for the stochastic Kac
model (mean field model with fast “mixing”), but an important step is
still missing from DNLS and weakly interacting bosons and fermions

Jani Lukkarinen Generation and propagation of chaos



Intro Cumulants Kac Proof Wick TruncMtC

Part I

Cumulant hierarchy and
Wick polynomials

[JL and M. Marcozzi, J. Math. Phys. 57 (2016) 083301 (27pp)]
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What is “chaos” in propagation of chaos of kinetic theory?

Chaos in kinetic theory

In most of the mathematical examples of derivation of a kinetic theory,
starting from the rarefied gas Boltzmann equation, “chaos” refers to
(approximate) statistical independence of some of the evolving
quantities

To fix some terminology for this talk:

Propagation of chaos means that if the above “evolving quantities” are
(sufficiently) independent in the beginning, they remain so
at least up to kinetic time scales

Generation of chaos means that even if the above “evolving quantities”
are not independent in the beginning, they will become so
later, at least in approximation and on some time-scale
which need not be connected with kinetic theory
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Why study cumulants? 6

Observation: If y, z are independent random variables, we have

E[ynzm] = E[yn]E[zm] ̸= 0

whereas the corresponding cumulant is zero if n,m ̸= 0

Consider a random lattice field ψ(x), x ∈ Zd, which is (very) strongly
mixing under lattice translations:

Assume that the fields in well separated regions become asymptotically
independent as the separation grows.

Then κ[ψ(x), ψ(x+ y1), . . . , ψ(x+ yn−1)] → 0 as |yi| → ∞

Not true for corresponding moments, e.g., E[|ψ(x)|2|ψ(x+ y)|2]

NB: κ[ψ(x1), ψ(x2), . . . , ψ(xn)] = 0 if for any j the random variable
ψ(xj) is independent from the rest
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Wick polynomials 7

Generating functions

gt(η) := ln gmom,t(η), gmom,t(η) := E[eη·ψt ]

Then with ∂Jη :=
∏
i∈J ∂ηi , y

J =
∏
i∈J yi,

κ[ψt(x)J ] = ∂Jη gt(0) , E[ψt(x)J ] = ∂Jη gmom,t(0)

Gw(ψt, η) :=
eη·ψt

E[eη·ψt ]
= eη·ψt−gt(η)

⇒ ∂tκ[ψt(x)J ] = ∂Jη ∂tgt(η)
∣∣
η=0

= ∂Jη E[η · ∂tψtGw(ψt, η)]
∣∣
η=0

=
∑
ℓ∈J

E[∂tψt(xℓ) ∂J\ℓη Gw(ψt, 0)]

∂JηGw(ψt, 0) = :ψt(x)
J : are called Wick polynomials
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WP have been mainly used for Gaussian fields. They were
introduced in quantum field theory where the unperturbed measure
concerns Gaussian (free) fields

Gaussian case has significant simplifications: If Cj′j = κ[yj′ , yj ]
denotes the covariance matrix ,

Gw(y, η) = exp[η · (y − ⟨y⟩)− η · Cη/2] .

⇒ Cumulants of order ≥ 3 are zero,
& Wick polynomials are Hermite polynomials

The resulting orthogonality properties are used in the Wiener chaos
expansion and Malliavin calculus
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Wick polynomials and moments-to-cumulants formula 9

Truncated moments-to-cumulants formula

E
[
yJ

′
:yJ :

]
=

∑
π∈P(J′∪J)

∏
A∈π

(κ[yA]1{A ̸⊂J}) (1)

:yJ : are µ-a.s. unique polynomials of order |J | such that (1) holds
for every J ′

Multi-truncated moments-to-cumulants formula

Suppose L ≥ 1 is given and consider a collection of L+ 1 index
sequences J ′, Jℓ, ℓ = 1, . . . , L. Then with I = J ′ ∪ (∪Lℓ=1Jℓ)

E
[
yJ

′
L∏
ℓ=1

:yJℓ :

]
=

∑
π∈P(I)

∏
A∈π

(
κ[yA]1{A ̸⊂Jℓ, ∀ℓ}

)
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Suppose that the evolution equation of the random variables yj(t) can be
written in a form

∂tyj(t) =
∑
I

M I
j (t) :y(t)

I :

Then the cumulants satisfy

∂tκ[y(t)I′ ] =
∑
ℓ∈I′

∑
I

M I
ℓ (t)E

[
:y(t)I : :y(t)I

′\ℓ:
]

where the truncated moments-to-cumulants formula implies

E
[
:y(t)I : :y(t)I

′\ℓ:
]
=

∑
π∈P(I∪(I′\ℓ))

∏
A∈π

(
κ[y(t)A]1{A∩I ̸=∅, A∩(I′\ℓ)̸=∅}

)
⇒ evolution hierarchy for cumulants
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Part II

Stochastic Kac model
and its cumulant hierarchy

[JL, A Vuoksenmaa, arXiv:2407.17068]
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Kac model 12

It was pointed out to us by C. Mouhot that there is a better controlled
test case, simpler than NLS: the stochastic Kac model with random
velocity exchange

Toy model introduced by M. Kac in 1956 for deriving a Boltzmann
equation

N -particle system, where only velocities of the particles are tracked,
and collisions between particles take place stochastically

Originally velocities taken to be 3-dimensional (3N -dimensional
phase space). Later analysis has also focused on the 1-dimensional
case (N -dimensional phase space)
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System of N particles. Configurations are vectors (vi)
N
i=1

State is updated as follows: Randomly pick a pair of particles with
indices (i, j) to collide. Pick a random collision angle θ ∈ 2πT with
some weight (say, uniform). Update velocities by rotating

vi 7→ cos(θ)vi + sin(θ)vj

vj 7→ cos(θ)vj − sin(θ)vi

After the update, the velocity vector is given by

Ri,j(θ)v

where the diagonal and off-diagonal elements of the matrix Ri,j(θ) are

[Ri,j(θ)]k,k = 1{i,j ̸=k}1 + 1{i,j=k} cos(θ)

[Ri,j(θ)]k1,k2 = 1{i=k1,j=k2} sin(θ) + 1{i=k2,j=k1}(− sin(θ))
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Let SN−1 := SN−1(
√
N) = {v ∈ RN : ∥v∥ℓ2N =

√
N}

If v ∈ SN−1, then also Ri,j(θ)v ∈ SN−1

Markov transition operator Q = QN given by

Qϕ(v) =
1

N(N − 1)

∑
i,j;i ̸=j

∫ π

−π
ϕ(Ri,j(θ)v)

dθ

2π

Start from a probability density f0 on SN−1 with respect to the
uniform probability measure µN on SN−1. Evolve the density
according to Kac’s model, and denote the density at time t by ft
and the full measure by F (t)
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The collision times are Poisson, and let us scale time so that the
collision rate is equal to N . Then the evolution of the density ft is
determined by the semigroup

ft = Stf0 = etN(QN−I)f0

Writing the time evolution in terms of the generator, we have

d

dt
ft = N(QN − I)ft
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Known results 16

Kac 1956: Showed that if the initial densities fN0 are chaotic
(comparing to a product state), also fNt are chaotic. Furthermore,
the first marginal of fNt converges to ft as N → ∞, where ft solves{

∂tft(v) =
1
π

∫ π
−π
∫
R (ft(v

′)ft(w
′)− ft(v)ft(w)) dwdθ

f0(v) = (limit of marginal of fN0 )

Here (
v′

w′

)
= R(θ)

(
v
w

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
v
w

)
Evolution equation similar to the spatially homogeneous Boltzmann
equation
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Known results 17

For each N , fNt µN → µN , so the density equilibrates. Can this be
quantified?

Janvresse [Ann. Probab. 2001] proved that the operator QN has a
spectral gap. This shows that

∥fNt − 1∥L2(SN−1,µN ) ≤ e−ct∥fN0 − 1∥L2 → 0

with the rate c uniform in N . Unfortunately, the prefactor depends
on the L2 size of the initial data which is often ∝ CN0

⇒ Observable relaxation time estimated to be ∝ N

Carlen, Carvalho, Loss [Acta Math. 2003] (cf. also Maslen
[Math. Z. 2003]) provided the spectral gaps of QN explicitly,

∆N =
1

2

N + 2

N − 1

⇒ ∥fNt − 1∥L2 ≤ e−
t
2 ∥fN0 − 1∥L2
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Carlen et. al [Kinetic & related models 2009] studied the entropy
production of the Kac model. Showed that there is no universal
lower bound for the entropy production (bad news for fast
equilibriation).

Einav [Kinetic & related models 2011] showed that entropy
production behaves almost as badly as 1

N .

Mischler, Mouhot [Invent. math. 2013] prove several results
concerning quantitative uniform in time propagation of chaos,
propagation of entropic chaos, and quantitative estimates
(independent of the number N of particles) on relaxation times

All of the previous results assume a permutation invariant (initial) state
and so do we.
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Evolution of observables 19

Instead the full probability density fNt , we may instead consider the
correlation structure of the time-evolved random variables:

Let ϕ : SN−1 → R be an observable. Since QN preserves µN , the
evolution is self-adjoint

EF (t)[ϕ]=

∫
SN−1

ϕ(v)f(t, v)µN (dv)

=

∫
SN−1

(etN(Q−I)ϕ(v))f0(v)µN (dv)

We can then consider evolution of, for instance, moments
ϕ(v) := vI for any index sequence I

The moments will satisfy a “closed” hierarchy of evolution equations
(the rate of change of moment of order n will only depend on
moments of order ≤ n)
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Energy observables 20

Because of the conservation law
∑N
i=1 v

2
i = N a.s., it is easier to analyse

the local energy variables.

Energies as random variables

For each particle i, its energy ei := v2i is a random variable whose
cumulant hierarchy is closed, similarly to vi before. At equilibrium and as
N → ∞, these should converge to i.i.d. χ2 -random variables
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How to measure “chaoticity” of a cumulant hierarchy? 21

Assumption (chaos bounds)

Let c ≥ 0, 0 < α < 1, N ≥ 2, and n∗ ≥ 1 be given. We say that B > 0
is a constant for the chaos bound of type α, c up to order n∗ if for every
n ∈ [n∗] the joint cumulants are bounded as

|κn,N0 [er]| ≤ Bn−1(n− 1)!N c(n−1)−α(len(r)−1)

Here, r is a sequence of n labels (|r| = n)

len(r) ≤ n denotes the number of different energy labels in r

Such a constant B can be found but B might need be very large for
large N . The idea here is to find c, α such that B is “order one”

We say c = 0 corresponds to a chaotic state

In fact, for any symmetric state and α we can always satisfy the
bounds with c = 1 and B = 4: namely,

|κn,N0 [er]| ≤ 4n−1(n− 1)!Nn−len(r) , n ≤ N/2 + 1

These bounds are saturated by symmetrizing deterministic data
where one particle has all the energy
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Let c ≥ 0 and α ∈ (0, 1). Let n∗ ∈ N be a maximal order of cumulants.
Then there exists a N0 = N0(n

∗, α, c) ≥ 2 such that

Theorem (Generation of chaotic bounds)

Consider some fixed N ≥ N0 and some permutation invariant initial data
FN0 on SN−1(

√
N). Denote the corresponding joint cumulants at order

n ∈ [n∗] and at time t ≥ 0 by κnt [er], |r| = n. Assume that the initial
data satisfies chaos bound of type α, c up to order n∗ with a constant
B ≥ 1.

Then there exists a constant C, depending only on B, such that for all
n ≤ n∗, the time-evolved cumulants satisfy

|κn,Nt [er]| ≤
1

(N − 1)α(len(r)−1)
Cn

2

n!
(
N c(n−1)e−

1
4 t + 1

)
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Convergence to equilibrium 23

Let c, α, n∗, N0 be given as above. Similarly, assume N ≥ N0 and take
some symmetric initial data FN0 , whose cumulants are κnt [er].

Theorem (Equilibration)

Denote the stationary cumulants (corresponding to the uniform
probability distribution on SN−1(

√
N)) by κ̄n[er]. Assume that the initial

data satisfies chaos bound of type α, c up to order n∗ with a constant B.

Then there exists a constant C, depending only on B, such that the
time-evolved energy cumulants satisfy the following bound for all
|r| = n ≤ n∗ and t ≥ 0∣∣∣κn,Nt [er]− κ̄n,N [er]

∣∣∣ ≤ 1

(N − 1)α(len(r)−1)
n!Cn

2

N c(n−1)e−
t
4 (2)

If the initial state is chaotic (c = 0), equilibration in time O(1)

If the initial state is not chaotic (c > 0), need a time ∝ lnN to
equilibrate
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Accuracy of kinetic theory 24

1 Take symmetrized initial data as above.

2 Wait until time t0 such that the state is already chaotic: Choose
t0 = 0 if c = 0, and t0 = 4c(n∗ − 1) lnN , otherwise

3 At time t0, compute the first marginal f0(v) of F
N
t0 and solve the

Boltzmann–Kac equation (yielding νt := ft(v)dv)

∂tft(v) = 2

∫ π

−π

∫
R
(ft(v

′)ft(w
′)− ft(v)ft(w)) dw

dθ

2π

4 Construct product measures F̃NT := ⊗Ni=1νT on RN

How close are the cumulants of F̃NT to the “real” ones, of FNt0+T ?

Theorem (accuracy of the “Boltzmann–Kac” hierarchy)

|κn,Nt0+T [er]− κ̃n,NT [er]| ≤ 2(N − 1)−αCn
2

n! = O(N−α)

Jani Lukkarinen Generation and propagation of chaos



Intro Cumulants Kac Proof Results Time-evolution Comments

Part III

Outline of the tools and proofs

[JL, A Vuoksenmaa, arXiv:2407.17068]
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Kac model 26

Let FN0 ∈ Psym(S
N−1(

√
N)). Consider FNt := SNt (FN0 ), satisfying

d

dt
⟨ϕ, FNt ⟩ = ⟨N(QN − I)ϕ, FNt ⟩, ∀ϕ ∈ Cb(S

N−1)

(QNϕ)(v) =
1

N(N − 1)

N∑
i,j=1

1{i ̸=j}

∫ π

−π

dθ

2π
ϕ(Ri,j(θ)v)

Here we focus on the case where

N ≥ 2 is fixed but sufficiently large and

t ≥ 0 is arbitrary (varied independently of N)
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Energy variables and their chaos 27

We study the chaos and equilibration of the kinetic energies. Random
variables on (SN−1(

√
N), FNt ), defined by ei(v) = v2i .

These satisfy the conservation law
N∑
i=1

ei = N

Study their time-dependent joint cumulants:
κNt (eI) of {ei}Ni=1. I = (ij)

n
j=1, ij ∈ [N ],

Goal is to show that energies will become chaotic when t→ ∞
⇔ mixed cumulants become small ( ≪N 1).
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Partition classifiers 28

The measure FNt is symmetric.

⇒ Instead of sequences I of labels, the joint cumulants of order n can be
indexed using partition classifiers in Cn:

Multi-index r ∈ Cn ⊂ Nn0 if and only if

1

n∑
ℓ=1

rℓ = n, and

2 rℓ ≥ rℓ+1

Jani Lukkarinen Generation and propagation of chaos



Intro Cumulants Kac Proof Results Time-evolution Comments

κN
t (e1, e2, e3, e4, e5)

κN
t (e1, e1, e2, e3, e4)

κN
t (e1, e1, e1, e2, e3) κN

t (e1, e1, e2, e2, e3)

κN
t (e1, e1, e1, e1, e2) κN

t (e1, e1, e1, e2, e2)

κN
t (e1, e1, e1, e1, e1)
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(1, 1, 1, 1, 1)

(2, 1, 1, 1, 0)

(3, 1, 1, 0, 0) (2, 2, 1, 0, 0)

(4, 1, 0, 0, 0) (3, 2, 0, 0, 0)

(5, 0, 0, 0, 0)
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(1, 1, 1, 1, 1)

(2, 1, 1, 1, 0)

(3, 1, 1, 0, 0) (2, 2, 1, 0, 0)

(4, 1, 0, 0, 0) (3, 2, 0, 0, 0)

(5, 0, 0, 0, 0)
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Time-evolution of the joint cumulants 32

The time-evolution of the joint cumulants is given by (n ≥ 2)

d

dt
(κn,Nt )(r) = (Ln,Nκ

n,N
t )(r) + (Nn,N

< [κ
[·],N
t ])(r)

The linear part splits into Ln,N = Ln +Rn,N .

The operator Ln couples to more mixed cumulants and generates
exponentially decaying semigroup in the correct norm, Rn,N is a
perturbation.

The nonlinear term includes only cumulants of strictly lower order.
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α-modulated chaos spaces 33

Let α ∈ (0, 1).

Consider the vector of all joint energy cumulants of order n:

κn,N = (κn,N (er))r∈Cn

And the space Xα = (RCn , ∥ · ∥α,n,N ), with the norm

∥κn,N∥α = ∥κn,N∥α,n,N = sup
r∈Cn

(N − 1)α(len(r)−1)|κn,N (er)|

Now the task is to analyse ∥κn,Nt ∥α
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Results 34

Theorem (generation of chaos)

Assume that we have a sequence of initial data (FN0 )N≥2. Assume the
initial data has cumulants that satisfy

∥κn,N0 ∥α ≤ Bn
2

Nn−1.

Then there exists a constant C, depending only on B, such that for every
n∗ ∈ N1, we have a threshold N0 = N0(n

∗, α), such that for all N ≥ N0

and n ≤ n∗, the time-evolved cumulants satisfy

∥κn,Nt ∥α ≤ Cn
2
(
Nn−1e−

1
4 t + 1

)
. (3)
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Proof outline (generation of chaos) 35

d

dt
κn,Nt (er) =

∑
s∈Cn

CN (r, s)κn,Nt (es) +N<n,N [κ
[·],N
t ](er)

Prove inductively on the order of cumulants n that the totally
nonrepeated energy cumulants κn,Nt (e1, . . . , en) are controlled
nicely.

For the rest of the cumulants prove inductively on the order n, that

The linear part minus the totally nonrepeated cumulants leads to
exponential decay in the Xα-norm. ⇐ Identify an explicitly
dissipative term and show that the rest is its perturbation

With Duhamel’s formula, the bounds propagate in the norm when
the source term (nonlinear expression of lower order cumulants +
nonrepeated cumulants) are taken into account.
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Evolution of the energy cumulants 36

The energy cumulants evolve according to

d

dt
κNt (eI) =

d

dt

(
∂Iη logEt[eη·e]

)
|η=0

=

(
∂Iη

(
Et[eη·e]−1 d

dt
Et[eη·e]

)
|η=0

)
The time-evolution of the mgf Et[eη·e] is given by

d

dt
Et[eη·e] =

1

N − 1

∑
i ̸=j

∫ π

−π

dθ

2π

∫
eη·e

(
eη·P

θ
i,j(v) − 1

)
FNt (dv)

Here P θi,j(v) ∈ RN , with (P θi,j(v))k = 0, for k ̸= i, j, and

(P θi,j(v))i = − sin(θ)2ei + 2 cos(θ) sin(θ)vivj + sin(θ)2ej

(P θi,j(v))j = − sin(θ)2ej − 2 cos(θ) sin(θ)vivj + sin(θ)2ei
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Evolution of the energy cumulants 37

Et[eη·e]−1 d

dt
Et[eη·e]

= Et[eη·e]−1 1

N − 1

∑
i̸=j

∫ π

−π

dθ

2π

∫
eη·e

(
eη·P

θ
i,j(v) − 1

)
FNt (dv)

Recognizing that Et[eη·e]−1eη·e = Gw(η; e) is the Wick polynomial
generating function, we obtain

d

dt
κt(eI) =

1

N − 1

∑
i ̸=j

∫ π

−π

dθ

2π
Et[∂Iη

(
Gw(η; e)(e

η·P θ
i,j(v) − 1)

)
|η=0]
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Evolution of the energy cumulants 38

d

dt
κt(eI) =

1

N − 1

∑
i ̸=j

∑
∅̸=J⊆I

∫ π

−π

dθ

2π
Et[:eI\J : ∂Jη

(
eη·P

θ
i,j(v)

)
|η=0]

Those resulting (P θi,j(v))
J terms which are odd in v are also odd in θ

⇒ polynomial in e

Since the expectations of products of Wick polynomials and monomials
of random variables can be written in terms of cumulants as follows:

Et[:eI′ : eJ′ ] =
∑

π∈P(I′+J′)

(∏
A∈π

1{A∩J′ ̸=∅}κt(eA)

)

we arrive at

d

dt
κt(eI) =

∑
|J|=|I|

CN (I, J)κt(eJ) +N<|I|[κt](eI)
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Proof outline (linear part) 39

In the vector form, we have

κn,Nt = etMn,Nκn,N0 + etMn,N

∫ t

0

dse−sMn,NN<,n[κ
[·],N
s ] (4)

The linear part splits into two: Mn,N =Mn +Rn,N , where Mn

looks at more mixed cumulants and Rn,N is an O(Nα−1)
perturbation in ∥ · ∥α.
If follows that for sufficiently large N(n∗, α)

∥etMn,N ∥α ≤ 10e−
1
4 t, (5)
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Proof outline (equilibration) 40

Let hn,Nt (er) := κn,Nt (er)− κ̄n,N (er). Note that we have for all n ≤ n∗

and N ≥ N0(n
∗, α)

∥κ̄n,N∥α ≤ Bn
2

(6)

for some constant B.

d

dt
hn,Nt (er) =

∑
s∈Cn

L̃N (s, r)hn,Nt (es) + Ñ<n,N [h
[·],N
t ](es)

Similar to the generation of chaos but now the source terms contain
(κ̄m,N )m<n.
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κN
t (e1, e2, e3, e4, e5)

κN
t (e1, e1, e2, e3, e4)

κN
t (e1, e1, e1, e2, e3) κN

t (e1, e1, e2, e2, e3)

κN
t (e1, e1, e1, e1, e2) κN

t (e1, e1, e1, e2, e2)

κN
t (e1, e1, e1, e1, e1)
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κN
t (e1, e2, e3, e4, e5)

κN
t (e1, e1, e2, e3, e4)

κN
t (e1, e1, e1, e2, e3) κN

t (e1, e1, e2, e2, e3)

κN
t (e1, e1, e1, e1, e2) κN

t (e1, e1, e1, e2, e2)

κN
t (e1, e1, e1, e1, e1)

− 4
N−4

− 1
N−3

− 2
N−3

− 1
N−2

− 1
N−2

− 2
N−2

− 1
N−1
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Comments (DNLS) 43

Next step:
Complete the missing estimates of the proof. . .
(DNLS is still missing proper analysis of the semigroup
generated by linear part)

Inhomogeneous initial data:
Does kinetic theory perform as well?
. . . with a Vlasov–Poisson term?

Proper setup and assumptions for the inhomogeneous
case?

Properties of fluctuations around Wt?
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Thank you for your attention!

Jani Lukkarinen Generation and propagation of chaos
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