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The team and the purpose

\ W
Luisa Andreis Heide Langhammer Robert Patterson
(Milano) (formerly WIAS) (formerly WIAS)

B We consider a spatial particle system with pair-wise coagulation after independent
exponential random times.

B We find the large-system limit at a given fixed time 7'.

B We identify criteria for gelation, i.e., the formation of giant particles.

B Our approach identifies autonomously the distribution of the system by a decomposition
of the configuration into the particle groups that have coagulated by time 7.

B This necessitates a large-deviation approach and a variational characterisation. The
minimizer is the limiting distribution of the system.

B The formula considers only microscopic particles.

B In the simpler situation of a spatial Erdés—Rényi graph, we solved the gelation phase
transition (= LUISA’s talk).
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Our questions

B What is the joint distribution of the statistics of all the particles at time 7'?

B Can we prove a large-deviation principle (LDP) for their statistics as N — oo at fixed
time 1'? Is there an explicit rate function?

B Is there a law of large numbers towards the minimizers of the rate function?

B Under what circumstances do we have a gelation phase transition (i.e., emergence of

large particles that carry macroscopically much total mass) after some gelation time
te € (0,00)?

Remarks:

B We are in the hydrodynamic regime or in a mean-field setting, where all the IV particles
interact with each other on the same scale, % Most particles feel < IV other particles
and have =< 1 coagulations per unit time.

B We decided to work with a Poissonnized initial configuration,

Proiy, = J Poin,(dk) Py, for some probability measure 4 on S. Then the number of
atoms is Poin-distributed. This renders limiting formulas much simpler.
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On some literature @

B We took the freedom to extend the MARCUS-LUSHNIKOV model [MARCUS 1968],
[GILLESPIE 1972], [LUSHNIKOV 1978] to a spatial mean-field version. It is very closely
related to the cluster coagulation model investigated by [NORRIS 1999, 2000].

B FOURNIER/LAURENCOT (2005-09) derive these equations for a strongly gelling kernel
K(m,m) =m%m + m“m with o € (0, 1].

B [JEON 1998] and [REZANKHANLOU 2013] give gelation criteria on the kernel:
K(m,m) = (mm)® witha >  and K (m,m) = m? + m? with g € (1,2) are
gelling.
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General remark on PPP representations

We are in the situation of a system that consists of many microscopic random entities (atoms)

with pair-interactions that are put independently. They imply the formation of a substructure, a
decomposition of the system into microscopic groups.

Examples:

1.

6.

percolation

. interacting Bose gas

2
3.
4
5

Erd6s—Rényi graph

. random connection model

. Marcus—Lushnikov model

collision models (gas dynamics)

In all these models, there should be a representation of the system in terms of a Poisson point
process (PPP) possible that is defined directly on the set of the emerging substructures: the
non-interaction between them is incorporated as a pair-interaction between the Poisson points.
This has been used for (2) and (5), implicitly for (3), and is on the way for (4), but has a great
potential for future exploration.
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Tree decomposition %
From now on, fix I’ € (0, 00). Let I'z be the set of trajectories [0, 7] — M, (S x N) and
Y ={¢eTr: é&r(SxN) =1}

the set of trees on the time interval [0, T, i.e., of trajectories that coagulate into one particle.
Decompose _| 0,7 into the subtrees = and consider the empirical measure of the trees,

(T) _ (1)
Yy =N Z 0=y € M(T'})).
We need the non-coagulation probability as an interaction between trees £, 5' S F(Tl):

T
R (¢, ¢) = —log Pe,uey (B1 B2 |E1=¢E=¢) = / ds (&, K&L).
0
For our PPP, we take the intensity measure

M7} (dg) = N~ ePoi, (2 € d¢), €Ty

Tree decomposition (with kernel K)

Proiy, (V(T) € dl/) = E[e_% izt R(T)(EZ"EJ')ll{ Ly ¢ dv }] eN(le(thfzfl_l),

a
where Y = 3. 6=, ~ PO]NM(T) is a Poisson point process on I';,
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lllustration

o

Figure: Decomposition of (Z¢),¢(o,7] into three subprocesses (EiT’Ci))te[o)T], i=1,...,3 that

are distinguished by their colour.
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(T)
N -

Preparation for the large- N asymptotics

B Our PPP presentation with exponential necessitates a large-deviations principle for ¥V
B From the LDP theory (not so well-known): If Y is a PPP with intensity measure Nvn and
v converges towards v, then + Y satisfies an LDP with rate function H (- | v) (the

Kulback—Leibler entropy with respect to v).

(T,N)

Convergence of M ., N  (with kernel %K)
The following limit exists in the weak sense:
M (dg) = lim M7 (d€)
P
—exp {5 [ [ Ke) + (@ K] dt} Prs, (de), ¢ eTY.
0

where K (y) = K (y,y).

The following assumption implies that gelation takes place not too early:

Upper bound on the kernel

Thereisan H > Osuchthat K ((xz,m),(x,m)) < Hmm forz,z € S,m,m € N.
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The LDP for the collection of trees \Zx‘: "6‘ é

Here is a formula for the exponential asymptotics under explicit preclusion of gelation. Gelation
does not occur if VI(\,T’ lies, for some A > 0, in

vo(dk) F(IK]) < A}, Tim ) o

r—oo 7 log T

Afa= {V e M(TH): /

Mu (8)

The LDP (with kernel + K)

Pick T' € (0, 00) and u € M (S). Pick the initial configuration ({z1}, ..., {zx}) with
N

Hx = % 2121 5%' = U.

Then, for any A > 0, the distribution of Vi ’ under P

LDP on Ay, 4 with rate function ") — x5, where

(N)
Poipn

(- [V € Ay, a) satisfies the

1
I () = (v, log ey ) + 5 (v @1, R7) +1 - v,
M

and xp = infa, , 15",
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Remarks

B The assumption on K says that gelation occurs in our spatial model after a giant
component emerges in a coupled Erdés—Rényi graph.

B Conditioning on Ay 4 gives a full LDP without need of thinking about macroscopic
particles. (= future work.)

B Likewise, we could also condition on having all particle sizes < L for some L € N.

B The Euler—Lagrange equations for a possible minimizer v of IL(LT) read
* —_x(T) (, ()
v(dg) = M (dg)e ™ TE ey,

(MM is the convolution operator with kernel R(™.)

| IfLT) is not necessarily lower semi-continuous, and it is not necessarily convex. The last
thing can be settled by assuming that K is nonnegative definite. The first thing is fishy
and has much to do with the gelation phase transition.

B Gelation should occur precisely if and only if I;” does have a minimizer.
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The LDP for the coagulation process =

The coagulation process is a function of VP, since

1_ 1 1
NN 2 Sx®en = N 2. 2 O x® 161

CeP; CePr Cep;: CcC

DI /V&“(d&)& = (V).

CePT

p = (pt)te[o, 1) is continuous

Let (/n)nen be a sequence in Aj 4 that converges towards some v with I (v) < co.
Then p(vn) — p(v) as n — oco.

The contraction principle yields then:

LDP for =

In the situation of the LDP above, the distribution of (%Et)te[o,:r] satisfies an LDP on
D7 (M(S x N)) with rate function

p s inf {I\7(v) — xa: v € Af.a,p(v) = p}.
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The Smoluchowski equation xkzﬂwf‘e‘ J

Hence, for sufficiently small T" (under the upper bound on the kernel K), the process
(% Z¢)tejo,7) converges towards the solution p(v/) = ([ v(d€) &)iefo, 1], Where v solves
the EL equation

p(dg) = M (dg)e O cer®),

On the other hand, the limiting dynamics of the process %(Ez)te[o,w) should satisfy the
SMOLUCHOWSKI equation, which reads here

Ope(dz™,m™) = % Z //pt (dz, m)pi(dz’,m" ) K((z,m), (z',m’),dz")

m,m’EN:
m+m’*m*

—pe(dz™,m™) Kpi(z*,m"), =z €8 m"eN,

The limit satisfies the Smoluchowski equation

Under the upper bound on K, forany T' < H 92 1+7r the solution v to the EL equation is
unique, and p(v) solves the Smoluchowski equation.

Hence, this is in our approach a nice addition, but not part of the proof for the limiting behaviour.
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Gelation

The quantity

NG = lim limsup E®) [ EEC
T L oo N—»oop Poin, HN |

1,§L:|

is the limiting expected non-gel mass, i.e., the mass outside the gel. The map 1" +— NG(T?) is
non-increasing with initial value NGé") =1.If NG(T”) < 1, then we say that there is a gel at
time T, and we define the gelation time by

T = inf{T € (0,00): NG& < 1} € [0, 0.

(Among all possible definitions, this is the “earliest” gelation time one can think of.)
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Gelation criteria

Introduce Y
n
qLT) = lim sup (MLT)({ﬁ IS F(Tl): |&o| = n})) € (0, 00).

n—oo

I{,ﬂ-dependent criteria for non-gelation and for gelation

1. If qLT> < 1, then I&T’ has compact sublevel sets and hence possesses minimisers, and
NG(T“’ = 1, i.e,, there is no gelation at time 7.

2. Assume additionally that
thereisa h > O suchthat K ((x,m),(Z,m)) > hmm  forz,Z € S,m,m € N,
and that inf 7™ > 0. Then NG$” < 1.

T-dependent criteria for non-gelation and for gelation

Assume the two bounds for K. If T'is large enough (depending only on H), then ¢;” < 1,
and the EL equations have precisely one solution. Furthermore,

. 1/ e (log(2T He?))?
@ <inf{T: (S + B0 ) <1 <o
Tyey <inf T 7 \H 4F 5 < < o0
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Summary and remarks

B We wrote the distribution autonomously (i.e., not by deriving an equation that it satisfies,
e.g., the Smoluchowski equation) as a PPP-expectation. To analyse it, we had to use an
LDP-framework. To carry this out without bigger problems, we needed to restrict to
bounded sizes. The limiting process is characterized as the minimizers in a crucial
variational formula, which does not describe macroscopic particles, but admits criteria for
their existence.

B We are not happy with our gelation criteria, as they do not reflect any spatial property of
the kernel, and rely too strongly on the product form.

B Description of the gel still widely open.

B An adequate framework that also characterises large particles would require an extension
of the state space of the PPP; a “macroscopic” space must be added. Such an analysis
has been yet rarely done in comparable models, e.g., in [ANDREIS, K., PATTERSON 2021]
(non-spatial ER-graph), [ANDREIS, K., LANGHAMMER, PATTERSON 2023] (spatial
ER-graph), COLLIN, JAHNEL, K., VOGEL, ZASS,... (variants of the Bose gas).

LDP approach to coagulation - WIAS, 30 January 2025 - Page 15 (15)



