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Spatial coagulation processes
Particles with position and mass (total mass ∝ N, S Polish space)(

X (N)

i (t),M (N)

i (t)
)
∈ S × N

Coagulation:

(xi , mi )

(xj , mj )

K((xi , mi ), (xj , mj ), dx̄)
(x̄, mi + mj )

Empirical measure of the system:

µ
(N)
t : =

1
N

∑
i

δ(
X (N)

i (t),M(N)
i (t)

) ∈M(S × N).

Phase transition: gelation

One particle (or more) of mass ∼ N in a finite time.
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LLN: from microscopic to macroscopic description

Under certain assumptions on K (usually K ≤ Cm n) the hydrodynamic limit is
known:

{µN
t }t∈[0,T ] −→ {n(·, t)}t∈[0,T ]

{n(·, t)}t∈[0,T ] is solution to the Smoluchowski coagulation equation or a
modification of it (Flory equation).

• No spatial component [NORRIS 1999], [FOURNIER, GIET 2004].

• Cluster coagulation process [NORRIS (2000), A., IYER, MAGNANINI (2023)].

• Particles also diffusing in Rd [HAMMOND, REZAKHANLOU (2007)].

Remark: uniqueness of solutions of the limiting equation is not always ensured (i.e. not
always implies LLN).
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One very special case: K (m,n) = m n

Initial condition with N particles of mass 1: µN
0 = δ1.

Collection of sizes Sizes of connected components
of particles ←→ of Erdős-Rènyi graph

at any time t G(N, 1− e−
t
N )

Initial condition with N particles with general sizes: µN
0 = 1

N
∑

i δMN
i (0).

Collection of sizes Function of the connected components
of particles ←→ of an inhomogeneous random graph

at any time t G(µN
0 , κN)

Can we get an LDP for the components of the inhomogeneous random graph?
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t
N m n
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Rare events in sparse random graphs

Sparse graph: #{ edges } ∝ #{ vertices }
G(N, λ

N )

Microscopic components: empirical neighbourhood distribution and local weak
convergence

- BORDENAVE, CAPUTO (2015): uniform graph with a given degree, G(n, m), G(n, λ
n );

- BALDASSO, OLIVEIRA, PEREIRA, REIS (2022): G(n, m), G(n, λ
n ) with independent marks;

- RAMANAN, YASODHARAN (2024): entropy form for the rate function.

Macroscopic components: largest components
- O’CONNELL (1998): largest component of G(n, λ

n );

- PUHALSKII (2005): large components of G(n, λ
n ) via large deviations of the exploration;

- BHAMIDI, BUDHIRAJA, DUPUIS, WU (2020): rare events for large components in configuration
model;

- JORRITSMA, KOMJÁTHY, MITSCHE (2024), JORRITSMA, ZWART (2024): largest component in
spatial and scale-free graphs.

Probability of rare events are on the same scale ∼ e−N[... ]+o(N):
• microscopic components
• macroscopic components
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LDP for the sparse inhomogeneous random graph

- S a compact metric space: the type space;

- µ ∈M(S) a probability on S;

- xN = (x1, . . . , xN) ∈ SN vector of vertices’ type

µN : =
1
N

N∑
i=1

δxi → µ;

- a continuous symmetric kernel κ : S × S → R+.

The sparse inhomogeneous random graph G(N, xN , κ) is such that there is an edge
between vertices i and j with probability that depends on their types:

i ∼ j with probability
κ(xi , xj )

N
∧ 1.
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Counting microscopic and macroscopic components (S finite)

Ci connected component of G(N, xN , κ)→ types(Ci ) ∈ NS .

Microscopic empirical measure:

MiN =
1
N

∑
j

δtypes(Cj )

where (Cj )j are the connected components of G(N, xN , κ).

MiN ∈ M(NS)

∀λ ∈ M(NS) c(λ)(r) : =
∑

k∈NS
kr λk ∀r ∈ S Integrated type configuration of λ

MaN ∈ MN0 ((0, 1]S)

∀α ∈ MN0 ((0, 1]S) c(α)(·) : =

∫
(0,1]S

y(·)α(dy) Integrated type configuration of α
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The large deviation principle
Theorem (A., König, Langhammer, Patterson (2023))
The pair of measures (MiN ,MaN) satisfies a large deviations principle with speed N
and explicitly given rate function

I(λ, α) = IMi(λ) + IMa(α) + IMe(µ− c(λ)− c(α)).

P((MiN ,MaN) ≈ (λ, α)) = e−N I(λ,α)+o(N)

IMi(λ) =
∑

k∈NS

λk log

 λk

τ(k)e1−|k| ∏
r
µ

kr
r

kr !

+,

IMa(α) =

∫
M(S)\{0}

α(dy)
(〈

y , log
y

(1− e−κy )µ

〉
+

1
2
⟨y , κ(µ− y)⟩

)
,

IMe(ν) =
〈
ν, log

ν

(κν)µ

〉
+

1
2
⟨ν, κµ⟩.

• Spotting the phase transition: look for minimizers of

∑
k∈NS

λk log

 λk

τ(k)e1−|k| ∏
r
µ

kr
r

kr !


No minimizer with c(λ) = µ → ∃ giant component!
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• Spotting the phase transition: look for minimizers of

∑
k∈NS

λk log

 λk

τ(k)e1−|k| ∏
r
µ

kr
r

kr !


No minimizer with c(λ) = µ → ∃ giant component!
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Main ingredients for the proof
S finite

Let L(N)
k : = #{j : types(Cj ) = k} ∀ k ∈ NS

Lemma
For any N ∈ N and for any ℓ = (ℓk )k we have that

P
(

L(N)
k = ℓk , ∀k

)
= Explicit terms(ℓ,N)×

∏
k≤NµN

pN(k)ℓk

ℓk !
,

where for any k ∈ NS :

pN(k) = P
(
G(|k |, x, 1

N κ) is connected
)
, N ∈ N.

We fix R <∞ and ϵ > 0.

For any pair (λ, α)

P
(
(MiN ,MaN) ≃(λ, α)

)
≃ Explicit terms(ℓ,N)×

∏
|k|≤R

pN(k)ℓk

ℓk !

∏
|k|≥ϵN

pN(k)ℓk

ℓk !

∏
otherwise

pN(k)ℓk

ℓk !
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LDP for spatial coagulation process
[A., KÖNIG, LANGHAMMER, PATTERSON (2024)]

Poisson monodisperse initial condition: for µ ∈M1(S)

µ
(N)
0 : =

1
N

∑
i

δ(Xi ,1),

where (Xi ) ∼ Poisson Point Process on S with intensity measure Nµ (PoiNµ).

We are interested in describing, under P(N)

PoiNµ
(·),

µ
(N)
T ∈M(S × N).

(Xi (T ), Mi (T )) ∈ S × N

0

T

S

Ξi∈ Γ
(1)
T binary tree
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Description via binary trees

Γ
(1)
T set of binary trees embedded in [0,T ]: a subset of D([0,T ],M(S × N)).

The empirical measure on trees is

V(T )
N : =

1
N

∑
i

δΞi ∈M(Γ
(1)
T ).
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Description via binary trees

Γ
(1)
T set of binary trees embedded in [0,T ].

ξ ∈ Γ
(1)
T

ξ0 ∈ MN0
(S)
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Description via binary trees

Γ
(1)
T set of binary trees embedded in [0,T ].

The empirical measure on trees is

V(T )
N : =

1
N

∑
i

δΞi ∈M(Γ
(1)
T ).

N
∫
ξ0V

(T )
N (dξ) ∈MN0 (S)

⇒ initial distribution of points in S
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The empirical measure at time t ≤ T

Projection at time t
For t ∈ [0, T ], take the function

ρt : M(Γ
(1)
T ) → M(S × N)

ν(T ) 7→ ρt (ν
(T )) : =

∫
ν(T )(dξ) ξt

t

0

T

No gelation at time T : full mass of ρt(ν
(T ))

⟨m, ρt (ν
(T ))⟩ ≡ 1, ∀t ∈ [0,T ].

For any fixed N
E
[
⟨m, ρt (V (T )

N )⟩
]
≡ 1, ∀t ∈ [0,T ]
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Does the law of V(T )
N satisfy a large deviations principle?

P(N)

PoiNµ
(V(T )

N ∈ dν) ≈ e−NI(ν)+o(N)

Theorem [A., KÖNIG, LANGHAMMER, PATTERSON, 2024]

For ν ∈M(Γ
(1)
T )

P(N)

PoiNµ
(V(T )

N ∈ dν) = exp
{
−

1
2N

∑
i ̸=j

R(T )(ξi , ξj )
}
P(N)

NM(T )
µ,N

(
Y
N
∈ dν

)

where Y is a Poisson Point process on the space Γ
(1)
T with intensity measure NM (T )

µ,N .

For any ξ, ξ′ ∈ Γ(1)
T ,

R(T )(ξ, ξ′) =

∫ T

0
dt

∑
m,m′∈N

∫
S
ξt (dx ,m)

∫
S
ξ′t (dx ′,m′)K

(
(x ,m), (x ′,m′)

)
.

Interpretation:
a many bodies system with interaction R.
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The intensity measure of Y

...and its limit

Y =
∑

i δΞi ∼ Poi
NM(T )

µ,N
, where

M (T )

µ,N(dξ) = N|ξ0|−1ePoiµ ⊗ P(N)(dξ), ξ ∈ Γ(1)
T .

• For ξ0 = k , k ∈MN0 (S),

Poiµ ⊗ P(N)(dξ) = Poiµ(dk)P(N)

k (dξ)

where P(N)

k (dξ) is the law of a coagulation process with initial condition k .

• For all K ≤ Hm · n, all k ∈MN0 (S),

Q(T )

k (dξ) : = limN→∞ M (T )

µ,N(dξ) ξ ∈ Γ(1)
T , ξ0 = k

τ
(T )

k : = limN→∞ M (T )

µ,N(Γ
(1)
T ∩ {ξ0 = k}) = Q(T )

k (Γ(1)
T ) ∈ (0,∞).
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k (dξ) is the law of a coagulation process with initial condition k .

• For all K ≤ Hm · n, all k ∈MN0 (S),

Q(T )

k (dξ) : = limN→∞ M (T )

µ,N(dξ) ξ ∈ Γ(1)
T , ξ0 = k

τ
(T )

k : = limN→∞ M (T )

µ,N(Γ
(1)
T ∩ {ξ0 = k}) = Q(T )

k (Γ(1)
T ) ∈ (0,∞).
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The intensity measure of Y
...and its limit

Y =
∑

i δΞi ∼ Poi
NM(T )

µ,N
, where

M (T )

µ,N(dξ) = N|k|−1ePoiµ(dk)P(N)

k (dξ), ξ ∈ Γ(1)
T , ξ0 = k , k ∈MN0 (S).

• For ξ0 = k , k ∈MN0 (S),

Poiµ ⊗ P(N)(dξ) = Poiµ(dk)P(N)

k (dξ)

where P(N)

k (dξ) is the law of a coagulation process with initial condition k .

• For all K ≤ Hm · n, all k ∈MN0 (S),

Q(T )

k (dξ) : = limN→∞ M (T )

µ,N(dξ) ξ ∈ Γ(1)
T , ξ0 = k

τ
(T )

k : = limN→∞ M (T )

µ,N(Γ
(1)
T ∩ {ξ0 = k}) = Q(T )

k (Γ(1)
T ) ∈ (0,∞).

Explicit expression for Q(T )

k and τ
(T )

k .
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To be continued...
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