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Spatial coagulation processes

Particles with position and mass (total mass « N, S Polish space)

(X,(N)(t), M}’V’(t)) €SxN
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Spatial coagulation processes

Particles with position and mass (total mass « N, S Polish space)

( ™) (f), M ())e$xN

Coagulation:
Xis mi) : :
O ‘ O O 1NK((X/':mi)v(va’"/')’d)_()\ O (X73m8 .
O ’ °
O (xj, mj) ©

Empirical measure of the system:

t : NZ5X<N N)(I) EM(SXN).

Phase transition: gelation

One particle (or more) of mass ~ N in a finite time.
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LLN: from microscopic to macroscopic description

Under certain assumptions on K (usually K < Cm n) the hydrodynamic limit is J
known:

(e e, — 0G5 D} eepo,m
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LLN: from microscopic to macroscopic description

Under certain assumptions on K (usually K < Cm n) the hydrodynamic limit is J
known:

(e e, — 0G5 D} eepo,m

{n(-, ) }tcjo, 7 is solution to the Smoluchowski coagulation equation or a
modification of it (Flory equation).
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LLN: from microscopic to macroscopic description

Under certain assumptions on K (usually K < Cm n) the hydrodynamic limit is
known: J

(e e, — 0G5 D} eepo,m

{n(-, ) }tcjo, 7 is solution to the Smoluchowski coagulation equation or a
modification of it (Flory equation).

® No spatial component [NORRIS 1999], [FOURNIER, GIET 2004].
® Cluster coagulation process [NORRIS (2000), A., IYER, MAGNANINI (2023)].
e Particles also diffusing in RY [HAMMOND, REZAKHANLOU (2007)].

Remark: uniqueness of solutions of the limiting equation is not always ensured (i.e. not
always implies LLN).
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One very special case: K(m,n) = mn

Initial condition with N particles of mass 1: MS’ =d5.

Collection of sizes Sizes of connected components
of particles — of Erdés-Rényi graph
at any time ¢ G(N, 1 —e*ﬁ)
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One very special case: K(m,n) = mn

Initial condition with N particles with general sizes: u{;’ = 1N > 5M,N(0)-
!

Collection of sizes Function of the connected components
of particles +—  of aninhomogeneous random graph
at any time ¢ G(ul, k)
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One very special case: K(m,n) = mn

Initial condition with N particles with general sizes: ué\’ = 1N > 5M.N(0)-
1

Collection of sizes Function of the connected components
of particles — of an inhomogeneous random graph
at any time ¢ G(ul, k)

- types of the vertices

kn(m,n) =1 —emnmn

probability of an edge
between a vertex of type m and one of type n
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One very special case: K(m,n) =mn

Initial condition with N particles with general sizes: MQ’ = 1N > 5M,N(0)-
!

Collection of sizes Function of the connected components
of particles +—  of aninhomogeneous random graph
at any time ¢ G(ul, k)
Can we get an LDP for the components of the inhomogeneous random graph? )
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Rare events in sparse random graphs
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Rare events in sparse random graphs

Sparse graph: #{ edges } « #{ vertices }
G(N, %)
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Rare events in sparse random graphs

Sparse graph: #{ edges } « #{ vertices }
G(N, %)

Microscopic components: empirical neighbourhood distribution and local weak
convergence
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Rare events in sparse random graphs

Sparse graph: #{ edges } « #{ vertices }
G(N, %)

Microscopic components: empirical neighbourhood distribution and local weak
convergence

- BORDENAVE, CAPUTO (2015): uniform graph with a given degree, G(n, m), G(n, %);
- BALDASSO, OLIVEIRA, PEREIRA, REIS (2022): G(n, m), G(n, %) with independent marks;
- RAMANAN, YASODHARAN (2024): entropy form for the rate function.
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Rare events in sparse random graphs

Sparse graph: #{ edges } « #{ vertices }
A
g(N7 N)

Microscopic components: empirical neighbourhood distribution and local weak
convergence

- BORDENAVE, CAPUTO (2015): uniform graph with a given degree, G(n, m), G(n, %);

- BALDASSO, OLIVEIRA, PEREIRA, REIS (2022): G(n, m), G(n, %) with independent marks;

- RAMANAN, YASODHARAN (2024): entropy form for the rate function.

Macroscopic components: largest components
- O’CONNELL (1998): largest component of G(n, %);
- PUHALSKII (2005): large components of G(n, 2 ) via large deviations of the exploration;

- BHAMIDI, BUDHIRAJA, DUPUIS, WU (2020): rare events for large components in configuration
model;

- JORRITSMA, KOMJATHY, MITSCHE (2024), JORRITSMA, ZWART (2024): largest component in
spatial and scale-free graphs.
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Rare events in sparse random graphs

Sparse graph: #{ edges } « #{ vertices }
A
g(N7 N)

Microscopic components: empirical neighbourhood distribution and local weak
convergence

- BORDENAVE, CAPUTO (2015): uniform graph with a given degree, G(n, m), G(n, %);

- BALDASSO, OLIVEIRA, PEREIRA, REIS (2022): G(n, m), G(n, %) with independent marks;

- RAMANAN, YASODHARAN (2024): entropy form for the rate function.

Macroscopic components: largest components
- O’CONNELL (1998): largest component of G(n, %);
- PUHALSKII (2005): large components of G(n, 2 ) via large deviations of the exploration;

- BHAMIDI, BUDHIRAJA, DUPUIS, WU (2020): rare events for large components in configuration
model;

- JORRITSMA, KOMJATHY, MITSCHE (2024), JORRITSMA, ZWART (2024): largest component in
spatial and scale-free graphs.

Probability of rare events are on the same scale  ~ e~ Nl 1+o(N):
® microscopic components

® macroscopic components
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LDP for the sparse inhomogeneous random graph

- S a compact metric space: the type space;
- p € M(S) a probability on S;
- xN = (xq,...,xn) € SN vector of vertices’ type

1 N
uN: = —Zéxf — W
Ni:1

- acontinuous symmetric kernel k : S x S — R.
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LDP for the sparse inhomogeneous random graph

- S a compact metric space: the type space;
- u € M(S) a probability on S;
- xN = (xy,...,xy) € SN vector of vertices’ type

1 N
uN: = 725)(,, — W
Ni:1

- acontinuous symmetric kernel k : S x S — R.

The sparse inhomogeneous random graph G(N, xV, k) is such that there is an edge
between vertices i and j with probability that depends on their types:

AT

i ~ j with probability W
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xV, k) — types(C;) € NS. J
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xV, k) — types(C;) € NS. J

Microscopic empirical measure:
.1 5
MIN - N Z types(C/)
i

where (C;); are the connected components of G(N, xV, k).
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xV, k) — types(C;) € NS. J

Microscopic empirical measure:
.1 5
MIN - N Z types(C/)
i

where (C;); are the connected components of G(N, xV, k).

Miy € M(N®)
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xV, k) — types(C;) € NS. J

Microscopic empirical measure:
.1 5
MIN - N Z types(C/)
i

where (C;); are the connected components of G(N, xV, k).

Miy € M(N¥)
VA e M(N%) c(A)r): = > ki VreS Integrated type configuration of A
keNS
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xN, k) — types(C;) € NS. J

Microscopic empirical measure:

. 1
Miy = N Z 6types((3j)
)

where (C;); are the connected components of G(N, xV, k).

Miy € M(N®)
VA e M(N®) c(A)r): = > kX VreS Integrated type configuration of A
keNS
c(Miy) = pn
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xN, k) — types(C;) € NS. J

Microscopic and macroscopic empirical measures:
i ! 1 d é
Miy = ﬁ Z types(C;) an May = Z %lypes(C/)’
i J

where (C;); are the connected components of G(N, xV, k).

Miy € M(N®)
VA e M(N®) c(A)r): = > kX VreS Integrated type configuration of A
keNS
c(Miy) = pn

May € My, ((0,1]%)
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xN, k) — types(C;) € NS. J

Microscopic and macroscopic empirical measures:
i ! 1 d é
Miy = ﬁ Z types(C;) an May = Z %lypes(C/)’
i J

where (C;); are the connected components of G(N, xV, k).

Miy € M(N®)
VA e M(N®) c(A)r): = > kX VreS Integrated type configuration of A
keNS
c(Miy) = pn
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(0,1]
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xN, k) — types(C;) € NS. J

Microscopic and macroscopic empirical measures:
i ! 1 d é
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Counting microscopic and macroscopic components (S finite)

C; connected component of G(N, xN, k) — types(C;) € NS. J

Microscopic and macroscopic empirical measures:
i ! 1 d é
Miy = ﬁ Z types(C;) an May = Z %lypes(C/)’
i J

where (C;); are the connected components of G(N, xV, k).

Miy € M(N®)
VA e M(N®) c(A)r): = > kX VreS Integrated type configuration of A
keNS

limsup c(Miy) < p
N

May € My, ((0,1]%)

Va € My, ((0, 11%) c(a)(+): = / s y(-) a(dy) Integrated type configuration of o
0,1]

limsup c(May) <
N
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The large deviation principle
Theorem (A., Kénig, Langhammer, Patterson (2023))

The pair of measures (Miy, May) satisfies a large deviations principle with speed N
and explicitly given rate function

I @) = hwi(A) + hra(@) + he(ie — c(X) — ¢(e)).

P((Min, May) = (A, a)) = e~ NI(A,e)+o(N)

Luisa Andreis (Polimi) Rare events in coagulation processes Berlin, Jan 29-31, 2025



The large deviation principle
Theorem (A., Kénig, Langhammer, Patterson (2023))

The pair of measures (Miy, May) satisfies a large deviations principle with speed N
and explicitly given rate function

I\ @) = Mi(A) + ha(@) + he(pe = ¢(A) — ().

A 1
/Mi(>\) = Z A log S  S— + E

. (e(N), i),
kens 7(k)e!~IKI T, 4o
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The large deviation principle
Theorem (A., Kénig, Langhammer, Patterson (2023))

The pair of measures (Miy, May) satisfies a large deviations principle with speed N
and explicitly given rate function

I\ @) = Mi(A) + ha(@) + he(pe = ¢(A) — ().

Ak

MO) = Y Aclog + 3 (o), ),

kr
ens r(k)e!—IKI T, 4
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The large deviation principle
Theorem (A., Kénig, Langhammer, Patterson (2023))

The pair of measures (Miy, May) satisfies a large deviations principle with speed N
and explicitly given rate function

I\ @) = Mi(A) + ha(@) + he(pe = ¢(A) — ().

Ak 1
hi(Y) = Aelog | ——F | 4+ Z(e(N), mu),
! = r(el - T, 4 )2
_ Y N
@) = [ e (s ) ),
v 1
Me(v) = <V,|ogm>+§<u,/w),
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The large deviation principle
Theorem (A., Kénig, Langhammer, Patterson (2023))

The pair of measures (Miy, May) satisfies a large deviations principle with speed N
and explicitly given rate function

I\ @) = Mi(A) + ha(@) + he(pe = ¢(A) — ().

b 1
M) = 3 Mcdog | ——E—— |+ Lic(r). e,
) P r(k)e! I T, 5 |2
_ I 2 D
@) = [ e (s ) ),
v 1
Me(v) = <V,Iogm>+§<y,;w).

® Spotting the phase transition: look for minimizers of

Z A log Ak

M
ke 7(k)e! K T, 4er
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The large deviation principle
Theorem (A., Kénig, Langhammer, Patterson (2023))

The pair of measures (Miy, May) satisfies a large deviations principle with speed N
and explicitly given rate function

I\ @) = Mi(A) + ha(@) + he(pe = ¢(A) — ().

b 1
() = Mlog | ——2% | 4 Lion), mp,
! P e s ) 2
= _y 1 r(p —
@) = [ e (s ) ),
v 1
Me(v) = <V,|Ogm>+§<1/,liu>.

® Spotting the phase transition: look for minimizers of

Z A log Ak

M
ke 7(k)e! K T, 4er

No minimizer with ¢(A\) = — 3 giant component!
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Main ingredients for the proof
S finite

Let L,((N): = #{j: types(C;) =k} Vke NS
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Main ingredients for the proof
S finite

Let LS(N): = #{j: types(C;) =k} Vke NS

Lemma
Forany N € N and for any ¢ = () we have that

P (LE(N) - Zk,Vk> Explicit terms(¢, N) H pN( ’

k<Npy
where for any k € NS :

pn(k) = P(G(|k|, X, 5 k) is connected), N € N.
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Main ingredients for the proof
S finite

Let LS(N): = #{j: types(C;) =k} Vke NS

Lemma
Forany N € N and for any £ = ({x)x we have that

H pN(

k<N[J.N

P ( 1_5(“) — gk,vk> Explicit terms(¢, N)

where for any k € NS :

pn(k) = P(G(|k|, X, 4 ) is connected),

N e N.

)

We fix R < oo and € > 0.
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Main ingredients for the proof

S finite

Let Lf(N): = #{j: types(C;) =k} Vke NS

Lemma
Forany N € N and for any £ = ({x)x we have that

H pN(

k<N[J.N

P < LE(N) = b, Vk) Explicit terms(¢, N)

where for any k € NS :

pn(k) = P(G(|k|, X, 4 ) is connected), ~ N € N. )
We fix R < coand e > 0.
For any pair (X, «)
P((MiN,MaN) ~(A, a)>
~ Explicit terms(¢, N) x || P (k) pNékl)lk pNékl)Zk
|k|<R Ek! k|>eN K otherwise  TK°
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LDP for spatial coagulation process

[A., KONIG, LANGHAMMER, PATTERSON (2024)]
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LDP for spatial coagulation process

[A., KONIG, LANGHAMMER, PATTERSON (2024)]

Poisson monodisperse initial condition: for u € M4(S)

P
1o =5 200,
)

where (X;) ~ Poisson Point Process on S with intensity measure Ny (Poip,,).
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LDP for spatial coagulation process

[A., KONIG, LANGHAMMER, PATTERSON (2024)]

Poisson monodisperse initial condition: for u € M4(S)

N, ]
Ho = a2 O,
i

where (X;) ~ Poisson Point Process on S with intensity measure Ny (Poip,,).

We are interested in describing, under IP%,’Z?NM ),

M e M(S x N).

(Xi(T), Mi(T)) € S x N
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LDP for spatial coagulation process

[A., KONIG, LANGHAMMER, PATTERSON (2024)]

Poisson monodisperse initial condition: for u € M4(S)

., _ 1
Ho = 200,
I

where (X;) ~ Poisson Point Process on S with intensity measure Ny (Poip,,).

We are interested in describing, under IP%,’Z?NM ),

M e M(S x N).

(Xi(T), Mi(T)) € S x N

Eje F(T1) binary tree
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Description via binary trees

310 S

F(T1) set of binary trees embedded in [0, T]: a subset of D([0, T], M(S x N)).
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Description via binary trees

1A 8 e

F(;) set of binary trees embedded in [0, T].

1
gerld

o € Mny(S)
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Description via binary trees

310 S

F(T1) set of binary trees embedded in [0, T].

The empirical measure on trees is

1
v =N 20 e M)
i
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Description via binary trees

1A s

F(;) set of binary trees embedded in [0, T].

The empirical measure on trees is

1
v =N 20 e M)
i

N [ &V (de) € My, (S)

= initial distribution of points in S
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The empirical measure attime t < T
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The empirical measure attime t < T

Projection at time t
For t € [0, T], take the function

pri MIT) 5 M(S xN)

B

D = (D) = [ (de) &
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The empirical measure attime t < T

Projection at time t
For t € [0, T], take the function

pr: MIT) & M(S xN)

) = D) = [ D(de) &
;
t
o]
No gelation at time T: full mass of p(v")
<m7 pf(V(T))) = 17 vt € [07 T]
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The empirical measure attime t < T

Projection at time t
For t € [0, T], take the function

pri MIT) 5 M(S xN)

D) = p M) = [ &

No gelation at time T: full mass of p(v")

(m, pe(v 7)) =1, vte [0, T].

For any fixed N
E[(mp(VP)] =1, vie[o,T]
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Does the law of V,(VT) satisfy a large deviations principle?

T —Ni(v
P, (VN € dv) v g~ NE+oll)
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Many-body system approach

Theorem [A., KONIG, LANGHAMMER, PATTERSON, 2024]
Forv e M(F(TU)
Bloy, V) € dv) =exp { - ZR (& 6)} 2 (% c du)

where Y is a Poisson Point process on the space F(T”

A ; (T)
with intensity measure NM“,N
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Many-body system approach

Theorem [A., KONIG, LANGHAMMER, PATTERSON, 2024]
Forv e M(F(T”)

1%
%’ZfN Wy € dv) —exp{ ZR (&, &) } ) (N € dl/)

where Y is a Poisson Point process on the space F(T” with intensity measure NMLT)N

(1)
Forany ¢,¢" e 'Y,

55)—/ at > [ ciaxm) [ i@’ ml) K(Gem). (. m)).

m,m’ eN
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Many-body system approach

Theorem [A., KONIG, LANGHAMMER, PATTERSON, 2024]
Forv e M(F(T”)

Y
Bloy, V) € dv) =exp { - ZR (& 6)} 2 (Nedu)

where Y is a Poisson Point process on the space F(T” with intensity measure NMLT)N

(1)
Forany ¢,¢" e 'Y,

55)—/ at > [ ciaxm) [ i@’ ml) K(Gem). (. m)).

m,m’ eN

Interpretation:
a many bodies system with interaction R.
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The intensity measure of Y

Y =36z ~ Poi where

(T) »
NMH,N

M\ (d€) = N0~ "ePoi, @ PM(dg), €T
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The intensity measure of Y

...and its limit

Y =36z ~ Poi where

() »
N

M7\ (dg) = NI =ePoi, @ PM(dE), € €T, & = K, k € M, (S).

® For&y =k, k € M, (S),

Poiy, ® P)(d¢) = Poiy, (dk) P (d€)

where P} (d¢) is the law of a coagulation process with initial condition k.
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The intensity measure of Y

...and its limit

Y =36z ~ Poi where

() »
N

M\ (d€) = NI = ePoi, (dk) PY(dE), € €T, &0 = K, k € M, (S).

® For&y =k, k € M, (S),

Poiy, ® P)(d¢) = Poiy, (dk) P (d€)

where P} (d¢) is the law of a coagulation process with initial condition k.

® Forall K < Hm - n, all k € My, (S),

Q(d€) ¢ = limy_oo M) (dE) gerd g=k
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The intensity measure of Y

...and its limit

Y =36z ~ Poi where

() »
N

MD,(d€) = NIKI~"ePoi, (dK) B (de), € € T, & = k, k € My (8)-

® For&y =k, k € M, (S),

Poiy, ® P)(d¢) = Poiy, (dk) P (d€)

where P;N)(dg) is the law of a coagulation process with initial condition k.

® Forall K < Hm - n, all k € My, (S),

Q(d€) ¢ = limy_oo M) (dE) gerd g=k
n s = limnsee M (MY N {& = k) = Q) (TF) € (0,00).
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The intensity measure of Y

...and its limit

Y = Zi(szi ~ POiNMf]av’ where

MLT},\,(dg) = NIKI=TePoi, (dk) P (d¢), € €T, & =k, k € My, (S).

e For & = k, k € My, (S),

Poi,, ® P (dg) = Poiy, (dk) P (d¢)

where P{")(d¢) is the law of a coagulation process with initial condition k.

® Forall K < Hm- n,all k € My,(S),

Q(dg) ¢ = limy_ o0 M) (d€) ger, o=k
T = limasee MM N {g = k) = Q(TY) € (0,00).

Explicit expression for Q' and 7.".
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To be continued...
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To be continued...

Thank you!
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