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Motivation: Interaction Clusters
in Kac Dynamics
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- Ballistic dynamics, hard core exclusion of radius ry ~ N='/2
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- The goal is asymptotic independence (molecular chaos)

- No hope for true independence: particles affect each other if
they've collided....or if they've both interacted with another
particle, or if they are linked through a chain of interactions. (

- BogolyuboV's interaction clusters partition N particles.

- Related to short-time proof of the Boltzmann equation by
Simonella, Gallagher, Bodineau: Two particles are in the same
interaction cluster if the associated collision trees are joined by a
recollision.
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- Goal: would like to understand qualitative properties of the
path-by-path properties of the interaction clusters:
- Distribution of sizes at time t?
- Does a macroscopic cluster emerge? (gelation)
- How do fast velocities affect gelation in comparison to the mean
free time?
- The Boltzmann-Grad limit is too hard! Try to understand these
first for a simpler model due to Kac. Kac model:
- Ignore position: velocities (VL)@-SNQO.
- Mimic spatial effects by velocity-dependent collision rate: i,j
collide at rate 2W(|Vi — V}|)/N.
- When particles collide, energy and momentum are conserved.



From Interaction Clusters to
Bilinearity and Random Graphs
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containing ‘all data’

- Merging {x,y} — z at rate N='K(x, y, dz); ‘self-evolution’ x — x’ at
rate JN(x, dx’).

- If W(|v|) = a + b|v|? then K(x,y,S) computes

K(xy,S)= > (a+blv—w’)= Y (a+bvP—2v-w+ )
vex,wey veX,wey
= aN(X)N(y) + bE(x)N(y) — 2bP(x) - P(y) + bN(X)E(y)
(1)

.is a function only of m(x) = (N(x), P(x), E(X)) = > ,e,(1, v, [V]?)
and w(y).

- 7 is additive: 7(2) = n(x) + 7 (y) for K(x,y,-)-a.e. z, 7(x') = w(X)
for JN(x,-)-a.e. X
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- Merger rates don't depend on scatering anges, so projected
empirical measure mupuf' = N™' 37 8, () has the same rates if
the ‘post-collisional’ velocities are the same as the incoming!

- Dynamic random graph model: sample V; once and an
exponential clock 7. for each pair e = {i,j}. Form a graph G} at
time t by including all edges with 7, < tw(V; —V;)/N.

- Set
77*(64\') = N_W Z 67r(C)-
C components
- Then (m.(GV),t > 0) =paw (mpul,t > 0).
- G} studied by Bollobas, Riordan, Janson.

- “Any fact about pl¥ which depends only on the conserved
quantities is the same for the graph model”.
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Abstracting:

- Coagulation kernel K, state space S.
© T, Ty Tnam - S — R with
c m,...mp > 0;
- mo = #particles is the size of a cluster;
. Zi>” 7r,-2 < Cyp?, where ¢ == D i @
and which are all additive at me?gers;
- bilinearity: K(x,y) := K(x,y,S) = m(x) - An(y).
-+ Particle system: x/(t), X (t), ... X[\, Merge {x,y} = z at rate
N=TK(x, y, dz), internal evolution /N — 0.
- Smolouchowski equation, weak form:

S = [ ()~ 100 ~ RO . d2)( ()
SxSxS

=:(f,L(m))

for f e C.(S).
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Gelation and Flory Equation

- Formally, for each i, & (m;, us) = O...
- ..but this isn't allowed because m; & C.(S). In fact, {m, ur) may
decrease, i = 0,...n.
- Interpretation: forming of macroscopic particle (gel) at finite time.
- The unsigned terms (mj, pt) corresponding to momentum vanish if
a symmetry assumption is imposed.
- Smolouchowski equation treats the gel as inert, but this is not
the case for the microscopic dynamics.

- Flory equation, accounting for the gel g; = (m, o — ) > O:

%O’, pe) = (F L)) — | FOOKCGY)pe(dx)(po — pe)(dy). (2)

SxS

- Gelation time
teer := inf{t : g¢ # 0}.
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Main Result: Flory Equation

Under symmetry and with mild technical assumptions on the initial
data po,

1. There exists a unique solution u to the Flory equation
2. ..which is conservative up to and including at

1
largest eigenvalue of Ajj := ((Am)imj, po)

tgel -

3. The second moment &(t) := (¢?, ut) are finite and continuous
except at tyer, and is infinite at tger.

4. gy is differentiable except at tgq, right-differentiable at the
gelation time tge and g{gel+ > 0. Moreover, for some convex
combination ¢; > 0,> ", 6; = 1, it holds that

(91, )0

= <7T0 5 //"0>
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Main Result: Convergence of the Particle System

Under mild assumptions on the initial data X§ = (x1(0), . . ., Xi,(0)(0))
at time 0, corresponding to an initial measure puo,

- The empirical measure pp' := N=" Y7 6y — e, where py is the
unique solution to the Flory equation starting at uo, uniformly in
t >0, in probability and

- If X}'(t) is the largest cluster by m, then

QtN—>Qt

uniformly in time in probability.
- In particular, tge IS the first time a macroscopic cluster appears,

and this cluster contains all of the conserved quantities
escaping to infinity.
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1. Existence and Uniqueness of Flory Equation via truncated
equations on S¢ 1= {x € S: ¢(x) < &}

2. Convergence of the particle system pul — p¢ via tightness &
identification of limit.

3. Convergence of the gel g — g;, which implies tgel = terie and
gives the characterisation of tge.

4. ldentification of tge with

texpl = inf{t > 0: & ¢ L>°([0,1))}.

5. Finiteness of £ on (tge1, 00) by duality argument.
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Facts from Random Graphs

- Coupling to graphs works in the same way as before! Sample
data x¥(0) € S, do not change in dynamics.

- Using Bollobas-Riordan-Jansen, there exists a phase transition

at time tei¢ Where the largest cluster goes from o(N) to ©(N).

- The critical time t.; is given by t_ 1 is the largest eigenvalue of
a certain operator.

- Duality argument: If G) is a supercritical random graph and GV is
formed by deleting the largest cluster, then G{V is subcritical.

- Forany 1< & < N and any t,

LSS (6 - 0in probability 3)

i22:G(GY)>¢n

where C; are the ordered cluster sizes. (i.e. mesoscopic clusters
do not contribute).

1
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- Have convergence (mf, ul') — (mif, ut) when f: S — [0,1] is a
compactly supported bump.
- Under mild assumptions on py,

B(r,m) = Upld {Sgp<w1[<p(><) > 1, mo(x) < r]7utN>} ~0  (4)

as n — oo, r fixed.

- This allows us to trade ‘compactly supported’ f for 1[mo(x) < &),
1< &y < N sufficiently slowly.

- Meanwhile, for the random graphs coupling,

@)~ (o) > ) < 7 S mig(a)+ e (e < &

j22:Gi(G}) =€
which can be shown to — 0 in probability, using Cauchy-Schwarz
and the neglibible mass of mesoscopic clusters.
- Conclude with diagonal argument and tuning &y.
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Ideas of Proof: Second Moment on t <ty

- The connection between blowup and gelation was established
by Norris (2000,2001) assuming that K is approximately
multiplicative, meaning that

Je(x)e(y) < K(x,y) < 67 0(X)e(y)

for some 6 > 0.

- Not immediately applicable because

- Forn <i < n+m,r of mixed sign;

- Cannot get the desired lower bound because of support ‘close to
axes’ where one m;j(x) is small and another is large.

- Strategy: First show that v := mpul satisfies a coagulation

equation for a kernel K™ only involving 7, ..., m,. (Symmetry

considerations).

- Construct v by shifting v by (e, e, ..., €) and cutting out large

values.
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ldeas of Proof: Second Moment on t < tg, 2

- vf live in a space where K™ is approximately multiplicative,

t toel

€ _
expl —

- The second moments (7, ut(6)>, or for solve an automonous

ODE up to the explosion tgi)pl, SO

blowup time = time of existence of ODE.

- Characterisations of both blowup and gelation times are now
continuous in the initial data, so we can take limits of
t€ 1 = Lexpt aNd € — tgel.

exp gel

14
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- Lett > tgq and let {y;} be an enumeration of the vertexes not
belonging to the giant cluster.

- Thanks to the graph duality theorem, af = N='3" 8, converges
to fig := (1 — ki) o-

- The random graph evolution G! for the data {y;} can be
constructed so that, with high probability,

G =GN = GY — largest cluster.

- In particular, G{V is subcritical.

. m(GL.V) — [is a solution to the Flory equation, and t < fgel.

- As a result, pr = fir, which has finite second moments thanks to
the behaviour before gelation!



Back to Interaction clusters




Large Interaction Clusters before the Mean Free Time

1

* How does teel compare t0 tws '= 575comsionrate 7

16



Large Interaction Clusters before the Mean Free Time

1

- How does teel compare t0 tws '= 55comsionrate 7

- Recall ¥(|v]) = a + b|v|?

16



Large Interaction Clusters before the Mean Free Time

* How does tgel cOMPpare t0 tms = gecomsionate .

- Recall ¥(|v]) = a + b|v|?

- For \q the initial velocity distribution, normalised to
(Jv|?, Xo) = 1, the eigenvalue characterisation of tye reduces to
eigenvalues of the matrix

2a+2b  2a+ 2bA,(\o)
2b 2b

which works out to
tt =a+2b++/(a+2b)2 4 4b2(Ay(No) — 1).

gel T

16



Large Interaction Clusters before the Mean Free Time

* How does tgel cOMPpare t0 tms = gecomsionate .

- Recall ¥(|v]) = a + b|v|?

- For \q the initial velocity distribution, normalised to
(Jv|?, Xo) = 1, the eigenvalue characterisation of tye reduces to
eigenvalues of the matrix

2a+2b  2a+ 2bA,(\o)
2b 2b

which works out to
tt =a+2b++/(a+2b)2 4 4b2(Ay(No) — 1).

gel T

- In comparison
t—1=2(a+2b).

16



Large Interaction Clusters before the Mean Free Time

1

- How does teel compare t0 tws '= 55comsionrate 7

- Recall ¥(|v]) = a + b|v|?

- For \q the initial velocity distribution, normalised to
(Jv|?, Xo) = 1, the eigenvalue characterisation of tye reduces to
eigenvalues of the matrix

2a+2b  2a+ 2bA,(\o)
2b 2b

which works out to
tt =a+2b++/(a+2b)2 4 4b2(Ay(No) — 1).

gel T

- In comparison
t—1=2(a+2b).

- So: verified, for toy model, that macroscopic interaction
clusters occur before t,,¢! 16
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