Smoluchowski coagulation equation with a flux of dust particles

Marina Amado Ferreira

CNRS, University of Toulouse

Joint work with: Aleksis Vuoksenmaa (U. Helsinki)

Critical behaviour in spatial particle systems, Berlin, Germany, 30 January 2025

Smoluchowski's coagulation equation 1917 $f_t(x)$ density of clusters of size x > 0 at time $t \ge 0$

$$\partial_t f_t(x) = \mathbb{K}[f](x,t)$$

with

$$\mathbb{K}[f](x,t):=\frac{1}{2}\int_0^x \mathcal{K}(x-y,y)f_t(x-y)f_t(y)dy-\int_0^\infty \mathcal{K}(x,y)f_t(x)f_t(y)dy.$$

• mass-conserving solutions [Banasiak-Lamb-Laurençot 2019]

$$M_1(t) = M_1(0), \text{ with } M_1(t) := \int_0^\infty x f_t(x)$$

- loss of mass-conservation
 - gelling solutions (e.g. K(x, y) = xy)

$$M_1(t) < M_1(0), \quad t > t_*$$

• flux solutions (with a constant flux of mass from zero)

$$M_1(t) > M_1(0), \quad t > 0$$

Applications: coagulation in open systems (input of dust), formation of soot, aerosol growth [Friedlander 2000]

Continuity equation for the mass variable

 $xf_t(x)$ mass variable satisfies the continuity equation (for sufficiently regular f)

$$\partial_t(xf_t(x)) + \partial_x J_{f_t}(x) = 0$$

with the mass flux defined by

$$J_{f_t}(x) = \int_0^x \int_{x-y}^\infty y \, \mathcal{K}(y,z) \, f_t(y) \, f_t(z) \mathrm{d}z \mathrm{d}y$$

mass-conserving solutions

$$J_{f_t}(x) o 0,$$
 as $x o 0$ and $x o \infty$

$$J_{f_t}(x) \rightarrow 1$$
, as $x \rightarrow \infty$

• flux solutions (with a constant mass flux from zero)

 $J_{f_t}(x) \rightarrow 1$, as $x \rightarrow 0$

Long time behaviour for flux solutions Class of kernels: $K(x, y) \approx x^{\gamma+\lambda}y^{-\lambda} + x^{-\lambda}y^{\gamma+\lambda}$

1) Region where coagulation between similar sizes dominates: $|\gamma + 2\lambda| < 1$

 stationary solutions: constant flux solutions [F., Lukkarinen, Nota, Velázquez 2024]

$$J_f(x) = 1$$

There is a power law constant flux solution $f(x) = cx^{-\frac{\gamma+3}{2}}$, but this solution is not always unique.

• self-similar solution for homogeneous kernels $K(cx, cy) = c^{\gamma} K(x, y)$ with zero initial data ($\gamma < 1$) [F., Franco, Velázquez 2022]

$$f_t(x) = \frac{t}{L(t)^2} \Phi\left(\frac{x}{L(t)}\right), \quad L(t) = t^{\frac{2}{1-\gamma}}$$

Expected long time behaviour: convergence towards a constant flux solution in a self-similar manner. [Davies, King, Wattis 1999]

Long time behaviour for flux solutions

Class of kernels: $K(x, y) \approx x^{\gamma+\lambda}y^{-\lambda} + x^{-\lambda}y^{\gamma+\lambda}$

2) Coagulation between particles of different sizes dominates: $|\gamma + 2\lambda| \ge 1$

- No stationary solution exists [F., Lukkarinen, Nota, Velázquez 2021]
- No flux solution is expected to exist

Main goals:

- To construct a flux solution for general initial data for $|\gamma + 2\lambda| < 1$ and $\gamma < 1$.
- To show non-existence of flux solutions if $|\gamma + 2\lambda| > 1$.

Coagulation kernels

We assume that $K \in C(\mathbb{R}^2_*)$ satisfies

$$K(x,y) \geq 0, \quad K(x,y) = K(y,x)$$

 $c_{1}\left(x^{\gamma+\lambda}y^{-\lambda}+y^{\gamma+\lambda}x^{-\lambda}\right) \leq \mathcal{K}\left(x,y\right) \leq c_{2}\left(x^{\gamma+\lambda}y^{-\lambda}+y^{\gamma+\lambda}x^{-\lambda}\right)$

 $\gamma, \lambda \in \mathbb{R}, \quad c_1, c_2 > 0.$

• $\gamma < 1$, (and $\gamma + \lambda, -\lambda < 1$) no gelation, hence

 $M_1(t) = M_1(0) + t$

- $|\gamma + 2\lambda| < 1$ ensures existence of a constant flux solution, $J_f(x) = 1$
- $|\gamma + 2\lambda| \ge 1$, no constant flux solution exists

Motivation:

- *nm* scale: free molecular kernel ($\lambda = 1/2, \gamma = 1/6$) \rightarrow non-existence
- μm scale: diffusion kernel ($\lambda = 1/3, \gamma = 0$) \rightarrow existence

Definition (Flux solution, weak formulation)

A time-dependent measure $f \in C([0, T], \mathcal{M}_+(\mathbb{R}_*))$ is a weak flux solution with initial data $f_0 \in \mathcal{M}_+(\mathbb{R}_*)$ such that $xf_0 \in \mathcal{M}_{+,b}(\mathbb{R}_*)$, in case

(i) $xf \in C([0, T], \mathcal{M}_{+,b}(\mathbb{R}_*))$

(ii) for almost every $(t,z) \in [0,T] imes \mathbb{R}_*$

$$\int_{(0,z]} x f_t(\mathrm{d}x) - \int_{(0,z]} x f_0(\mathrm{d}x) = -\int_0^t J_{f_s}(z) \mathrm{d}s + t \tag{1}$$

where

$$\int_0^t J_{f_s}(z) \mathrm{d}s \coloneqq \int_0^t \iint_{\Omega_z} x \mathcal{K}(x, y) f_s(\mathrm{d}x) f_s(\mathrm{d}y) \mathrm{d}s \tag{2}$$

is finite for all $t \in [0, T]$ and all $z \in \mathbb{R}_*$, with $\Omega_z := \{(x, y) \in \mathbb{R}^2_* : 0 < x \le z, z - x < y\}.$

Properties of flux solutions

Proposition (Coagulation equation with flux boundary condition) Let $\gamma < 1$. Then f satisfies the weak coagulation equation

$$\int_{(0,\infty)} x\varphi(t,x)f_t(dx) = \int_{(0,\infty)} x\varphi(0,x)f_0(dx) + \int_0^t \int_{(0,\infty)} x\partial_s\varphi(s,x)f_s(dx)ds$$
$$+ \frac{1}{2} \int_0^t \int_{(0,\infty)} \int_{(0,\infty)} K(x,y)[(x+y)\varphi(s,x+y) - x\varphi(s,x) - y\varphi(s,y)]f_s(dx)f_s(dy)ds$$

for every $\varphi \in C_c^1([0, T] \times \mathbb{R}_*)$ and almost every $t \in [0, T]$, together with the flux boundary condition (in some weak sense),

$$\int_0^t J_{f_s}(z) \mathrm{d} s o t, ext{ as } z o 0, ext{ a.e. } t \in [0, T].$$

Properties of flux solutions

 $\begin{array}{l} \mbox{Proposition (Mass is linearly increasing)} \\ \mbox{Let } \gamma < 1 \mbox{ and } |\gamma + 2\lambda| < 1. \mbox{ Then,} \end{array}$

$$M_1(t) = M_1(0) + t$$
, a.e. $t \in [0, T]$.

Fix $\varepsilon > 0$ arbitrarily. Since $|\gamma + 2\lambda| < 1$, there is a small positive δ such that

$$J_{f_t}^1(z;\delta) + J_{f_t}^3(z;\delta) \leq \varepsilon C_T.$$

On the other hand, using the upper bound of the kernel, it holds

$$J_{f_t}^2(z;\delta) \leq C \int_{[\frac{\delta}{1+\delta}z,\infty)} x^{\gamma} f_t(dx) \int_{[\frac{\delta}{1+\delta}z,\infty)} x f_t(dx)$$

Since $M_1(f_t) < \infty$, for all $t \in [0, T]$, and $\gamma < 1$, there is a large enough z_* , depending on ε and δ , such that, for all $z > z_*$,

$$J_{f_t}^2(z;\delta) \leq \varepsilon C_T.$$

Properties of flux solutions

- \rightarrow f behaves like a constant flux solution near zero
 - Upper bound

$$\int_0^t \frac{1}{R} \int_{[R/2,R]} f_s(\mathrm{d} x) \mathrm{d} s \leq \frac{1}{R^{\frac{\gamma+3}{2}}} C_t(t + M_1(f_0)), \quad R > 0$$

Asymptotic lower bound

For each t there is a constant $\delta > 0$ and a constant b, satisfying 0 < b < 1, such that,

$$\left(\int_0^t \left(\frac{1}{R}\int_{(bR,R]} f_s(dx)\right)^2 ds\right)^{\frac{1}{2}} \geq \frac{1}{R^{\frac{\gamma+3}{2}}}C_{t,b}, \quad R \in \left(0,\frac{\delta}{\sqrt{b}}\right)$$

 \rightarrow no dust in the system

$$\int_0^t \int_{(0,x_0]} x f_s(\mathrm{d} x) \mathrm{d} s \leq C_T x_0^{\frac{1-\gamma}{2}}.$$

Existence of flux solutions

Theorem

Assume that $|\gamma + 2\lambda| < 1$ and $\gamma < 1$. Given an initial data $f_0 \in \mathcal{M}_+(\mathbb{R}_*)$ such that the mass measure satisfies $xf_0 \in \mathcal{M}_{+,b}(\mathbb{R}_*)$, there exists a weak flux solution in the sense of the Definition.

Proposition (Coagulation equation with constant-in-time source term)

Assume that $-\lambda, \gamma + \lambda < 1$. Let $f_0 \in \mathcal{M}_{+,b}(\mathbb{R}_*)$ be the initial data, with $\operatorname{spt}(f_0) \subset [a, 2a]$ for some a > 0. Assume that $\eta \in \mathcal{M}_{+,b}(\mathbb{R}_*)$ is a source term with $\operatorname{spt}(\eta) \subset [a, 2a]$. Then, for every T > 0, there exists a weak solution $f \in C([0, T], \mathcal{M}_+(\mathbb{R}_*))$ to the coagulation equation with source

$$\partial_t f_t = \frac{1}{2} \int_0^x \mathcal{K}(x-y,y) f_t(x-y) f_t(y) \mathrm{d}y + \int_0^\infty \mathcal{K}(x,y) f_t(x) f_t(y) \mathrm{d}y + \eta(x).$$

[Escobedo, Mishler 2006] time-dependent source, homogeneous kernels with $\gamma \in [0,1)$

Remark: Interestingly, solutions with source also exist for $|\gamma + 2\lambda| \ge 1$. [Cristian, F., Franco, Nota, Lukkarinen, Velázquez 2023]

Construction of a flux solution

- For each $\varepsilon \in (0, 1)$, let f^{ε} be a solution to the coagulation equation with source $\eta_{\varepsilon} = \frac{1}{\varepsilon} \delta_{\varepsilon}$ and initial data $f_0|_{[\varepsilon, +\infty)}$
- For each *M* ∈ N, consider the family of the solutions restricted to the closed interval *I_M* = [2^{-M}, 2^M].

Construction of a diagonal sequence

Ο ...

- M = 1, by compactness we find a limit point F¹ and a sequence (ε_i)[∞]_{i=1} such that xf^{ε_i}|_{I₁} → F¹.
- M = 2, by compactness we find a limit point F^2 and a subsequence $(\varepsilon_{i_k})_{k=1}^{\infty}$ such that $x f^{\varepsilon_{i_k}}|_{I_2} \to F^2$. Moreover, $F^2|_{I_1} = F^1$.

Candidate solution as the limit of a diagonal subsequence

Take a diagonal subsequence (ε(i))_{i=1}[∞] and a limiting function F_t, defined pointwise in time by

$$\langle \varphi, F_t
angle = \lim_{i \to \infty} \left\langle \varphi, x f^{\varepsilon(i)} |_{I_i} \right\rangle, \quad \varphi \in C_c(\mathbb{R}_*)$$

- $t \mapsto F_t$ is continuous
- canditate solution: $f \in C([0, T], \mathcal{M}_{+,b}(\mathbb{R}_*))$, such that xf = F.
- Final step: Show that *f* verifies the flux equation in the sense of the Definition.

Long time behaviour for the constant kernel

Theorem

If the coagulation kernel is constant, $K(x, y) \equiv 2$, there exists a unique solution f_t to the flux equation with the initial data $f_0 = 0$. This solution converges weakly as a measure on \mathbb{R}_* to the stationary solution of the flux equation, i.e.,

$$f_t(\mathrm{d} x) o rac{1}{\sqrt{2\pi}} x^{-rac{3}{2}} \mathrm{d} x, \quad t o \infty.$$

The proof relies on the use of the Bernstein transform $B_{f_t}(\lambda) = \int_{\mathbb{R}_*} (1 - e^{-\lambda x}) f_t(dx).$

Non-existence

Theorem

If $|\gamma + 2\lambda| > 1$ then there are no flux solutions in the sense of the definition.

Proof by contradiction. The idea is use an upper estimate for the moments $\gamma + \lambda$ and $-\lambda$ near the origin and the fact that $|\gamma + 2\lambda| > 1$ to prove that $J \to 0$ as $z \to 0$, which contradicts $J \to 1$,

$$\begin{split} &\int_0^t \int_{(0,z]} \int_{(z-x,\infty)} x \mathcal{K}(x,y) f_{\mathfrak{s}}(dy) f_{\mathfrak{s}}(dx) ds \leq \\ &\leq \int_0^t \int_{(0,z]} (x^{1+\gamma+\lambda} + x^{1-\lambda}) f_{\mathfrak{s}}(dx) \int_{(0,\infty)} (x^{\gamma+\lambda} + x^{-\lambda}) f_{\mathfrak{s}}(dy) ds \\ &\leq \int_0^t \int_{(0,z]} (x^{\gamma+\lambda} + x^{-\lambda}) f_{\mathfrak{s}}(dx) \int_{(0,\infty)} (x^{\gamma+\lambda} + x^{-\lambda}) f_{\mathfrak{s}}(dy) ds \\ &\leq C_T z^{\frac{2\mu-1-\gamma}{2}}, \quad \mu = \min\{\gamma+\lambda, -\lambda\} \end{split}$$

Therefore, taking $z \rightarrow 0$ yields the result.

Thank you for your attention!