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Motivation: Interaction Clusters
in Kac Dynamics



Starting Point: the Boltzmann-Grad Limit

• Derivation of the spatially inhomogeneous Boltzmann equation
from molecular dynamics:

• Ballistic dynamics, hard core exclusion of radius rN ∼ N−1/2
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Starting Point, 2

• The goal is asymptotic independence (molecular chaos)

• No hope for true independence: particles affect each other if
they’ve collided....or if they’ve both interacted with another
particle, or if they are linked through a chain of interactions. (

• Bogolyubov’s interaction clusters partition N particles.
• Related to short-time proof of the Boltzmann equation by
Simonella, Gallagher, Bodineau: Two particles are in the same
interaction cluster if the associated collision trees are joined by a
recollision.
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Starting Point, 3: Kac process

• Goal: would like to understand qualitative properties of the
path-by-path properties of the interaction clusters:

• Distribution of sizes at time t?
• Does a macroscopic cluster emerge? (gelation)
• How do fast velocities affect gelation in comparison to the mean
free time?

• The Boltzmann-Grad limit is too hard! Try to understand these
first for a simpler model due to Kac. Kac model:

• Ignore position: velocities (Vit)1≤i≤N,t≥0.
• Mimic spatial effects by velocity-dependent collision rate: i, j
collide at rate 2Ψ(|Vit − Vjt|)/N.

• When particles collide, energy and momentum are conserved.
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From Interaction Clusters to
Bilinearity and Random Graphs



Key Computation 1

• For the Kac process, interaction clusters xN1 (t), . . . , xNlN(t)(t) ∈ S
containing ‘all data’.

• Merging {x, y} 7→ z at rate N−1K(x, y,dz); ‘self-evolution’ x 7→ x′ at
rate JN(x,dx′).

• If Ψ(|v|) = a+ b|v|2, then K(x, y, S) computes

K(x, y, S) =
∑

v∈x,w∈y
(a+ b|v− w|2) =

∑
v∈x,w∈y

(a+ b|v|2 − 2v · w+ |w|2)

= aN(x)N(y) + bE(x)N(y)− 2bP(x) · P(y) + bN(x)E(y)
(1)

…is a function only of π(x) = (N(x),P(x), E(x)) =
∑

v∈x(1, v, |v|2)
and π(y).

• π is additive: π(z) = π(x) + π(y) for K(x, y, ·)-a.e. z, π(x′) = π(x)
for JN(x, ·)-a.e. x′.
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Key Computation 2

• Merger rates don’t depend on scatering anges, so projected
empirical measure π#µ

N
t = N−1∑ δπ(xNi (t))

has the same rates if
the ‘post-collisional’ velocities are the same as the incoming!

• Dynamic random graph model: sample Vi once and an
exponential clock τe for each pair e = {i, j}. Form a graph GNt at
time t by including all edges with τe ≤ tΨ(Vi − Vj)/N.

• Set
π⋆(GNt ) := N−1

∑
C components

δπ(C).

• Then (π⋆(GNt ), t ≥ 0) =Law (π#µ
N
t , t ≥ 0).

• GNt studied by Bollobas, Riordan, Janson.
• “Any fact about µNt which depends only on the conserved
quantities is the same for the graph model”.
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Coagulation Equations: General
Framework



Bilinear Coagulation Framework

Abstracting:

• Coagulation kernel K, state space S.

• π0, π1, . . . πn+m : S→ R with
• π1, . . . πn ≥ 0;
• π0 = #particles is the size of a cluster;
•
∑

i>n π
2
i ≤ Cφ2, where φ :=

∑
i≤n πi

and which are all additive at mergers;
• bilinearity: K(x, y) := K(x, y, S) = π(x) · Aπ(y).
• Particle system: xN1 (t), xN2 (t), . . . xNlN(t), merge {x, y} 7→ z at rate
N−1K(x, y,dz), internal evolution JN → 0.

• Smolouchowski equation, weak form:
d
dt 〈f, µt〉 =

∫
S×S×S

(f(z)− f(x)− f(y))K(x, y,dz)µt(dx)µt(dy)︸ ︷︷ ︸
=:⟨f,L(µt)⟩

for f ∈ Cc(S).

.
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• Particle system: xN1 (t), xN2 (t), . . . xNlN(t), merge {x, y} 7→ z at rate
N−1K(x, y,dz), internal evolution JN → 0.

• Smolouchowski equation, weak form:
d
dt 〈f, µt〉 =

∫
S×S×S

(f(z)− f(x)− f(y))K(x, y,dz)µt(dx)µt(dy)︸ ︷︷ ︸
=:⟨f,L(µt)⟩

for f ∈ Cc(S).
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Gelation and Flory Equation

• Formally, for each i, ddt 〈πi, µt〉 = 0…
• …but this isn’t allowed because πi 6∈ Cc(S)

. In fact, 〈πt, µt〉 may
decrease, i = 0, . . .n.

• Interpretation: forming of macroscopic particle (gel) at finite time.
• The unsigned terms ⟨πi, µt⟩ corresponding to momentum vanish if
a symmetry assumption is imposed.

• Smolouchowski equation treats the gel as inert, but this is not
the case for the microscopic dynamics.

• Flory equation, accounting for the gel gt = 〈π, µ0 − µt〉 ≥ 0:

d
dt 〈f, µt〉 = 〈f, L(µt)〉 −

∫
S×S

f(x)K(x, y)µt(dx)(µ0 − µt)(dy). (2)

• Gelation time
tgel := inf{t : gt 6= 0}.

7
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Main Result: Flory Equation

Under symmetry and with mild technical assumptions on the initial
data µ0,

1. There exists a unique solution µt to the Flory equation

2. …which is conservative up to and including at

tgel =
1

largest eigenvalue of Λij := 〈(Aπ)iπj, µ0〉
.

3. The second moment E(t) := 〈φ2, µt〉 are finite and continuous
except at tgel, and is infinite at tgel.

4. gt is differentiable except at tgel, right-differentiable at the
gelation time tgel and g′tgel+

> 0. Moreover, for some convex
combination θi ≥ 0,

∑n
i=1 θi = 1, it holds that∑n

i=1 θi(g′tgel+
)i

(g′tgel
)0

>
n∑
i=1

θi〈πi, µ0〉
〈π0, µ0〉

.
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Main Result: Convergence of the Particle System

Under mild assumptions on the initial data XN0 = (x1(0), . . . , xlN(0)(0))
at time 0, corresponding to an initial measure µ0,

• The empirical measure µNt := N−1∑ δxNi (t)
→ µt, where µt is the

unique solution to the Flory equation starting at µ0, uniformly in
t ≥ 0, in probability and

• If xN1 (t) is the largest cluster by π0, then

gNt → gt

uniformly in time in probability.
• In particular, tgel is the first time a macroscopic cluster appears,
and this cluster contains all of the conserved quantities
escaping to infinity.
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Key Elements in the Proof



Overview of the Proof

1. Existence and Uniqueness of Flory Equation via truncated
equations on Sξ := {x ∈ S : φ(x) ≤ ξ}.

2. Convergence of the particle system µNt → µt via tightness &
identification of limit.

3. Convergence of the gel gNt → gt, which implies tgel = tcrit and
gives the characterisation of tgel.

4. Identification of tgel with

texpl := inf{t ≥ 0 : E 6∈ L∞([0, t))}.

5. Finiteness of E on (tgel,∞) by duality argument.
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Facts from Random Graphs

• Coupling to graphs works in the same way as before! Sample
data xNi (0) ∈ S, do not change in dynamics.

• Using Bollobas-Riordan-Jansen, there exists a phase transition
at time tcrit where the largest cluster goes from o(N) to Θ(N).

• The critical time tcrit is given by t−1crit is the largest eigenvalue of
a certain operator.

• Duality argument: If GNt is a supercritical random graph and ĜNt is
formed by deleting the largest cluster, then ĜNt is subcritical.

• For any 1� ξN � N and any t,

1
N

∑
i≥2:Ci(GNt )≥ξN

Ci(GNt ) → 0 in probability. (3)

where Ci are the ordered cluster sizes. (i.e. mesoscopic clusters
do not contribute).
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formed by deleting the largest cluster, then ĜNt is subcritical.
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• For any 1� ξN � N and any t,

1
N

∑
i≥2:Ci(GNt )≥ξN

Ci(GNt ) → 0 in probability. (3)

where Ci are the ordered cluster sizes.

(i.e. mesoscopic clusters
do not contribute).

11



Facts from Random Graphs

• Coupling to graphs works in the same way as before! Sample
data xNi (0) ∈ S, do not change in dynamics.

• Using Bollobas-Riordan-Jansen, there exists a phase transition
at time tcrit where the largest cluster goes from o(N) to Θ(N).

• The critical time tcrit is given by t−1crit is the largest eigenvalue of
a certain operator.

• Duality argument: If GNt is a supercritical random graph and ĜNt is
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Ideas of Proof: Convergence of Gel

• Have convergence 〈πif, µNt 〉 → 〈πif, µt〉 when f : S→ [0, 1] is a
compactly supported bump.

• Under mild assumptions on µN0 ,

β(r, η) := sup
N

E
[
sup
t
〈φ1[φ(x) > η, π0(x) ≤ r], µNt 〉

]
→ 0 (4)

as η → ∞, r fixed.
• This allows us to trade ‘compactly supported’ f for 1[π0(x) ≤ ξN],
1� ξN � N sufficiently slowly.

• Meanwhile, for the random graphs coupling,∣∣(gNt )i − 〈πi1[π0(x) > ξN], µ
N
t 〉
∣∣ ≤ 1

N
∑

j≥2:Ci(GNt )≥ξ

πi(Cj(GNt ))+
(gNt )i
N 1[C1(GNt ) ≤ ξN]

which can be shown to→ 0 in probability, using Cauchy-Schwarz
and the neglibible mass of mesoscopic clusters.

• Conclude with diagonal argument and tuning ξN.
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Ideas of Proof: Second Moment on t < tgel

• The connection between blowup and gelation was established
by Norris (2000,2001) assuming that K is approximately
multiplicative, meaning that

δφ(x)φ(y) ≤ K(x, y) ≤ δ−1φ(x)φ(y)

for some δ > 0.

• Not immediately applicable because
• For n ≤ i ≤ n+m, πi of mixed sign;
• Cannot get the desired lower bound because of support ‘close to
axes’ where one πi(x) is small and another is large.

• Strategy: First show that νt := π#µ
N
t satisfies a coagulation

equation for a kernel Km only involving π1, . . . , πn. (Symmetry
considerations).

• Construct νϵ0 by shifting ν0 by (ϵ, ϵ, . . . , ϵ) and cutting out large
values.
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Ideas of Proof: Second Moment on t < tgel, 2

• νϵt live in a space where Km is approximately multiplicative,
tϵexpl = tϵgel

• The second moments 〈πiπj, ν(ϵ)t 〉, or for solve an automonous
ODE up to the explosion t(ϵ)expl, so

blowup time = time of existence of ODE.

• Characterisations of both blowup and gelation times are now
continuous in the initial data, so we can take limits of
tϵexpl → texpl and tϵgel → tgel.
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Ideas of Proof: Second Moment on t > tgel

• Let t > tgel and let {yi} be an enumeration of the vertexes not
belonging to the giant cluster.

• Thanks to the graph duality theorem, µ̂N0 = N−1∑ δyi converges
to µ̂0 := (1− κt)µ0.

• The random graph evolution G̃Ns for the data {yi} can be
constructed so that, with high probability,

G̃Nt = ĜNt = GNt − largest cluster.

• In particular, G̃Nt is subcritical.
• π⋆(G̃Ns ) → µ̂s a solution to the Flory equation, and t < t̂gel.

• As a result, µt = µ̂t, which has finite second moments thanks to
the behaviour before gelation!
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G̃Nt = ĜNt = GNt − largest cluster.

• In particular, G̃Nt is subcritical.
• π⋆(G̃Ns ) → µ̂s a solution to the Flory equation, and t < t̂gel.

• As a result, µt = µ̂t, which has finite second moments thanks to
the behaviour before gelation!

15



Back to Interaction clusters



Large Interaction Clusters before the Mean Free Time

• How does tgel compare to tmf :=
1

avg. collision rate?

• Recall Ψ(|v|) = a+ b|v|2
• For λ0 the initial velocity distribution, normalised to
〈|v|2, λ0〉 = 1, the eigenvalue characterisation of tgel reduces to
eigenvalues of the matrix(

2a+ 2b 2a+ 2bΛ4(λ0)
2b 2b

)
which works out to

t−1gel = a+ 2b+
√
(a+ 2b)2 + 4b2(Λ4(λ0)− 1).

• In comparison
t−1mf = 2(a+ 2b).

• So: verified, for toy model, that macroscopic interaction
clusters occur before tmf!
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