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Smoluchowski’s coagulation equation 1917
ft(x) density of clusters of size x > 0 at time t ≥ 0

∂t ft(x) = K[f ](x , t)
with

K[f ](x , t) := 1
2

∫ x

0
K(x − y , y)ft(x − y)ft(y)dy −

∫ ∞

0
K(x , y)ft(x)ft(y)dy .

mass-conserving solutions [Banasiak-Lamb-Laurençot 2019]

M1(t) = M1(0), with M1(t) :=
∫ ∞

0
xft(x)

loss of mass-conservation
gelling solutions (e.g. K (x , y) = xy)

M1(t) < M1(0), t > t∗

flux solutions (with a constant flux of mass from zero)

M1(t) > M1(0), t > 0

Applications: coagulation in open systems (input of dust), formation of soot,
aerosol growth [Friedlander 2000]



Continuity equation for the mass variable
xft(x) mass variable satisfies the continuity equation (for sufficiently regular f )

∂t(xft(x)) + ∂x Jft (x) = 0
with the mass flux defined by

Jft (x) =
∫ x

0

∫ ∞

x−y
y K(y , z) ft(y) ft(z)dzdy

mass-conserving solutions

Jft (x) → 0, as x → 0 and x → ∞

gelling solutions (with mass flux leaving at infinity)

Jft (x) → 1, as x → ∞ (gel)

flux solutions (with a constant mass flux from zero)

Jft (x) → 1, as x → 0 (dust)



Long time behaviour for flux solutions
Class of kernels: K (x , y) ≈ xγ+λy−λ + x−λyγ+λ

1) Region where coagulation between similar sizes dominates: |γ + 2λ| < 1

stationary solutions: constant flux solutions
[F., Lukkarinen, Nota, Velázquez 2024]

Jf (x) = 1

There is a power law constant flux solution f (x) = cx− γ+3
2 ,

but this solution is not always unique.

(gel)(dust)

self-similar solution for homogeneous kernels
K(cx , cy) = cγK(x , y) with zero initial data (γ < 1)
[F., Franco, Velázquez 2022]

ft(x) = t
L(t)2 Φ

(
x

L(t)

)
, L(t) = t

2
1−γ

(dust)

Expected long time behaviour: convergence towards a constant flux solution in
a self-similar manner. [Davies, King, Wattis 1999]



Long time behaviour for flux solutions

Class of kernels: K (x , y) ≈ xγ+λy−λ + x−λyγ+λ

2) Coagulation between particles of different sizes dominates: |γ + 2λ| ≥ 1

No stationary solution exists [F., Lukkarinen, Nota, Velázquez 2021]

No flux solution is expected to exist

Main goals:

To construct a flux solution for general initial data for |γ + 2λ| < 1 and γ < 1.

To show non-existence of flux solutions if |γ + 2λ| > 1.



Coagulation kernels
We assume that K ∈ C(R2

∗) satisfies

K (x , y) ≥ 0, K (x , y) = K (y , x)

c1
(
xγ+λy−λ + yγ+λx−λ

)
≤ K (x , y) ≤ c2

(
xγ+λy−λ + yγ+λx−λ

)
γ, λ ∈ R, c1, c2 > 0.

γ < 1, (and γ + λ, −λ < 1) no gelation, hence

M1(t) = M1(0) + t

|γ + 2λ| < 1 ensures existence of a constant flux solution, Jf (x) = 1
|γ + 2λ| ≥ 1, no constant flux solution exists

Motivation:
nm scale: free molecular kernel (λ = 1/2, γ = 1/6) → non-existence
µm scale: diffusion kernel (λ = 1/3, γ = 0) → existence



Definition (Flux solution, weak formulation)
A time-dependent measure f ∈ C([0, T ], M+(R∗)) is a weak flux solution with
initial data f0 ∈ M+(R∗) such that xf0 ∈ M+,b(R∗), in case

(i) xf ∈ C([0, T ], M+,b(R∗))

(ii) for almost every (t, z) ∈ [0, T ] × R∗∫
(0,z]

xft(dx) −
∫

(0,z]
xf0(dx) = −

∫ t

0
Jfs (z)ds + t (1)

where ∫ t

0
Jfs (z)ds :=

∫ t

0

∫∫
Ωz

xK (x , y)fs(dx)fs(dy)ds (2)

is finite for all t ∈ [0, T ] and all z ∈ R∗, with
Ωz := {(x , y) ∈ R2

∗ : 0 < x ≤ z , z − x < y}.



Properties of flux solutions

Proposition (Coagulation equation with flux boundary condition)
Let γ < 1. Then f satisfies the weak coagulation equation∫

(0,∞)
xφ(t, x)ft(dx) =

∫
(0,∞)

xφ(0, x)f0(dx) +
∫ t

0

∫
(0,∞)

x∂sφ(s, x)fs(dx)ds

+ 1
2

∫ t

0

∫
(0,∞)

∫
(0,∞)

K (x , y)[(x + y)φ(s, x + y) − xφ(s, x) − yφ(s, y)]fs(dx)fs(dy)ds

for every φ ∈ C1
c ([0, T ] × R∗) and almost every t ∈ [0, T ], together with the flux

boundary condition (in some weak sense),∫ t

0
Jfs (z)ds → t, as z → 0, a.e. t ∈ [0, T ].



Properties of flux solutions
Proposition (Mass is linearly increasing)
Let γ < 1 and |γ + 2λ| < 1. Then,

M1(t) = M1(0) + t, a.e. t ∈ [0, T ].

Fix ε > 0 arbitrarily. Since |γ + 2λ| < 1, there is a small positive δ such that

J1
ft
(z ; δ) + J3

ft
(z ; δ) ≤ εCT .

On the other hand, using the upper bound of the kernel, it holds

J2
ft
(z ; δ) ≤ C

∫
[ δ

1+δ z,∞)
xγ ft(dx)

∫
[ δ

1+δ z,∞)
xft(dx)

Since M1(ft) < ∞, for all t ∈ [0, T ], and γ < 1, there is a large enough z∗,
depending on ε and δ, such that, for all z > z∗,

J2
ft
(z ; δ) ≤ εCT .



Properties of flux solutions

→ f behaves like a constant flux solution near zero
Upper bound∫ t

0

1
R

∫
[R/2,R]

fs(dx)ds ≤ 1
R γ+3

2
Ct(t + M1(f0)), R > 0

Asymptotic lower bound
For each t there is a constant δ > 0 and a constant b, satisfying 0 < b < 1,
such that,∫ t

0

(
1
R

∫
(bR,R]

fs(dx)
)2

ds

 1
2

≥ 1
R γ+3

2
Ct,b, R ∈

(
0,

δ√
b

)

→ no dust in the system ∫ t

0

∫
(0,x0]

xfs(dx)ds ≤ CT x
1−γ

2
0 .



Existence of flux solutions
Theorem
Assume that |γ + 2λ| < 1 and γ < 1. Given an initial data f0 ∈ M+(R∗) such that
the mass measure satisfies xf0 ∈ M+,b(R∗), there exists a weak flux solution in the
sense of the Definition.

Proposition (Coagulation equation with constant-in-time source term)

Assume that −λ, γ + λ < 1. Let f0 ∈ M+,b(R∗) be the initial data, with
spt(f0) ⊂ [a, 2a] for some a > 0. Assume that η ∈ M+,b(R∗) is a source term with
spt(η) ⊂ [a, 2a]. Then, for every T > 0, there exists a weak solution
f ∈ C([0, T ], M+(R∗)) to the coagulation equation with source

∂t ft = 1
2

∫ x

0
K (x − y , y)ft(x − y)ft(y)dy +

∫ ∞

0
K (x , y)ft(x)ft(y)dy + η(x).

[Escobedo, Mishler 2006] time-dependent source, homogeneous kernels with γ ∈ [0, 1)

Remark: Interestingly, solutions with source also exist for |γ + 2λ| ≥ 1.
[Cristian, F., Franco, Nota, Lukkarinen, Velázquez 2023]



Construction of a flux solution

For each ε ∈ (0, 1), let f ε be a solution to the coagulation equation with
source ηε = 1

ε δε and initial data f0|[ε,+∞)

For each M ∈ N, consider the family of the solutions restricted to the closed
interval IM = [2−M , 2M ].

Construction of a diagonal sequence

M = 1, by compactness we find a limit point F 1 and a sequence (εi)∞
i=1 such

that xf εi |I1 → F 1.

M = 2, by compactness we find a limit point F 2 and a subsequence (εik )∞
k=1

such that xf εik |I2 → F 2. Moreover, F 2|I1 = F 1.

...



Candidate solution as the limit of a diagonal subsequence

Take a diagonal subsequence (ε(i))∞
i=1 and a limiting function Ft , defined

pointwise in time by

⟨φ, Ft⟩ = lim
i→∞

〈
φ, xf ε(i)|Ii

〉
, φ ∈ Cc(R∗)

t 7→ Ft is continuous

canditate solution: f ∈ C([0, T ], M+,b(R∗)), such that xf = F .

Final step: Show that f verifies the flux equation in the sense of the
Definition.



Long time behaviour for the constant kernel

Theorem
If the coagulation kernel is constant, K (x , y) ≡ 2, there exists a unique solution ft
to the flux equation with the initial data f0 = 0. This solution converges weakly as
a measure on R∗ to the stationary solution of the flux equation, i.e.,

ft(dx) → 1√
2π

x− 3
2 dx , t → ∞.

The proof relies on the use of the Bernstein transform
Bft (λ) =

∫
R∗

(1 − e−λx )ft(dx).



Non-existence

Theorem
If |γ + 2λ| > 1 then there are no flux solutions in the sense of the definition.

Proof by contradiction. The idea is use an upper estimate for the moments γ + λ
and −λ near the origin and the fact that |γ + 2λ| > 1 to prove that J → 0 as
z → 0, which contradicts J → 1,∫ t

0

∫
(0,z]

∫
(z−x ,∞)

xK (x , y)fs(dy)fs(dx)ds ≤

≤
∫ t

0

∫
(0,z]

(x1+γ+λ + x1−λ)fs(dx)
∫

(0,∞)
(xγ+λ + x−λ)fs(dy)ds

≤
∫ t

0

∫
(0,z]

(xγ+λ + x−λ)fs(dx)
∫

(0,∞)
(xγ+λ + x−λ)fs(dy)ds

≤ CT z
2µ−1−γ

2 , µ = min{γ + λ, −λ}

Therefore, taking z → 0 yields the result.



Thank you for your attention!


