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The team and the purpose

Luisa Andreis

(Milano)

Heide Langhammer

(formerly WIAS)

Robert Patterson

(formerly WIAS)

■ We consider a spatial particle system with pair-wise coagulation after independent

exponential random times.

■ We find the large-system limit at a given fixed time T .

■ We identify criteria for gelation, i.e., the formation of giant particles.

■ Our approach identifies autonomously the distribution of the system by a decomposition

of the configuration into the particle groups that have coagulated by time T .

■ This necessitates a large-deviation approach and a variational characterisation. The

minimizer is the limiting distribution of the system.

■ The formula considers only microscopic particles.

■ In the simpler situation of a spatial Erdős–Rényi graph, we solved the gelation phase

transition (=⇒ LUISA’s talk).
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Our questions

■ What is the joint distribution of the statistics of all the particles at time T ?

■ Can we prove a large-deviation principle (LDP) for their statistics as N → ∞ at fixed

time T ? Is there an explicit rate function?

■ Is there a law of large numbers towards the minimizers of the rate function?

■ Under what circumstances do we have a gelation phase transition (i.e., emergence of

large particles that carry macroscopically much total mass) after some gelation time

tc ∈ (0,∞)?

Remarks:

■ We are in the hydrodynamic regime or in a mean-field setting, where all the N particles

interact with each other on the same scale, 1
N

. Most particles feel ≍ N other particles

and have ≍ 1 coagulations per unit time.

■ We decided to work with a Poissonnized initial configuration,

PPoiNµ =
∫
PoiNµ(dk)Pk, for some probability measure µ on S . Then the number of

atoms is PoiN -distributed. This renders limiting formulas much simpler.
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On some literature

■ We took the freedom to extend the MARCUS-LUSHNIKOV model [MARCUS 1968],

[GILLESPIE 1972], [LUSHNIKOV 1978] to a spatial mean-field version. It is very closely

related to the cluster coagulation model investigated by [NORRIS 1999, 2000].

■ FOURNIER/LAURENÇOT (2005-09) derive these equations for a strongly gelling kernel

K(m, m̃) = mαm̃+ m̃αm with α ∈ (0, 1].

■ [JEON 1998] and [REZANKHANLOU 2013] give gelation criteria on the kernel:

K(m, m̃) = (mm̃)a with a > 1
2

and K(m, m̃) = mq + m̃q with q ∈ (1, 2) are

gelling.
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General remark on PPP representations

We are in the situation of a system that consists of many microscopic random entities (atoms)

with pair-interactions that are put independently. They imply the formation of a substructure, a

decomposition of the system into microscopic groups.

Examples:

1. percolation

2. interacting Bose gas

3. Erdős–Rényi graph

4. random connection model

5. Marcus–Lushnikov model

6. collision models (gas dynamics)

In all these models, there should be a representation of the system in terms of a Poisson point

process (PPP) possible that is defined directly on the set of the emerging substructures: the

non-interaction between them is incorporated as a pair-interaction between the Poisson points.

This has been used for (2) and (5), implicitly for (3), and is on the way for (4), but has a great

potential for future exploration.
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Tree decomposition

From now on, fix T ∈ (0,∞). Let ΓT be the set of trajectories [0, T ] → MN0(S × N) and

Γ(1)

T = {ξ ∈ ΓT : ξT (S × N) = 1}

the set of trees on the time interval [0, T ], i.e., of trajectories that coagulate into one particle.

Decompose Ξ|[0,T ] into the subtrees Ξ(C), and consider the empirical measure of the trees,

V(T )

N =
1

N

∑
C

δΞ(C) ∈ M(Γ(1)

T ).

We need the non-coagulation probability as an interaction between trees ξ, ξ′ ∈ Γ(1)

T :

R(T )(ξ, ξ′) = − log Pξ0∪ξ′0

(
Ξ1 ↮ Ξ2

∣∣Ξ1 = ξ,Ξ2 = ξ′
)
=

∫ T

0

ds ⟨ξs,Kξ′s⟩.

For our PPP, we take the intensity measure

M (T )

µ,N (dξ) = N |ξ0|−1ePoiµ(Ξ ∈ dξ), ξ ∈ Γ(1)

T .

Tree decomposition (with kernel K)

PPoiNµ

(
V(T )

N ∈ dν
)
= E

[
e−

1
2

∑
i̸=j R(T )(Ξi,Ξj)1l{ 1

N
Y ∈ dν}

]
eN(|M(T )

µ,N
|−1),

where Y =
∑

i δΞi ∼ Poi
NM

(T )
µ,N

is a Poisson point process on Γ(1)

T .
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Illustration

T

S

0 t

Figure: Decomposition of (Ξt)t∈[0,T ] into three subprocesses (Ξ
(T,Ci)

t )t∈[0,T ], i = 1, . . . , 3, that
are distinguished by their colour.
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Preparation for the large-N asymptotics

■ Our PPP presentation with exponential necessitates a large-deviations principle for V(T )

N .

■ From the LDP theory (not so well-known): If Y is a PPP with intensity measure NνN and

νN converges towards ν, then 1
N
Y satisfies an LDP with rate function H(· | ν) (the

Kulback–Leibler entropy with respect to ν).

Convergence of M (T,N)

µ,N (with kernel 1
N
K)

The following limit exists in the weak sense:

M (T )
µ (dξ) = lim

N→∞
M (T,N)

µ,N (dξ)

= exp
{1

2

∫ T

0

[
⟨ξt,Kξt⟩+ ⟨ξt,K(diag)⟩

]
dt
}
PPoiµ(dξ), ξ ∈ Γ(1)

T .

where K(diag)(y) = K(y, y).

The following assumption implies that gelation takes place not too early:

Upper bound on the kernel

There is an H > 0 such that K((x,m), (x̃, m̃)) ≤ Hmm̃ for x, x̃ ∈ S,m, m̃ ∈ N.
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The LDP for the collection of trees

Here is a formula for the exponential asymptotics under explicit preclusion of gelation. Gelation

does not occur if V(T )

N lies, for some A > 0, in

Af,A =
{
ν ∈ M(Γ(1)

T ) :

∫
MN0 (S)

ν0(dk) f(|k|) ≤ A
}
, lim

r→∞

f(r)

r log r
= ∞.

The LDP (with kernel 1
N
K)

Pick T ∈ (0,∞) and µ ∈ M1(S). Pick the initial configuration ({x1}, . . . , {xN}) with

µx = 1
N

∑N
i=1 δxi =⇒ µ.

Then, for any A > 0, the distribution of V(T )

N under P(N)

PoiNµ
( · |V(T )

N ∈ Af,A) satisfies the

LDP on Af,A with rate function I(T )
µ − χβ , where

I(T )
µ (ν) =

〈
ν, log

ν

M (T )
µ

〉
+

1

2
⟨ν ⊗ ν,R(T )⟩+ 1− |ν|,

and χβ = infAf,A I(T )
µ .

LDP approach to coagulation · WIAS, 30 January 2025 · Page 9 (15)



Remarks

■ The assumption on K says that gelation occurs in our spatial model after a giant

component emerges in a coupled Erdős–Rényi graph.

■ Conditioning on Af,A gives a full LDP without need of thinking about macroscopic

particles. (=⇒ future work.)

■ Likewise, we could also condition on having all particle sizes ≤ L for some L ∈ N.

■ The Euler–Lagrange equations for a possible minimizer ν(∗) of I(T )
µ read

ν(∗)(dξ) = M (T )
µ (dξ) e−R(T )(ν(∗))(ξ), ξ ∈ Γ(1)

T ,

(R(T ) is the convolution operator with kernel R(T ).)

■ I(T )
µ is not necessarily lower semi-continuous, and it is not necessarily convex. The last

thing can be settled by assuming that K is nonnegative definite. The first thing is fishy

and has much to do with the gelation phase transition.

■ Gelation should occur precisely if and only if I(T )
µ does have a minimizer.
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The LDP for the coagulation process Ξ

The coagulation process is a function of V(T )

N , since

1

N
Ξt =

1

N

∑
C̃∈Pt

δ
(X

(t)

C̃
,|C̃|) =

1

N

∑
C∈PT

∑
C̃∈Pt : C̃⊂C

δ
(X

(t)

C̃
,|C̃|)

=
1

N

∑
C∈PT

Ξ(T,C)

t =

∫
V(T )

N (dξ) ξt =: ρt(V(T )

N ).

ρ = (ρt)t∈[0,T ] is continuous

Let (νn)n∈N be a sequence in Af,A that converges towards some ν with I(T )
µ (ν) < ∞.

Then ρ(νn) → ρ(ν) as n → ∞.

The contraction principle yields then:

LDP for Ξ

In the situation of the LDP above, the distribution of ( 1
N
Ξt)t∈[0,T ] satisfies an LDP on

DT (M(S × N)) with rate function

ρ 7→ inf
{
I(T )
µ (ν)− χβ : ν ∈ Af,A, ρ(ν) = ρ

}
.
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The Smoluchowski equation

Hence, for sufficiently small T (under the upper bound on the kernel K), the process

( 1
N
Ξt)t∈[0,T ] converges towards the solution ρ(ν) = (

∫
ν(dξ) ξt)t∈[0,T ], where ν solves

the EL equation

ν(dξ) = M (T )
µ (dξ) e−R(T )(ν)(ξ), ξ ∈ Γ(1)

T .

On the other hand, the limiting dynamics of the process 1
N
(Ξt)t∈[0,∞) should satisfy the

SMOLUCHOWSKI equation, which reads here

∂tρt(dx
∗,m∗) =

1

2

∑
m,m′∈N :
m+m′=m∗

∫
S

∫
S
ρt(dx,m)ρt(dx

′,m′)K
(
(x,m), (x′,m′), dx∗)

− ρt(dx
∗,m∗)Kρt(x

∗,m∗), x∗ ∈ S,m∗ ∈ N,

The limit satisfies the Smoluchowski equation

Under the upper bound on K , for any T < 1
H

1
e2

π
1+π

, the solution ν to the EL equation is

unique, and ρ(ν) solves the Smoluchowski equation.

Hence, this is in our approach a nice addition, but not part of the proof for the limiting behaviour.
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Gelation

The quantity

NG(µ)

T = lim
L→∞

lim sup
N→∞

E(N)

PoiNµ

[
∥ 1
N
ΞT ∥1,≤L

]
is the limiting expected non-gel mass, i.e., the mass outside the gel. The map T 7→ NG(µ)

T is

non-increasing with initial value NG(µ)

0 = 1. If NG(µ)

T < 1, then we say that there is a gel at

time T , and we define the gelation time by

T (µ)

gel = inf
{
T ∈ (0,∞) : NG(µ)

T < 1
}
∈ [0,∞].

(Among all possible definitions, this is the “earliest” gelation time one can think of.)
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Gelation criteria

Introduce

q(T )
µ = lim sup

n→∞

(
M (T )

µ

(
{ξ ∈ Γ(1)

T : |ξ0| = n}
))1/n

∈ (0,∞).

I(T )
µ -dependent criteria for non-gelation and for gelation

1. If q(T )
µ < 1, then I(T )

µ has compact sublevel sets and hence possesses minimisers, and

NG(µ)

T = 1, i.e., there is no gelation at time T .

2. Assume additionally that

there is a h > 0 such that K((x,m), (x̃, m̃)) ≥ hmm̃ for x, x̃ ∈ S,m, m̃ ∈ N,
and that inf I(T )

µ > 0. Then NG(µ)

T < 1.

T -dependent criteria for non-gelation and for gelation

Assume the two bounds for K . If T is large enough (depending only on H), then q(T )
µ < 1,

and the EL equations have precisely one solution. Furthermore,

T (µ)

gel ≤ inf
{
T :

1

2T

( e

πH
+

(log(2THe2))2

h

)
< 1

}
< ∞.

LDP approach to coagulation · WIAS, 30 January 2025 · Page 14 (15)



Summary and remarks

■ We wrote the distribution autonomously (i.e., not by deriving an equation that it satisfies,

e.g., the Smoluchowski equation) as a PPP-expectation. To analyse it, we had to use an

LDP-framework. To carry this out without bigger problems, we needed to restrict to

bounded sizes. The limiting process is characterized as the minimizers in a crucial

variational formula, which does not describe macroscopic particles, but admits criteria for

their existence.

■ We are not happy with our gelation criteria, as they do not reflect any spatial property of

the kernel, and rely too strongly on the product form.

■ Description of the gel still widely open.

■ An adequate framework that also characterises large particles would require an extension

of the state space of the PPP; a “macroscopic” space must be added. Such an analysis

has been yet rarely done in comparable models, e.g., in [ANDREIS, K., PATTERSON 2021]

(non-spatial ER-graph), [ANDREIS, K., LANGHAMMER, PATTERSON 2023] (spatial

ER-graph), COLLIN, JAHNEL, K., VOGEL, ZASS,... (variants of the Bose gas).
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