Bilinear Coagulation via Random Graphs

D. Heydecker, joint work with Robert Patterson January 29, 2025

Imperial College London

Motivation: Interaction Clusters in Kac Dynamics

• Derivation of the **spatially inhomogeneous Boltzmann equation** from molecular dynamics:

• Derivation of the **spatially inhomogeneous Boltzmann equation** from molecular dynamics:

• Derivation of the **spatially inhomogeneous Boltzmann equation** from molecular dynamics:

• Ballistic dynamics, hard core exclusion of radius $r_N \sim N^{-1/2}$

• The goal is asymptotic independence (*molecular chaos*)

- The goal is asymptotic independence (*molecular chaos*)
- No hope for true independence: particles affect each other if they've collided....

- The goal is asymptotic independence (*molecular chaos*)
- No hope for true independence: particles affect each other if they've collided....or if they've both interacted with another particle, or if they are linked through a chain of interactions. (

- The goal is asymptotic independence (*molecular chaos*)
- No hope for true independence: particles affect each other if they've collided....or if they've both interacted with another particle, or if they are linked through a chain of interactions. (
 - Bogolyubov's interaction clusters partition N particles.

- The goal is asymptotic independence (*molecular chaos*)
- No hope for true independence: particles affect each other if they've collided....or if they've both interacted with another particle, or if they are linked through a chain of interactions. (
 - Bogolyubov's interaction clusters partition N particles.
 - Related to short-time proof of the Boltzmann equation by Simonella, Gallagher, Bodineau: Two particles are in the same interaction cluster if the associated collision trees are joined by a recollision.

• **Goal:** would like to understand qualitative properties of the path-by-path properties of the interaction clusters:

- **Goal:** would like to understand qualitative properties of the path-by-path properties of the interaction clusters:
 - Distribution of sizes at time t?

- **Goal:** would like to understand qualitative properties of the path-by-path properties of the interaction clusters:
 - Distribution of sizes at time t?
 - Does a macroscopic cluster emerge? (gelation)
 - How do fast velocities affect gelation in comparison to the mean free time?

- **Goal:** would like to understand qualitative properties of the path-by-path properties of the interaction clusters:
 - Distribution of sizes at time t?
 - Does a macroscopic cluster emerge? (gelation)
 - How do fast velocities affect gelation in comparison to the mean free time?
- The Boltzmann-Grad limit is too hard! Try to understand these first for a simpler model due to Kac.

- **Goal:** would like to understand qualitative properties of the path-by-path properties of the interaction clusters:
 - Distribution of sizes at time t?
 - Does a macroscopic cluster emerge? (gelation)
 - How do fast velocities affect gelation in comparison to the mean free time?
- The Boltzmann-Grad limit is too hard! Try to understand these first for a simpler model due to Kac. Kac model:
 - Ignore position: velocities $(V_t^i)_{1 \le i \le N, t \ge 0}$.
 - Mimic spatial effects by velocity-dependent collision rate: i, j collide at rate $2\Psi(|V_t^j V_t^j|)/N$.

- **Goal:** would like to understand qualitative properties of the path-by-path properties of the interaction clusters:
 - Distribution of sizes at time t?
 - Does a macroscopic cluster emerge? (gelation)
 - How do fast velocities affect gelation in comparison to the mean free time?
- The Boltzmann-Grad limit is too hard! Try to understand these first for a simpler model due to Kac. Kac model:
 - Ignore position: velocities $(V_t^i)_{1 \le i \le N, t \ge 0}$.
 - Mimic spatial effects by velocity-dependent collision rate: i, j collide at rate $2\Psi(|V_t^i V_t^j|)/N$.
 - $\cdot\,$ When particles collide, energy and momentum are conserved.

From Interaction Clusters to Bilinearity and Random Graphs

• For the Kac process, interaction clusters $x_1^N(t), \ldots, x_{l_N(t)}^N(t) \in S$ containing 'all data'.

- For the Kac process, interaction clusters $x_1^N(t), \ldots, x_{l_N(t)}^N(t) \in S$ containing 'all data'.
- Merging $\{x, y\} \mapsto z$ at rate $N^{-1}K(x, y, dz)$; 'self-evolution' $x \mapsto x'$ at rate $J^{N}(x, dx')$.

- For the Kac process, interaction clusters $x_1^N(t), \ldots, x_{l_N(t)}^N(t) \in S$ containing 'all data'.
- Merging $\{x, y\} \mapsto z$ at rate $N^{-1}K(x, y, dz)$; 'self-evolution' $x \mapsto x'$ at rate $J^N(x, dx')$.
- If $\Psi(|v|) = a + b|v|^2$, then K(x, y, S) computes

$$K(x, y, S) = \sum_{v \in x, w \in y} (a + b|v - w|^2) = \sum_{v \in x, w \in y} (a + b|v|^2 - 2v \cdot w + |w|^2)$$

= $aN(x)N(y) + bE(x)N(y) - 2bP(x) \cdot P(y) + bN(x)E(y)$
(1)

- For the Kac process, interaction clusters $x_1^N(t), \ldots, x_{l_N(t)}^N(t) \in S$ containing 'all data'.
- Merging $\{x, y\} \mapsto z$ at rate $N^{-1}K(x, y, dz)$; 'self-evolution' $x \mapsto x'$ at rate $J^N(x, dx')$.
- If $\Psi(|v|) = a + b|v|^2$, then K(x, y, S) computes

$$K(x, y, S) = \sum_{v \in x, w \in y} (a + b|v - w|^2) = \sum_{v \in x, w \in y} (a + b|v|^2 - 2v \cdot w + |w|^2)$$

= $aN(x)N(y) + bE(x)N(y) - 2bP(x) \cdot P(y) + bN(x)E(y)$
(1)

...is a function only of $\pi(x) = (N(x), P(x), E(x)) = \sum_{v \in x} (1, v, |v|^2)$ and $\pi(y)$.

- For the Kac process, interaction clusters $x_1^N(t), \ldots, x_{l_N(t)}^N(t) \in S$ containing 'all data'.
- Merging $\{x, y\} \mapsto z$ at rate $N^{-1}K(x, y, dz)$; 'self-evolution' $x \mapsto x'$ at rate $J^N(x, dx')$.
- If $\Psi(|v|) = a + b|v|^2$, then K(x, y, S) computes

$$K(x, y, S) = \sum_{v \in x, w \in y} (a + b|v - w|^2) = \sum_{v \in x, w \in y} (a + b|v|^2 - 2v \cdot w + |w|^2)$$

= $aN(x)N(y) + bE(x)N(y) - 2bP(x) \cdot P(y) + bN(x)E(y)$
(1)

...is a function only of $\pi(x) = (N(x), P(x), E(x)) = \sum_{v \in x} (1, v, |v|^2)$ and $\pi(y)$.

• π is additive: $\pi(z) = \pi(x) + \pi(y)$ for $K(x, y, \cdot)$ -a.e. $z, \pi(x') = \pi(x)$ for $J^N(x, \cdot)$ -a.e. x'.

• Merger rates don't depend on scatering anges, so **projected** empirical measure $\pi_{\#}\mu_t^N = N^{-1} \sum \delta_{\pi(x_i^N(t))}$ has the same rates if the 'post-collisional' velocities are the same as the incoming!

- Merger rates don't depend on scatering anges, so **projected** empirical measure $\pi_{\#}\mu_t^N = N^{-1} \sum \delta_{\pi(x_i^N(t))}$ has the same rates if the 'post-collisional' velocities are the same as the incoming!
- Dynamic random graph model

- Merger rates don't depend on scatering anges, so **projected** empirical measure $\pi_{\#}\mu_t^N = N^{-1} \sum \delta_{\pi(x_i^N(t))}$ has the same rates if the 'post-collisional' velocities are the same as the incoming!
- Dynamic random graph model: sample V_i once and an exponential clock τ_e for each pair $e = \{i, j\}$. Form a graph G_t^N at time t by including all edges with $\tau_e \leq t\Psi(V_i V_j)/N$.

- Merger rates don't depend on scatering anges, so **projected** empirical measure $\pi_{\#}\mu_t^N = N^{-1} \sum \delta_{\pi(x_i^N(t))}$ has the same rates if the 'post-collisional' velocities are the same as the incoming!
- Dynamic random graph model: sample V_i once and an exponential clock τ_e for each pair $e = \{i, j\}$. Form a graph G_t^N at time t by including all edges with $\tau_e \leq t\Psi(V_i V_j)/N$.

• Set

$$\pi_{\star}(G_{t}^{N}) := N^{-1} \sum_{\mathcal{C} \text{ components}} \delta_{\pi(\mathcal{C})}.$$

- Merger rates don't depend on scatering anges, so **projected** empirical measure $\pi_{\#}\mu_t^N = N^{-1} \sum \delta_{\pi(x_i^N(t))}$ has the same rates if the 'post-collisional' velocities are the same as the incoming!
- Dynamic random graph model: sample V_i once and an exponential clock τ_e for each pair $e = \{i, j\}$. Form a graph G_t^N at time t by including all edges with $\tau_e \leq t\Psi(V_i V_j)/N$.

• Set

$$\pi_{\star}(G_{t}^{N}) := N^{-1} \sum_{\mathcal{C} \text{ components}} \delta_{\pi(\mathcal{C})}.$$

• Then $(\pi_{\star}(G_t^N), t \geq 0) =_{\text{Law}} (\pi_{\#}\mu_t^N, t \geq 0).$

- Merger rates don't depend on scatering anges, so **projected** empirical measure $\pi_{\#}\mu_t^N = N^{-1} \sum \delta_{\pi(x_i^N(t))}$ has the same rates if the 'post-collisional' velocities are the same as the incoming!
- Dynamic random graph model: sample V_i once and an exponential clock τ_e for each pair $e = \{i, j\}$. Form a graph G_t^N at time t by including all edges with $\tau_e \leq t\Psi(V_i V_j)/N$.
- Set

$$\pi_{\star}(G_{t}^{N}) := N^{-1} \sum_{\mathcal{C} \text{ components}} \delta_{\pi(\mathcal{C})}.$$

- Then $(\pi_{\star}(G_t^{\scriptscriptstyle N}),t\geq 0)=_{\mathrm{Law}}(\pi_{\#}\mu_t^{\scriptscriptstyle N},t\geq 0).$
- G_t^N studied by Bollobas, Riordan, Janson.

- Merger rates don't depend on scatering anges, so **projected** empirical measure $\pi_{\#}\mu_t^N = N^{-1} \sum \delta_{\pi(x_i^N(t))}$ has the same rates if the 'post-collisional' velocities are the same as the incoming!
- Dynamic random graph model: sample V_i once and an exponential clock τ_e for each pair $e = \{i, j\}$. Form a graph G_t^N at time t by including all edges with $\tau_e \leq t\Psi(V_i V_j)/N$.
- Set

$$\pi_{\star}(G_{t}^{N}) := N^{-1} \sum_{\mathcal{C} \text{ components}} \delta_{\pi(\mathcal{C})}.$$

- Then $(\pi_{\star}(G_t^{\scriptscriptstyle N}),t\geq 0)=_{\mathrm{Law}}(\pi_{\#}\mu_t^{\scriptscriptstyle N},t\geq 0).$
- G_t^N studied by Bollobas, Riordan, Janson.
- "Any fact about μ_t^N which depends only on the conserved quantities is the same for the graph model".

Coagulation Equations: General Framework

Abstracting:

• Coagulation kernel K, state space S.

Abstracting:

- Coagulation kernel K, state space S.
- $\pi_0, \pi_1, \ldots \pi_{n+m} : S \to \mathbb{R}$ with
 - $\pi_1, ..., \pi_n \ge 0;$

Abstracting:

- Coagulation kernel K, state space S.
- $\pi_0, \pi_1, \ldots \pi_{n+m} : S \to \mathbb{R}$ with
 - $\pi_1, \ldots \pi_n \geq 0;$
 - $\pi_0 = # particles$ is the size of a cluster;
 - $\cdot \ \sum_{i>n} \pi_i^2 \leq C \varphi^2$, where $\varphi := \sum_{i\leq n} \pi_i$

Abstracting:

- Coagulation kernel K, state space S.
- $\pi_0, \pi_1, \ldots \pi_{n+m} : S \to \mathbb{R}$ with
 - $\pi_1, \ldots \pi_n \geq 0;$
 - $\pi_0 = # particles$ is the size of a cluster;
 - $\cdot \sum_{i>n} \pi_i^2 \leq C \varphi^2$, where $\varphi := \sum_{i\leq n} \pi_i$

and which are all additive at mergers;
Abstracting:

- Coagulation kernel K, state space S.
- $\pi_0, \pi_1, \ldots \pi_{n+m} : S \to \mathbb{R}$ with
 - $\pi_1, \ldots \pi_n \geq 0;$
 - $\cdot \pi_0 = \# particles$ is the size of a cluster;
 - $\sum_{i>n} \pi_i^2 \leq C\varphi^2$, where $\varphi := \sum_{i\leq n} \pi_i$

and which are all additive at mergers;

• bilinearity:
$$\overline{K}(x,y) := K(x,y,S) = \pi(x) \cdot A\pi(y).$$

Abstracting:

- Coagulation kernel K, state space S.
- $\pi_0, \pi_1, \ldots \pi_{n+m} : S \to \mathbb{R}$ with
 - $\pi_1, \ldots \pi_n \geq 0;$
 - $\cdot \pi_0 = \# particles$ is the size of a cluster;
 - $\sum_{i>n} \pi_i^2 \leq C\varphi^2$, where $\varphi := \sum_{i\leq n} \pi_i$

and which are all additive at mergers;

- bilinearity: $\overline{K}(x, y) := K(x, y, S) = \pi(x) \cdot A\pi(y)$.
- Particle system: $x_1^N(t), x_2^N(t), \dots, x_{l_N(t)}^N$, merge $\{x, y\} \mapsto z$ at rate $N^{-1}K(x, y, dz)$, internal evolution $J^N \to 0$.

Abstracting:

- Coagulation kernel K, state space S.
- $\pi_0, \pi_1, \ldots \pi_{n+m} : S \to \mathbb{R}$ with
 - $\pi_1, \ldots \pi_n \geq 0;$
 - $\cdot \pi_0 = \# particles$ is the size of a cluster;
 - $\sum_{i>n} \pi_i^2 \leq C\varphi^2$, where $\varphi := \sum_{i \leq n} \pi_i$ and which are all additive at mergers;
- bilinearity: $\overline{K}(x,y) := K(x,y,S) = \pi(x) \cdot A\pi(y)$.
- Particle system: $x_1^N(t), x_2^N(t), \dots, x_{l_N(t)}^N$, merge $\{x, y\} \mapsto z$ at rate $N^{-1}K(x, y, dz)$, internal evolution $J^N \to 0$.
- Smolouchowski equation, weak form:

$$\frac{d}{dt}\langle f, \mu_t \rangle = \underbrace{\int_{S \times S \times S} (f(z) - f(x) - f(y)) K(x, y, dz) \mu_t(dx) \mu_t(dy)}_{=:\langle f, L(\mu_t) \rangle}$$

Abstracting:

- Coagulation kernel K, state space S.
- $\pi_0, \pi_1, \ldots \pi_{n+m} : S \to \mathbb{R}$ with
 - $\pi_1, \ldots \pi_n \geq 0;$
 - $\cdot \pi_0 = \# particles$ is the size of a cluster;
 - $\sum_{i>n} \pi_i^2 \leq C\varphi^2$, where $\varphi := \sum_{i\leq n} \pi_i$ and which are all additive at mergers;
- bilinearity: $\overline{K}(x,y) := K(x,y,S) = \pi(x) \cdot A\pi(y)$.
- Particle system: $x_1^N(t), x_2^N(t), \dots, x_{l_N(t)}^N$, merge $\{x, y\} \mapsto z$ at rate $N^{-1}K(x, y, dz)$, internal evolution $J^N \to 0$.
- Smolouchowski equation, weak form:

$$\frac{d}{dt}\langle f, \mu_t \rangle = \underbrace{\int_{S \times S \times S} (f(z) - f(x) - f(y)) K(x, y, dz) \mu_t(dx) \mu_t(dy)}_{=:\langle f, L(\mu_t) \rangle}$$

for $f \in C_c(S)$.

- Formally, for each *i*, $\frac{d}{dt}\langle \pi_i, \mu_t \rangle = 0$...
- ...but this isn't allowed because $\pi_i \notin C_c(S)$

- Formally, for each *i*, $\frac{d}{dt}\langle \pi_i, \mu_t \rangle = 0$...
- ...but this isn't allowed because $\pi_i \notin C_c(S)$. In fact, $\langle \pi_t, \mu_t \rangle$ may decrease, i = 0, ... n.

- Formally, for each *i*, $\frac{d}{dt}\langle \pi_i, \mu_t \rangle = 0$...
- ...but this isn't allowed because $\pi_i \notin C_c(S)$. In fact, $\langle \pi_t, \mu_t \rangle$ may decrease, i = 0, ... n.
 - Interpretation: forming of *macroscopic* particle (gel) at finite time.

- Formally, for each *i*, $\frac{d}{dt}\langle \pi_i, \mu_t \rangle = 0$...
- ...but this isn't allowed because $\pi_i \notin C_c(S)$. In fact, $\langle \pi_t, \mu_t \rangle$ may decrease, i = 0, ... n.
 - Interpretation: forming of *macroscopic* particle (gel) at finite time.
 - The unsigned terms $\langle \pi_i, \mu_t \rangle$ corresponding to momentum vanish if a symmetry assumption is imposed.

- Formally, for each *i*, $\frac{d}{dt}\langle \pi_i, \mu_t \rangle = 0$...
- ...but this isn't allowed because $\pi_i \notin C_c(S)$. In fact, $\langle \pi_t, \mu_t \rangle$ may decrease, i = 0, ... n.
 - Interpretation: forming of *macroscopic* particle (gel) at finite time.
 - The unsigned terms $\langle \pi_i, \mu_t \rangle$ corresponding to momentum vanish if a symmetry assumption is imposed.
- Smolouchowski equation treats the gel as inert, but this is not the case for the microscopic dynamics.
- Flory equation, accounting for the gel $g_t = \langle \pi, \mu_0 \mu_t \rangle \ge 0$:

$$\frac{d}{dt}\langle f,\mu_t\rangle = \langle f,L(\mu_t)\rangle - \int_{S\times S} f(x)\overline{K}(x,y)\mu_t(dx)(\mu_0-\mu_t)(dy).$$
(2)

- Formally, for each *i*, $\frac{d}{dt}\langle \pi_i, \mu_t \rangle = 0$...
- ...but this isn't allowed because $\pi_i \notin C_c(S)$. In fact, $\langle \pi_t, \mu_t \rangle$ may decrease, i = 0, ... n.
 - Interpretation: forming of *macroscopic* particle (gel) at finite time.
 - The unsigned terms $\langle \pi_i, \mu_t \rangle$ corresponding to momentum vanish if a symmetry assumption is imposed.
- Smolouchowski equation treats the gel as inert, but this is not the case for the microscopic dynamics.
- Flory equation, accounting for the gel $g_t = \langle \pi, \mu_0 \mu_t \rangle \ge 0$:

$$\frac{d}{dt}\langle f,\mu_t\rangle = \langle f,L(\mu_t)\rangle - \int_{S\times S} f(x)\overline{K}(x,y)\mu_t(dx)(\mu_0-\mu_t)(dy).$$
(2)

• Gelation time

$$t_{\text{gel}} := \inf\{t : g_t \neq 0\}.$$

Under symmetry and with mild technical assumptions on the initial data μ_0 ,

1. There exists a unique solution μ_t to the Flory equation

Under symmetry and with mild technical assumptions on the initial data $\mu_{\rm 0},$

- 1. There exists a unique solution μ_t to the Flory equation
- 2. ...which is conservative up to and including at

Under symmetry and with mild technical assumptions on the initial data $\mu_{\rm 0},$

- 1. There exists a unique solution μ_t to the Flory equation
- 2. ...which is conservative up to and including at

$$t_{\text{gel}} = \frac{1}{\text{largest eigenvalue of } \Lambda_{ii} := \langle (A\pi)_i \pi_i, \mu_0 \rangle}$$

Under symmetry and with mild technical assumptions on the initial data $\mu_{\rm 0},$

- 1. There exists a unique solution μ_t to the Flory equation
- 2. ...which is conservative up to and including at

$$t_{\rm gel} = rac{1}{ ext{largest eigenvalue of } \Lambda_{ij} := \langle (A\pi)_i \pi_j, \mu_0 \rangle}.$$

3. The second moment $\mathcal{E}(t) := \langle \varphi^2, \mu_t \rangle$ are finite and continuous except at t_{gel} , and is infinite at t_{gel} .

Under symmetry and with mild technical assumptions on the initial data $\mu_{\rm 0},$

- 1. There exists a unique solution μ_t to the Flory equation
- 2. ...which is conservative up to and including at

$$t_{
m gel} = rac{1}{ ext{largest eigenvalue of } \Lambda_{ij} := \langle (A\pi)_i \pi_j, \mu_0
angle}.$$

- 3. The second moment $\mathcal{E}(t) := \langle \varphi^2, \mu_t \rangle$ are finite and continuous except at t_{gel} , and is infinite at t_{gel} .
- 4. g_t is differentiable except at t_{gel} , right-differentiable at the gelation time t_{gel} and $g'_{t_{gel}+} > 0$.

Under symmetry and with mild technical assumptions on the initial data $\mu_{\rm 0},$

- 1. There exists a unique solution μ_t to the Flory equation
- 2. ...which is conservative up to and including at

$$t_{
m gel} = rac{1}{ ext{largest eigenvalue of } \Lambda_{ij} := \langle (A\pi)_i \pi_j, \mu_0
angle}.$$

- 3. The second moment $\mathcal{E}(t) := \langle \varphi^2, \mu_t \rangle$ are finite and continuous except at t_{gel} , and is infinite at t_{gel} .
- 4. g_t is differentiable except at t_{gel} , right-differentiable at the gelation time t_{gel} and $g'_{t_{gel}+} > 0$. Moreover, for some convex combination $\theta_i \ge 0$, $\sum_{i=1}^{n} \theta_i = 1$, it holds that

$$\frac{\sum_{i=1}^{n}\theta_i(g'_{t_{gel}})_i}{(g'_{t_{gel}})_0} > \sum_{i=1}^{n}\frac{\theta_i\langle \pi_i, \mu_0\rangle}{\langle \pi_0, \mu_0\rangle}.$$

Under mild assumptions on the initial data $X_0^N = (x_1(0), \dots, x_{l_N(0)}(0))$ at time 0, corresponding to an initial measure μ_0 ,

• The empirical measure $\mu_t^N := N^{-1} \sum \delta_{x_i^N(t)} \to \mu_t$, where μ_t is the unique solution to the Flory equation starting at μ_0 , uniformly in $t \ge 0$, in probability and

Under mild assumptions on the initial data $X_0^N = (x_1(0), \dots, x_{l_N(0)}(0))$ at time 0, corresponding to an initial measure μ_0 ,

- The empirical measure $\mu_t^N := N^{-1} \sum \delta_{x_t^N(t)} \to \mu_t$, where μ_t is the unique solution to the Flory equation starting at μ_0 , uniformly in $t \ge 0$, in probability and
- If $x_1^N(t)$ is the largest cluster by π_0 , then

$$g_t^N \to g_t$$

uniformly in time in probability.

Under mild assumptions on the initial data $X_0^N = (x_1(0), \dots, x_{l_N(0)}(0))$ at time 0, corresponding to an initial measure μ_0 ,

- The empirical measure $\mu_t^N := N^{-1} \sum \delta_{x_t^N(t)} \to \mu_t$, where μ_t is the unique solution to the Flory equation starting at μ_0 , uniformly in $t \ge 0$, in probability and
- If $x_1^N(t)$ is the largest cluster by π_0 , then

$$g_t^N \to g_t$$

uniformly in time in probability.

• In particular, $t_{\rm gel}$ is the first time a macroscopic cluster appears, and this cluster contains all of the conserved quantities escaping to infinity.

Key Elements in the Proof

1. Existence and Uniqueness of Flory Equation via truncated equations on $S_{\xi} := \{x \in S : \varphi(x) \le \xi\}.$

- 1. Existence and Uniqueness of Flory Equation via truncated equations on $S_{\xi} := \{x \in S : \varphi(x) \le \xi\}.$
- 2. Convergence of the particle system $\mu_t^N \to \mu_t$ via tightness & identification of limit.

- 1. Existence and Uniqueness of Flory Equation via truncated equations on $S_{\xi} := \{x \in S : \varphi(x) \le \xi\}.$
- 2. Convergence of the particle system $\mu_t^N \to \mu_t$ via tightness & identification of limit.
- 3. Convergence of the gel $g_t^N \rightarrow g_t$

- 1. Existence and Uniqueness of Flory Equation via truncated equations on $S_{\xi} := \{x \in S : \varphi(x) \le \xi\}.$
- 2. Convergence of the particle system $\mu_t^N \to \mu_t$ via tightness & identification of limit.
- 3. Convergence of the gel $g_t^N \rightarrow g_t$, which implies $t_{gel} = t_{crit}$ and gives the characterisation of t_{gel} .

- 1. Existence and Uniqueness of Flory Equation via truncated equations on $S_{\xi} := \{x \in S : \varphi(x) \le \xi\}.$
- 2. Convergence of the particle system $\mu_t^N \to \mu_t$ via tightness & identification of limit.
- 3. Convergence of the gel $g_t^N \rightarrow g_t$, which implies $t_{gel} = t_{crit}$ and gives the characterisation of t_{gel} .
- 4. Identification of $t_{\rm gel}$ with

 $t_{\text{expl}} := \inf\{t \ge 0 : \mathcal{E} \notin L^{\infty}([0,t))\}.$

- 1. Existence and Uniqueness of Flory Equation via truncated equations on $S_{\xi} := \{x \in S : \varphi(x) \le \xi\}.$
- 2. Convergence of the particle system $\mu_t^N \to \mu_t$ via tightness & identification of limit.
- 3. Convergence of the gel $g_t^N \rightarrow g_t$, which implies $t_{gel} = t_{crit}$ and gives the characterisation of t_{gel} .
- 4. Identification of $t_{\rm gel}$ with

```
t_{\text{expl}} := \inf\{t \ge 0 : \mathcal{E} \notin L^{\infty}([0,t))\}.
```

5. Finiteness of ${\cal E}$ on $(t_{\rm gel},\infty)$ by duality argument.

Coupling to graphs works in the same way as before! Sample data x^N_i(0) ∈ S, do not change in dynamics.

- Coupling to graphs works in the same way as before! Sample data $x_i^N(0) \in S$, do not change in dynamics.
- Using Bollobas-Riordan-Jansen, there exists a phase transition at time t_{crit} where the largest cluster goes from o(N) to $\Theta(N)$.

- Coupling to graphs works in the same way as before! Sample data $x_i^N(0) \in S$, do not change in dynamics.
- Using Bollobas-Riordan-Jansen, there exists a phase transition at time t_{crit} where the largest cluster goes from o(N) to $\Theta(N)$.
- The critical time $t_{\rm crit}$ is given by $t_{\rm crit}^{-1}$ is the largest eigenvalue of a certain operator.

- Coupling to graphs works in the same way as before! Sample data x^N_i(0) ∈ S, do not change in dynamics.
- Using Bollobas-Riordan-Jansen, there exists a phase transition at time t_{crit} where the largest cluster goes from o(N) to $\Theta(N)$.
- The critical time $t_{\rm crit}$ is given by $t_{\rm crit}^{-1}$ is the largest eigenvalue of a certain operator.
- Duality argument: If G_t^N is a supercritical random graph and \hat{G}_t^N is formed by deleting the largest cluster, then \hat{G}_t^N is subcritical.

- Coupling to graphs works in the same way as before! Sample data $x_i^N(0) \in S$, do not change in dynamics.
- Using Bollobas-Riordan-Jansen, there exists a phase transition at time t_{crit} where the largest cluster goes from o(N) to $\Theta(N)$.
- The critical time $t_{\rm crit}$ is given by $t_{\rm crit}^{-1}$ is the largest eigenvalue of a certain operator.
- Duality argument: If G_t^N is a supercritical random graph and \hat{G}_t^N is formed by deleting the largest cluster, then \hat{G}_t^N is subcritical.
- For any $1 \ll \xi_N \ll N$ and any t,

$$\frac{1}{N} \sum_{i \ge 2: C_i(G_t^N) \ge \xi_N} C_i(G_t^N) \to 0 \text{ in probability.}$$
(3)

- Coupling to graphs works in the same way as before! Sample data $x_i^N(0) \in S$, do not change in dynamics.
- Using Bollobas-Riordan-Jansen, there exists a phase transition at time t_{crit} where the largest cluster goes from o(N) to $\Theta(N)$.
- The critical time $t_{\rm crit}$ is given by $t_{\rm crit}^{-1}$ is the largest eigenvalue of a certain operator.
- Duality argument: If G_t^N is a supercritical random graph and \hat{G}_t^N is formed by deleting the largest cluster, then \hat{G}_t^N is subcritical.
- For any $1 \ll \xi_N \ll N$ and any t,

$$\frac{1}{N} \sum_{i \ge 2: C_i(G_t^N) \ge \xi_N} C_i(G_t^N) \to 0 \text{ in probability.}$$
(3)

where C_i are the ordered cluster sizes.

- Coupling to graphs works in the same way as before! Sample data $x_i^N(0) \in S$, do not change in dynamics.
- Using Bollobas-Riordan-Jansen, there exists a phase transition at time t_{crit} where the largest cluster goes from o(N) to $\Theta(N)$.
- The critical time $t_{\rm crit}$ is given by $t_{\rm crit}^{-1}$ is the largest eigenvalue of a certain operator.
- Duality argument: If G_t^N is a supercritical random graph and \hat{G}_t^N is formed by deleting the largest cluster, then \hat{G}_t^N is subcritical.
- For any $1 \ll \xi_N \ll N$ and any t,

$$\frac{1}{N} \sum_{i \ge 2: C_i(G_t^N) \ge \xi_N} C_i(G_t^N) \to 0 \text{ in probability.}$$
(3)

where C_i are the ordered cluster sizes. (i.e. mesoscopic clusters do not contribute).

Ideas of Proof: Convergence of Gel

Ideas of Proof: Convergence of Gel

• Have convergence $\langle \pi_i f, \mu_t^N \rangle \rightarrow \langle \pi_i f, \mu_t \rangle$ when $f: S \rightarrow [0, 1]$ is a compactly supported bump.
- Have convergence $\langle \pi_i f, \mu_t^N \rangle \rightarrow \langle \pi_i f, \mu_t \rangle$ when $f: S \rightarrow [0, 1]$ is a compactly supported bump.
- Under mild assumptions on μ_0^N ,

$$\beta(r,\eta) := \sup_{N} \mathbb{E}\left[\sup_{t} \langle \varphi 1[\varphi(\mathbf{X}) > \eta, \pi_0(\mathbf{X}) \le r], \mu_t^N \rangle\right] \to 0 \quad (4)$$

- Have convergence $\langle \pi_i f, \mu_t^N \rangle \rightarrow \langle \pi_i f, \mu_t \rangle$ when $f: S \rightarrow [0, 1]$ is a compactly supported bump.
- Under mild assumptions on μ_0^N ,

$$\beta(r,\eta) := \sup_{N} \mathbb{E} \left[\sup_{t} \langle \varphi \mathbb{1}[\varphi(x) > \eta, \pi_{0}(x) \leq r], \mu_{t}^{N} \rangle \right] \to 0 \quad (4)$$

as $\eta \to \infty$, *r* fixed.

- Have convergence $\langle \pi_i f, \mu_t^N \rangle \rightarrow \langle \pi_i f, \mu_t \rangle$ when $f: S \rightarrow [0, 1]$ is a compactly supported bump.
- Under mild assumptions on μ_0^N ,

$$\beta(r,\eta) := \sup_{N} \mathbb{E} \left[\sup_{t} \langle \varphi \mathbb{1}[\varphi(x) > \eta, \pi_0(x) \le r], \mu_t^N \rangle \right] \to 0 \quad (4)$$

as $\eta \to \infty$, *r* fixed.

• This allows us to trade 'compactly supported' f for $1[\pi_0(x) \le \xi_N]$, $1 \ll \xi_N \ll N$ sufficiently slowly.

- Have convergence $\langle \pi_i f, \mu_t^N \rangle \rightarrow \langle \pi_i f, \mu_t \rangle$ when $f: S \rightarrow [0, 1]$ is a compactly supported bump.
- Under mild assumptions on μ_0^N ,

$$\beta(r,\eta) := \sup_{N} \mathbb{E} \left[\sup_{t} \langle \varphi \mathbb{1}[\varphi(x) > \eta, \pi_0(x) \le r], \mu_t^N \rangle \right] \to 0 \quad (4)$$

as $\eta \to \infty$, *r* fixed.

- This allows us to trade 'compactly supported' *f* for $1[\pi_0(x) \le \xi_N]$, $1 \ll \xi_N \ll N$ sufficiently slowly.
- Meanwhile, for the random graphs coupling,

$$|(g_t^N)_i - \langle \pi_i \mathbb{1}[\pi_0(x) > \xi_N], \mu_t^N \rangle| \le \frac{1}{N} \sum_{j \ge 2: C_i(G_t^N) \ge \xi} \pi_i(C_j(G_t^N)) + \frac{(g_t^N)_i}{N} \mathbb{1}[C_1(G_t^N) \le \xi_N]$$

- Have convergence $\langle \pi_i f, \mu_t^N \rangle \rightarrow \langle \pi_i f, \mu_t \rangle$ when $f: S \rightarrow [0, 1]$ is a compactly supported bump.
- Under mild assumptions on μ_0^N ,

$$\beta(r,\eta) := \sup_{N} \mathbb{E} \left[\sup_{t} \langle \varphi \mathbb{1}[\varphi(x) > \eta, \pi_0(x) \le r], \mu_t^N \rangle \right] \to 0 \quad (4)$$

as $\eta \to \infty$, *r* fixed.

- This allows us to trade 'compactly supported' *f* for $1[\pi_0(x) \le \xi_N]$, $1 \ll \xi_N \ll N$ sufficiently slowly.
- Meanwhile, for the random graphs coupling,

$$|(g_t^N)_i - \langle \pi_i \mathbb{1}[\pi_0(x) > \xi_N], \mu_t^N \rangle| \le \frac{1}{N} \sum_{j \ge 2: C_i(G_t^N) \ge \xi} \pi_i(C_j(G_t^N)) + \frac{(g_t^N)_i}{N} \mathbb{1}[C_1(G_t^N) \le \xi_N]$$

which can be shown to \rightarrow 0 in probability, using Cauchy-Schwarz and the neglibible mass of mesoscopic clusters.

- Have convergence $\langle \pi_i f, \mu_t^N \rangle \rightarrow \langle \pi_i f, \mu_t \rangle$ when $f: S \rightarrow [0, 1]$ is a compactly supported bump.
- Under mild assumptions on μ_0^N ,

$$\beta(r,\eta) := \sup_{N} \mathbb{E} \left[\sup_{t} \langle \varphi \mathbb{1}[\varphi(x) > \eta, \pi_0(x) \le r], \mu_t^N \rangle \right] \to 0 \quad (4)$$

as $\eta \to \infty$, *r* fixed.

- This allows us to trade 'compactly supported' *f* for $1[\pi_0(x) \le \xi_N]$, $1 \ll \xi_N \ll N$ sufficiently slowly.
- Meanwhile, for the random graphs coupling,

$$|(g_t^N)_i - \langle \pi_i \mathbb{1}[\pi_0(x) > \xi_N], \mu_t^N \rangle| \le \frac{1}{N} \sum_{j \ge 2: C_i(G_t^N) \ge \xi} \pi_i(C_j(G_t^N)) + \frac{(g_t^N)_i}{N} \mathbb{1}[C_1(G_t^N) \le \xi_N]$$

which can be shown to \rightarrow 0 in probability, using Cauchy-Schwarz and the neglibible mass of mesoscopic clusters.

• Conclude with diagonal argument and tuning ξ_N .

• The connection between blowup and gelation was established by Norris (2000,2001) assuming that *K* is *approximately multiplicative*, meaning that

$$\delta \varphi(x) \varphi(y) \leq \overline{K}(x,y) \leq \delta^{-1} \varphi(x) \varphi(y)$$

• The connection between blowup and gelation was established by Norris (2000,2001) assuming that *K* is *approximately multiplicative*, meaning that

$$\delta \varphi(x)\varphi(y) \leq \overline{K}(x,y) \leq \delta^{-1}\varphi(x)\varphi(y)$$

for some $\delta > 0$.

• Not immediately applicable because

• The connection between blowup and gelation was established by Norris (2000,2001) assuming that *K* is *approximately multiplicative*, meaning that

$$\delta \varphi(x)\varphi(y) \leq \overline{K}(x,y) \leq \delta^{-1}\varphi(x)\varphi(y)$$

- Not immediately applicable because
 - For $n \leq i \leq n + m$, π_i of mixed sign;

• The connection between blowup and gelation was established by Norris (2000,2001) assuming that *K* is *approximately multiplicative*, meaning that

 $\delta \varphi(x)\varphi(y) \leq \overline{K}(x,y) \leq \delta^{-1}\varphi(x)\varphi(y)$

- Not immediately applicable because
 - For $n \leq i \leq n + m$, π_i of mixed sign;
 - Cannot get the desired lower bound because of support 'close to axes' where one $\pi_i(x)$ is small and another is large.

• The connection between blowup and gelation was established by Norris (2000,2001) assuming that *K* is *approximately multiplicative*, meaning that

 $\delta \varphi(x)\varphi(y) \leq \overline{K}(x,y) \leq \delta^{-1}\varphi(x)\varphi(y)$

- Not immediately applicable because
 - For $n \leq i \leq n + m$, π_i of mixed sign;
 - Cannot get the desired lower bound because of support 'close to axes' where one $\pi_i(x)$ is small and another is large.
- \cdot Strategy:

• The connection between blowup and gelation was established by Norris (2000,2001) assuming that *K* is *approximately multiplicative*, meaning that

 $\delta \varphi(x)\varphi(y) \leq \overline{K}(x,y) \leq \delta^{-1}\varphi(x)\varphi(y)$

- Not immediately applicable because
 - For $n \leq i \leq n + m$, π_i of mixed sign;
 - Cannot get the desired lower bound because of support 'close to axes' where one $\pi_i(x)$ is small and another is large.
- **Strategy:** First show that $\nu_t := \pi_{\#} \mu_t^N$ satisfies a coagulation equation for a kernel K^m only involving π_1, \ldots, π_n .

• The connection between blowup and gelation was established by Norris (2000,2001) assuming that *K* is *approximately multiplicative*, meaning that

 $\delta \varphi(x)\varphi(y) \leq \overline{K}(x,y) \leq \delta^{-1}\varphi(x)\varphi(y)$

- Not immediately applicable because
 - For $n \leq i \leq n + m$, π_i of mixed sign;
 - Cannot get the desired lower bound because of support 'close to axes' where one $\pi_i(x)$ is small and another is large.
- **Strategy:** First show that $\nu_t := \pi_{\#} \mu_t^N$ satisfies a coagulation equation for a kernel K^m only involving π_1, \ldots, π_n . (Symmetry considerations).
- Construct ν_0^{ϵ} by shifting ν_0 by $(\epsilon, \epsilon, \dots, \epsilon)$ and cutting out large values.

Ideas of Proof: Second Moment on $t < \overline{t_{ m gel}}$, 2

Ideas of Proof: Second Moment on $t < \overline{t_{ m gel}}$, 2

+ ν_t^ϵ live in a space where K^m is approximately multiplicative, $t_{expl}^\epsilon = t_{gel}^\epsilon$

- + ν^ϵ_t live in a space where ${\it K}^m$ is approximately multiplicative, $t^\epsilon_{\rm expl}=t^\epsilon_{\rm gel}$
- The second moments $\langle \pi_i \pi_j, \nu_t^{(\epsilon)} \rangle$, or for solve an automonous ODE up to the explosion $t_{expl}^{(\epsilon)}$, so

blowup time = time of existence of ODE.

- + ν^ϵ_t live in a space where ${\it K}^m$ is approximately multiplicative, $t^\epsilon_{\rm expl}=t^\epsilon_{\rm gel}$
- The second moments $\langle \pi_i \pi_j, \nu_t^{(\epsilon)} \rangle$, or for solve an automonous ODE up to the explosion $t_{expl}^{(\epsilon)}$, so

blowup time = time of existence of ODE.

• Characterisations of both blowup and gelation times are now continuous in the initial data, so we can take limits of $t_{\mathrm{expl}}^{\epsilon} \rightarrow t_{\mathrm{expl}}$ and $t_{\mathrm{gel}}^{\epsilon} \rightarrow t_{\mathrm{gel}}$.

• Let $t > t_{gel}$ and let $\{y_i\}$ be an enumeration of the vertexes not belonging to the giant cluster.

- Let $t > t_{gel}$ and let $\{y_i\}$ be an enumeration of the vertexes not belonging to the giant cluster.
- Thanks to the graph duality theorem, $\hat{\mu}_0^N = N^{-1} \sum \delta_{y_i}$ converges to $\hat{\mu}_0 := (1 \kappa_t) \mu_0$.

- Let $t > t_{gel}$ and let $\{y_i\}$ be an enumeration of the vertexes not belonging to the giant cluster.
- Thanks to the graph duality theorem, $\hat{\mu}_0^N = N^{-1} \sum \delta_{y_i}$ converges to $\hat{\mu}_0 := (1 \kappa_t) \mu_0$.
- The random graph evolution \tilde{G}_s^N for the data $\{y_i\}$ can be constructed so that, with high probability,

$$ilde{G}^{\scriptscriptstyle N}_t = \hat{G}^{\scriptscriptstyle N}_t = G^{\scriptscriptstyle N}_t - {
m largest}$$
 cluster.

- Let $t > t_{gel}$ and let $\{y_i\}$ be an enumeration of the vertexes not belonging to the giant cluster.
- Thanks to the graph duality theorem, $\hat{\mu}_0^N = N^{-1} \sum \delta_{y_i}$ converges to $\hat{\mu}_0 := (1 \kappa_t) \mu_0$.
- The random graph evolution \tilde{G}_s^N for the data $\{y_i\}$ can be constructed so that, with high probability,

$$\tilde{G}_t^N = \hat{G}_t^N = G_t^N - \text{largest cluster}.$$

• In particular, \tilde{G}_t^N is subcritical.

- Let $t > t_{gel}$ and let $\{y_i\}$ be an enumeration of the vertexes not belonging to the giant cluster.
- Thanks to the graph duality theorem, $\hat{\mu}_0^N = N^{-1} \sum \delta_{y_i}$ converges to $\hat{\mu}_0 := (1 \kappa_t) \mu_0$.
- The random graph evolution \tilde{G}_s^N for the data $\{y_i\}$ can be constructed so that, with high probability,

$$\tilde{G}_t^N = \hat{G}_t^N = G_t^N - \text{largest cluster}.$$

- In particular, \tilde{G}_t^N is subcritical.
- $\pi_{\star}(\tilde{G}^{\aleph}_{s}) \rightarrow \hat{\mu}_{s}$ a solution to the Flory equation, and $t < \hat{t}_{gel}$.

- Let $t > t_{gel}$ and let $\{y_i\}$ be an enumeration of the vertexes not belonging to the giant cluster.
- Thanks to the graph duality theorem, $\hat{\mu}_0^N = N^{-1} \sum \delta_{y_i}$ converges to $\hat{\mu}_0 := (1 \kappa_t) \mu_0$.
- The random graph evolution \tilde{G}_s^N for the data $\{y_i\}$ can be constructed so that, with high probability,

$$\tilde{G}_t^N = \hat{G}_t^N = G_t^N - \text{largest cluster}.$$

- In particular, \tilde{G}_t^N is subcritical.
- $\pi_{\star}(\tilde{G}^{N}_{s}) \rightarrow \hat{\mu}_{s}$ a solution to the Flory equation, and $t < \hat{t}_{gel}$.
- As a result, $\mu_t = \hat{\mu}_t$, which has finite second moments thanks to the behaviour **before** gelation!

Back to Interaction clusters

• How does t_{gel} compare to $t_{mf} := \frac{1}{avg. \text{ collision rate}}$?

- How does t_{gel} compare to $t_{mf} := \frac{1}{avg. \ collision \ rate}$?
- Recall $\Psi(|v|) = a + b|v|^2$

- How does t_{gel} compare to $t_{mf} := \frac{1}{avg. \text{ collision rate}}$?
- Recall $\Psi(|v|) = a + b|v|^2$
- For λ_0 the initial velocity distribution, normalised to $\langle |v|^2, \lambda_0 \rangle = 1$, the eigenvalue characterisation of $t_{\rm gel}$ reduces to eigenvalues of the matrix

$$\begin{pmatrix} 2a+2b & 2a+2b\Lambda_4(\lambda_0) \\ 2b & 2b \end{pmatrix}$$

which works out to

$$t_{\text{gel}}^{-1} = a + 2b + \sqrt{(a + 2b)^2 + 4b^2(\Lambda_4(\lambda_0) - 1)}.$$

- How does t_{gel} compare to $t_{mf} := \frac{1}{avg. \text{ collision rate}}$?
- Recall $\Psi(|v|) = a + b|v|^2$
- For λ_0 the initial velocity distribution, normalised to $\langle |v|^2, \lambda_0 \rangle = 1$, the eigenvalue characterisation of $t_{\rm gel}$ reduces to eigenvalues of the matrix

$$\begin{pmatrix} 2a+2b & 2a+2b\Lambda_4(\lambda_0) \\ 2b & 2b \end{pmatrix}$$

which works out to

$$t_{gel}^{-1} = a + 2b + \sqrt{(a + 2b)^2 + 4b^2(\Lambda_4(\lambda_0) - 1)}.$$

In comparison

$$t_{\rm mf}^{-1} = 2(a+2b).$$

- How does t_{gel} compare to $t_{mf} := \frac{1}{avg. \text{ collision rate}}$?
- Recall $\Psi(|v|) = a + b|v|^2$
- For λ_0 the initial velocity distribution, normalised to $\langle |v|^2, \lambda_0 \rangle = 1$, the eigenvalue characterisation of $t_{\rm gel}$ reduces to eigenvalues of the matrix

$$\begin{pmatrix} 2a+2b & 2a+2b\Lambda_4(\lambda_0) \\ 2b & 2b \end{pmatrix}$$

which works out to

$$t_{gel}^{-1} = a + 2b + \sqrt{(a + 2b)^2 + 4b^2(\Lambda_4(\lambda_0) - 1)}.$$

In comparison

$$t_{\rm mf}^{-1} = 2(a+2b).$$

 $\cdot\,$ So: verified, for toy model, that macroscopic interaction clusters occur before $t_{\rm mf}!$