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Smoluchowski's coagulation equation 1917
ft(x) density of clusters of size x > 0 at time t >0

Ofe(x) = K[f](x, t)
with
1 X oo
KIF(x, 1) = 5 / KO =y, y)flx = )y )dy / K, )R ()il )dy.
0 0
@ mass-conserving solutions [Banasiak-Lamb-Laurengot 2019]
My (t) = M1(0), with My(t) ::/ xf(x)
0
@ loss of mass-conservation
o gelling solutions (e.g. K(x,y) = xy)
My(t) < My(0), t>t.
o flux solutions (with a constant flux of mass from zero)
M (t) > My(0), t>0

Applications: coagulation in open systems (input of dust), formation of soot,
aerosol growth [Friedlander 2000]



Continuity equation for the mass variable
xfy(x) mass variable satisfies the continuity equation (for sufficiently regular f)

O (xr(x)) + OxJr(x) = 0

with the mass flux defined by

() = / ’ / Ky, 2) fily) fi(2)dzdy

@ mass-conserving solutions é".

Ji(x) -0, a x—0 and x— o0

@ gelling solutions (with mass flux leaving at infinity) . ..>_’.
L

Je(x) = 1, as x — o0 (gel

@ flux solutions (with a constant mass flux from zero)

B \)é—».
(dust

Jr(x) =1, asx =0




Long time behaviour for flux solutions
Class of kernels: K(x,y) m x7y=* 4 x=Ay7+A

1) Region where coagulation between similar sizes dominates: |y +2\| < 1

@ stationary solutions: constant flux solutions
[F., Lukkarinen, Nota, Veldzquez 2024]

Jr(x)=1 TS —3
f( ) (dust é—’. gel)

f . a3
There is a power law constant flux solution f(x) = cx™ "2,

but this solution is not always unique.

@ self-similar solution for homogeneous kernels
K(ex, cy) = ¢7K(x,y) with zero initial data (y < 1)
[F., Franco, Velazquez 2022]

t X 2
0= g (g ) 0= o7

Expected long time behaviour: convergence towards a constant flux solution in
a self-similar manner. [Davies, King, Wattis 1999]

i@ ®




Long time behaviour for flux solutions

Class of kernels: K(x,y) ~ x7tAy=A 4 x=Ay7+A

2) Coagulation between particles of different sizes dominates: |y + 2| > 1
@ No stationary solution exists [F., Lukkarinen, Nota, Velazquez 2021]

@ No flux solution is expected to exist

Main goals:
@ To construct a flux solution for general initial data for |y +2\| < 1 and v < 1.

@ To show non-existence of flux solutions if |y +2X| > 1.



Coagulation kernels
We assume that K € C(R?) satisfies

K(x,y) 20, K(x,y)=Kl(y,x)
a (X7+)‘y7/\ er’er)\X*)‘) <K (va) < 6 (X"/JrAyf)\ +y7+’\x’)‘)

’Y,/\ER, c,c > 0.
@ y<1, (and v+ X, —X < 1) no gelation, hence
My(t) = My(0) + t

@ |y + 2)\| < 1 ensures existence of a constant flux solution, Js(x) =1

® |y + 2\ > 1, no constant flux solution exists

Motivation:
@ nm scale: free molecular kernel (A = 1/2, v = 1/6) — non-existence

@ um scale: diffusion kernel (A =1/3, v = 0) — existence



Definition (Flux solution, weak formulation)

A time-dependent measure £ € C([0, T], M (R,)) is a weak flux solution with
initial data fp € M (R,) such that xfy € M ,(R,), in case

(i) xf € C([O, T]7M+,b(R*))
(i) for almost every (t,z) € [0, T] x R,

/(072] xfy(dx) — /(0 ] xfo(dx) / Je(z)ds + t (1)
where
/otst(Z)ds = /Ot//Q xK(x, y)f:(dx)£(dy)ds )

is finite for all t € [0, T] and all z € R,,, with
Q ={(x,y) ER2:0<x<z,z—x < y}.



Properties of flux solutions

Proposition (Coagulation equation with flux boundary condition)

Let v < 1. Then f satisfies the weak coagulation equation
t
/ sl e = / xp(0, x)fo(dx) + / / el e
(0,00) (0,00) 0 J(0,00)
1 t
w3 [ KGO e xt ) = xels )~ els (@A)
0 0,00 0,00

for every p € C1([0, T] x R,) and almost every t € [0, T], together with the flux
boundary condition (in some weak sense),

t
/ Jr(z)ds - t, asz— 0, ae tel0,T].
0



Properties of flux solutions

Proposition (Mass is linearly increasing)
Let v <1 and |y +2A| < 1. Then,

Mi(t) = My(0) +¢t, ae te][0,T]

Fix € > 0 arbitrarily. Since |y + 2A| < 1, there is a small positive 0 such that
JE(2:0) + J(2,6) < eCr.

On the other hand, using the upper bound of the kernel, it holds

J(z;6) < c/

[ri52,00)

X’th(dx)/ xfy(dx)
[r$52,00)

Since My(f;) < oo, for all t € [0, T], and v < 1, there is a large enough z,,
depending on ¢ and 9, such that, for all z > z,,

J%(z; §) <eCr.



Properties of flux solutions

— f behaves like a constant flux solution near zero

@ Upper bound
t1 1
o R Jir2R) Rz
@ Asymptotic lower bound

For each t there is a constant 6 > 0 and a constant b, satisfying 0 < b < 1,
such that,

2 b
t 1/ 1 ( 5)
= f(dx) | ds| > —5GCs Re(0,—=
/o (R (bR,R] ( )> R% P Vb

— no dust in the system

t 1—y
/ / xfs(dx)ds < Crxy 2 .
0 (O,XD]



Existence of flux solutions
Theorem

Assume that |y + 2\ < 1 and v < 1. Given an initial data fo € M (R,) such that
the mass measure satisfies xfo € M. p(R,), there exists a weak flux solution in the
sense of the Definition.

Proposition (Coagulation equation with constant-in-time source term)

Assume that —A, v+ A < 1. Let f € M ,(R,) be the initial data, with

spt(fy) C [a,2a] for some a > 0. Assume that n € M ,(R,) is a source term with
spt(n) C [a,2a]. Then, for every T > 0, there exists a weak solution

f e C([0, T], M (R,)) to the coagulation equation with source

oo

Oify = ;/OX K(x =y, y)fe(x = y)fe(y)dy + /0 K(x, y)fe(x)fe(y)dy + n(x).

[Escobedo, Mishler 2006] time-dependent source, homogeneous kernels with v € [0, 1)

Remark: Interestingly, solutions with source also exist for |y 4+ 2\| > 1.
[Cristian, F., Franco, Nota, Lukkarinen, Velazquez 2023]



Construction of a flux solution

@ For each £ € (0,1), let ¢ be a solution to the coagulation equation with
source 1. = 16, and initial data ol 1 o0)

@ For each M € N, consider the family of the solutions restricted to the closed
interval Iy = [2=M 2M].

Construction of a diagonal sequence

@ M =1, by compactness we find a limit point F! and a sequence (¢;)%°; such
that xf<|, — F'.

@ M =2, by compactness we find a limit point F? and a subsequence (i )74
such that xf®i|, — F2. Moreover, F?|, = F*.



Candidate solution as the limit of a diagonal subsequence

@ Take a diagonal subsequence (£(7))$2; and a limiting function F;, defined
pointwise in time by

(o, Fe) = Jim (0,xF 0]}, ¢ € C(R.)
@ t — F; is continuous

@ canditate solution: f € C([0, T], M4 ,(R,)), such that xf = F.

@ Final step: Show that f verifies the flux equation in the sense of the
Definition.



Long time behaviour for the constant kernel

Theorem

If the coagulation kernel is constant, K(x,y) = 2, there exists a unique solution f;
to the flux equation with the initial data fy = 0. This solution converges weakly as
a measure on R, to the stationary solution of the flux equation, i.e.,
1 s
fi(dx) = —x"2dx, t— oo.

V2r

The proof relies on the use of the Bernstein transform
Br(\) = [p. (1 — e )fi(dx).



Non-existence

Theorem
If |y + 2| > 1 then there are no flux solutions in the sense of the definition.

Proof by contradiction. The idea is use an upper estimate for the moments v + A
and — A\ near the origin and the fact that |y + 2A| > 1 to prove that J — 0 as
z — 0, which contradicts J — 1,

t
[ seontianiiods <
0 J(0,z] J(z—x,00)
t
< / / (x4 1MV (d) / (7 4 x )£ (dy)ds
(0,2] (0,00)

/ / (T 4 x )fs(dx)/ (7 + x N f(dy)ds
(0,2] (0,00)

< Crzm =min{y + A, =)}

Therefore, taking z — 0 yields the result.



Non-existence

Existence

=

Thank you for your attention!




