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AMaSiS’04

The aim of this workshop is to bring together applied mathematicians and scientists from
semiconductor physics and technology and to give them the opportunity to exchange experi-
ence in the field of modeling and simulation of micro-, nano-, and optoelectronic devices. The
main topics of the workshop include:

• Physical modeling of micro-, nano-, and optoelectronic devices and their technology,

• Design of efficient simulation software,

• Presentation of simulation results of state-of-the-art devices,

• Analytical and numerical investigation of relevant model equations,

• Study of systems of nonlinear partial differential equations arising in related application
areas (e.g. self-gravitating systems, plasma instabilities, phase separation models).

Organizing Committee:

Annegret Glitzky, Jens A. Griepentrog, Rolf Hünlich, Hans-Christoph Kaiser, Joachim Reh-
berg (all WIAS Berlin).
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Programme

Wednesday, July 14, 2004

Time Event

09.00 – 09.30 Registration

09.30 – 09.40 Opening

09.40 – 10.20 Ch. Schmeiser (Wien)

Transport in Semiconductors at Saturated Velocities

10.20 – 10.40 Coffee Break

10.40 – 11.20 N. Ben Abdallah (Toulouse)

Kinetic and Diffusive Models for Partially Quantized Systems

11.20 – 11.55 A. Arnold (Münster)

Transparent Boundary Conditions for Quantum-Waveguide Simulations

11.55 – 12.10 Ch. Manzini (Pisa)

On the 3-d Wigner–Poisson–Fokker–Planck Problem

12.10 – 14.00 Lunch Break

14.00 – 14.40 T. Nadzieja (Zielona Góra)

Global and Exploding Solutions in a Model of Self-Gravitating Systems

14.40 – 15.20 P. Biler (Wroc law)

Mean Field Models for Self-Gravitating Particles

15.20 – 15.40 Coffee Break

15.40 – 16.20 A. Jüngel (Mainz)

Analysis and Simulation of Quantum Diffusion Models

for Semiconductor Devices

16.20 – 16.40 E. Schöll (Berlin)

Nonlinear and Chaotic Spatio-Temporal Dynamics

in Semiconductor Nanostructures

16.40 – 17.00 Break

17.00 – 17.20 A. Zisowsky (Berlin)

Discrete Transparent Boundary Conditions

for Time-Dependent Systems of Schrödinger Equations

17.20 – 17.40 I. Lobanov (Berlin)

Impurity Center in the Quantum Dot:

Analytical and Numerical Results
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Thursday, July 15, 2004

Time Event

09.00 – 09.40 G. Dziuk (Freiburg)

Harmonic Maps as Tools for Grid Improvement

on Boundaries and Interfaces for Flow and Transport

09.40 – 10.20 P. Degond (Toulouse)

Plasma Instabilities in the Ionosphere

10.20 – 10.40 Coffee Break

10.40 – 11.20 W. Jäger (Heidelberg)

Asymptotic Analysis and Effective Laws

11.20 – 12.00 K. Gärtner (Berlin)

Dissipative Discretization Schemes for Drift-Diffusion

and Phase Separation Models with Applications

12.00 – 14.00 Lunch Break

14.00 – 14.40 K.H. Hoffmann (Bonn)

Mathematical Methods for Sensor-Design

14.40 – 15.20 J. Frehse (Bonn)

Lp-Estimates for the Convective Terms of Compressible Fluids

15.20 – 15.40 Coffee Break

15.40 – 16.20 L. Recke (Berlin)

Newton Iteration Procedure

and Nonlinear Elliptic Boundary Value Problems with Non-Smooth Data

16.20 – 16.40 V. Geyler (Berlin)

Numerical and Analytical Investigation of the Fermi Surfaces

for the Periodic Schrödinger Equation with a Magnetic Field

16.40 – 17.00 Break

17.00 – 17.20 P.N. Racec (Cottbus)

Application of R-Matrix Formalism in Modeling

of Semiconductor Nanostructures

17.20 – 17.40 R. Plato (Berlin)

Entropy Estimates for a Fully Discretized Fokker–Planck Equation

18.30 Dinner Party
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Friday, July 16, 2004

Time Event

09.00 – 09.40 G. Wachutka (München)

Macromodeling of Microdevices:

Virtual Prototyping by Predictive Simulation

09.40 – 10.20 N. Strecker (Mountain View)

Mesh Generation for Three Dimensional Process Simulation

10.20 – 10.40 Coffee Break

10.40 – 11.20 R. Richter (München)

Silicon Radiation Detector Development

Using Two-Dimensional Device Simulation

11.20 – 12.00 R. Stephan (Dresden)

Advanced Microelectronic Front End Processes, Transistors,

and Back End Processes Challenging the Modeling and Simulation

of the Semiconductor Processes and Devices

12.00 – 14.00 Lunch Break

14.00 – 14.40 B. Heinemann (Frankfurt (Oder))

BiCMOS Integration of High Performance SiGe:C HBTs

14.40 – 15.20 H. Wenzel (Berlin)

Simulation of High-Power Semiconductor Lasers with WIAS-TeSCA

15.20 – 15.40 Coffee Break

15.40 – 16.20 M.F. Pereira (Cork)

Nonequilibrium Green’s Functions Theory for Intersubband Optics
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Transparent Boundary Conditions

for Quantum-Waveguide Simulations

Anton Arnold (Münster)

The electron transport through a quantum waveguide can be modeled in good approximation
by a two-dimensional Schrödinger equation on an unbounded domain. For numerical
simulations, however, it is necessary to restrict this problem to a finite domain. This is possible
without changing the solution by introducing transparent boundary conditions (TBC), which
are non-local in time (convolution type).

The numerical discretizations of these artificial boundary conditions is a main challenge,
as it may easily render the initial-boundary value problem unstable. Based on a Crank–
Nicholson finite difference discretization of the Schrödinger equation, we shall discuss
a dicrete TBC, which makes the overall scheme unconditionally stable. Further, we derive
approximations of the involved discrete convolutions by exponential sums, and analyze the
stability of theresulting numerical scheme.

The derived boundary conditions are illustrated by simulations of a wavequide with a
resonating stab.

5



Kinetic and Diffusive Models

for Partially Quantized Systems

Naoufel Ben Abdallah (Toulouse)

Classical motion of charged particles (say electrons) can be described by kinetic equations
(Vlasov, Boltzmann) coupled to the Poisson equation for the electrostatic forces. For
ultrasmall electron systems, like nanostructures, quantum effects are important and are well
described by the Schrödinger–Poisson model. In partially confined electron systems like
two-dimensional electron gases (2DEG), nanotubes or nanowires, both quantum and classi-
cal effects are present. Indeed, the width of a two-dimensional electron gas lying at a het-
erojunction is a few nanometers. As this length is comparable to the electron de Broglie
length, the description of transport phenomena necessitates the use of the Schrödinger
equation. In the direction parallel to the heterojunction, the length scale is usually several
times higher, and a classical description for electron transport is suitable. This leads to a
coupling between classical and quantum models in momentum space (which are obtained in
the Born–Oppenheimer approximation).

The aim of this presentation is the study of a kinetic subband model coupled to the
Poisson equation as well as a diffusion model in the same framework. In the sequel, the
confined direction is denoted by z ∈ (0, 1) while the non-confined direction is called x ∈ ω ⊂
R

d. The problem consists in finding, for t ∈ (0, T ), x ∈ ω, z ∈ (0, 1) and v ∈ R
d, the unknowns

V (t, x, z), (εp(t, x), χp(t, x, z), fp(t, x, v))p∈N∗ solving

∂tfp + v · ∇xfp −∇xεp · ∇vfp = 0 , (1)

−
1

2
∂zzχp + (V + Vext)χp = εpχp , (2a)

χp(t, x, ·) ∈ H1
0 (0, 1) ,

∫ 1

0

χpχq dz = δpq , (2b)

−∆V =
∑

p≥1

|χp|
2

∫

Rd

fp dv . (3)

Existence and uniqueness results are shown in the bounded domain and whole space case.
Energy estimates as well as relative entropy inequalities are shown for the above model as
well as for the diffusive subband model. The results have been obtained jointly with Flo-
rian Méhats, Géraldine Quinio and Nicolas Vauchelet (MIP Laboratoire CNRS,
Toulouse).
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Mean Field Models for Self-Gravitating Particles

Piotr Biler (Wroc law)

We consider in this lecture parabolic-elliptic systems of the form

nt = ∇ · (D∗(∇p + n∇ϕ)) , (1)

∆ϕ = n , (2)

which appear in statistical mechanics as hydrodynamical mean field models for self-interacting
particles, cf. e.g. [4] and other papers by P.-H. Chavanis.

Here n = n(x, t) ≥ 0 is the density function defined for (x, t) ∈ Ω×R
+, Ω ⊂ R

d, ϕ = ϕ(x, t)
is the Newtonian potential generated by the particles of density n, and the pressure p ≥ 0 is
determined by the density-pressure relation with a sufficiently regular function p = p(n, ϑ).
The parameter ϑ > 0 plays the role of the temperature, and D∗ > 0 is a diffusion coefficient
which may depend on n, ϑ, x, . . .

Such systems can be studied either in the canonical ensemble (i.e. the isothermal setting),
when ϑ = const is fixed, or in the microcanonical ensemble with a variable temperature:
ϑ = ϑ(t), and the energy

E =
d

2

∫

Ω

p dx +
1

2

∫

Ω

nϕ dx = const , (3)

which, for a given n, defines ϑ = ϑ(t) in an implicit way.

In this work we consider examples of density-pressure relations

p(n, ϑ) = ϑd/2+1P
( n

ϑd/2

)

more general than Maxwell–Boltzmann, Fermi–Dirac and polytropic.

Interesting questions are:

• existence of entropy functionals and entropy production rates,

• existence of steady states with prescribed mass and temperature, or prescribed mass
and energy,

• nonexistence of global in time solutions and their blow up,

• continuation of local in time solutions with polytropic density-pressure relations.

These results have been obtained in collaboration with Tadeusz Nadzieja (Zielona Góra),
Philippe Laurençot (Toulouse), and Robert Stańczy ( Lódź and Wroc law).
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Plasma Instabilities in the Ionosphere

Pierre Degond (Toulouse)

The ionospheric plasma is subject to strong instabilities (the gradient-drift instabilities) which
produce fairly complex dynamical patterns, the so-called ionospheric irregularities or stria-
tions. In a first part, we will introduce the audience to to the modeling of ionospheric plasmas
and their instabilities.

Then, we will concentrate on the mathematical study of this instability in the framework
of the so-called dynamo model. We will prove that situations which lead to a linear instability
are indeed nonlinear unstable (joint work with C. Besse, H. J. Hwang and R. Poncet).

The growth of the instability leads to a very chaotic dynamics, for which we will propose
a model inspired from the statistical approach to turbulence in fluid mechanics. Numerical
simulation of the original and of the ’turbulent’ dynamo model will be presented to illustrate
our considerations (joint work with C. Besse, J. Claudel, F. Deluzet, G. Gallice and
C. Tessieras).

9



Harmonic Maps as Tools for Grid Improvement

Gerhard Dziuk (Freiburg)

Parametric methods for the numerical solution of free boundary problems have the advan-
tage that the dimension of the finite element algorithm coincides with the dimension of the
free boundary. But these methods are such that the moving grid degenerates easily. Grid
improvement can be achieved by conformal parametrization. This leads to the computation
of harmonic maps from the surface into the sphere. We discuss discretization, convergence
and application. This is joint work with U. Clarenz (Duisburg).
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Lp-Estimates for the Convective Terms of Compressible Fluids

Jens Frehse (Bonn)

A new method obtaining refined Lp-estimate is presented. The technique relies on estimates
with singular weights and interpolation between Sobolev–Morrey spaces.
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Dissipative Discretization Schemes for Drift-Diffusion

and Phase Separation Models with Applications

Klaus Gärtner (Berlin)

For the classical van Roosbroeck equations and a binary phase separation model with
global interaction and a finite number of sites finite volume discretizations on Delaunay
simplex grids in two and three space dimensions are investigated.

The goal is to give a weak discrete formulation and to reproduce the essential stability
properties of the analytic problems for any spatial step size h and time step τ , hence not
introduce smallness assumptions on the solution variation on neighboring vertices. The main
results are:

The Euler backward scheme in time and the Scharfetter–Gummel discretization of
the van Roosbroeck system yields a dissipative discrete problem. Moreover for reduced
equations a discrete maximum principle for the quasi Fermi potentials holds.

For the phase separation problem a Crank–Nicholson scheme in time is dissipative.
Using this result and the requirement of dissipativity determine the space discretization. For
that scheme a priori bounds can be proved using a weak discrete maximum principle.

The discrete equilibrium solutions for both problems are characterized by constant Fermi
potentials, too. This fact can be used to simplify a numerical bifurcation analysis for the
phase separation model.

Finally some numerical examples of a three dimensional semiconductor sensor are dis-
cussed, too. Here the weak form of the discretization can be used for instance to reduce the
error in the functional central for that application: the contact currents. This is a joint work
with Herbert Gajewski (WIAS).
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Numerical and Analytical Investigation of the Fermi Surfaces

for the Periodic Schrödinger Equation with a Magnetic Field

Vladimir Geyler (Berlin)

The shape of the Fermi surface determines the kinetic and equilibrium properties of the
electron gas in the crystal matter as well as the dynamics of a single electron in the crystal.
However, a uniform magnetic field changes drastically the translation properties of an electron
in the crystal lattice: the appearance of a new length scale (the magnetic length) leads to
the famous phenomena related to the commensurability-incommensurability transitions. In
particular, a fractal structure arises in the spectral diagrams describing the dependence of the
two-dimensional electron spectrum on the magnetic flux (Azbel’–Hofstadter butterfly [1]).
The translation symmetry of the Bloch electron in a uniform magnetic field is determined
by the magnetic translation group [2], which has more complicated structure in comparison
with the translation group without the field. Therefore, a modification of the definition of
the Fermi surface at high magnetic fields is required [3]. In the present work, we propose a
method of building and investigation of the Fermi surfaces in the magnetic Brillouin zone
for the three-dimensional Landau operator perturbed by a periodic point potential [4]. Using
our previous results concerning the spectrum of this operator [5], we investigate the Fermi
surfaces for various types of crystalline lattices and study the dependence of the surface shape
on orientation and strength of the magnetic field. Note that the case of simple-cubic lattice
was considered earlier in [6].

These results have been obtained in collaboration with Jochen Brüning and Valery
Demidov (HU Berlin). The work was supported by Grants of INTAS 00-257, DFG 436
RUS 113/572/0-2, and RFBR 02-01-00804.
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BiCMOS Integration of High Performance SiGe:C HBTs

Bernd Heinemann (Frankfurt (Oder))

Over the last years, SiGe heterojunction bipolar transistors (HBT) have been accepted as a
value devices for very-high-data-rate wired and wireless communication systems (e.g. WLAN
in the 60 GHz ISM band, automotive radar at 77 GHz). As these systems continue to mature,
they create an increasing need for higher integration levels to improve the functionallity, to
reduce cost and power dissipation. The development of a SiGe:C HBT technology at IHP
contributed to a new perspective for SiGe BiCMOS technologies to fulfills this need by
providing high integration capability and high performance levels.

Here, we report about the integration of high performance SiGe:C HBT modules into
an industry-standard CMOS process. The talk is focused on aspects related to the devices
design as well as to the technological mplementation of SiGe HBTs. In particular, we demon-
strate how imulation and modeling capabilities were used to support the HBT development.
Requirements for future simulation tools are discussed in the context of HBT design. This
is a joint work with Holger Rücker (IHP Frankfurt (Oder)).
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Analysis and Simulation of Quantum Diffusion Models

for Semiconductor Devices

Ansgar Jüngel (Mainz)

Usually, quantum systems are described by microscopic quantum models, like Schrödinger’s
or Wigner’s equation. However, the numerical solution of these models is computationally
very expensive. Alternative models are given by the computational less expensive quantum
diffusion models, like (viscous) quantum hydrodynamic and quantum drift-diffusion models.

In this talk we sketch the derivation of these models and give some results on the mathe-
matical analysis of the equations. In particular, the fourth-order parabolic part of the quantum
drift-diffusion model is analyzed in detail (existence, uniqueness, long-time behavior of the
solutions). Finally, some numerical results for a one-dimensional resonant tunneling diode,
simulated by different models, are given.
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Global and Exploding Solutions

in a Model of Self-Gravitating Systems

Tadeusz Nadzieja (Zielona Góra)

We study properties of solutions of the system

ut = ∇ · (ϑ∇u + u∇ϕ) ,

∆ϕ = u ,

E = Mϑ +
1

2

∫

Ω

uϕ dx .

This system was proposed by Chavanis, Sommeria and Robert for description of evolution
of density of a system of gravitating particles. In physical interpretation u(x, t), ϕ(x, t) are
the density and the gravitational potential, respectively. The temperature ϑ(t) is uniform in
the domain Ω, where the problem is considered. M is the total mass and E is the energy of
the particles. We are interested in the existence of global solutions, blow-up phenomena and
stationary solutions of our system.

The results have been obtained jointly with Piotr Biler (Uniwersytet Wroc lawski) and
Ignacio Guerra (Universidad de Chile).
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Nonequilibrium Green’s Functions Theory

for Intersubband Optics

Mauro F. Pereira (Cork)

Intersubband transition based devices like the quantum cascade laser (qcl) are now impor-
tant in the infrared spectral region, with interesting perspectives for applications in the THz
regime. Recent detailed comparisons between theory and experiments have clearly demon-
strated that many body effects are required to explain the intersubband optical absorption
of quantum wells. However, the gain spectra of more complicated qcl structures have been
explained relatively well without those effects. Our nonequilibrium Keldysh–Green’s func-
tions microscopic approach explains the apparent contradiction. We apply our theory to two
limiting cases: qcl’s, characterized by Wannier–Stark states and parabolic in-plane dis-
persion relations and coupled band quantum wells with strongly nonparabolic bandstructure
and k-dependent transition dipole moments.

In the qcl structure, we demonstrate that the many-body effects depend essentially in the
occupations of the subbands and on the detailed Coulomb matrix elements that describe
the overlap of electronic wavefunctions. The combination of large population differences and
occupation factors with large Coulomb matrix elements lead to strong Coulomb corrections
on the THz region (absorption). However, in the mid-infra-red (gain) region, the Coulomb
overlap integrals are small or the dominating gain transition. That explains the apparent con-
tradiction, which requires the actual nonequilibrium distribution and realistic wavefunctions
and Coulomb matrix elements, in contrast to simplifying approximations that are relatively
successful for quantum wells, which fail in the more complex qcl superlattice scenario. Only
transitions with TM polarization are possible.

In the multiple quantum well case, with conduction and valence subband contributions,
the evolution of TM and TE modes is remarkably different and extra peaks can appear in
the TE spectra due to the Coulomb interaction. Furthermore weak, but possibly resolvable
conduction band contributions can be found in the TE spectra and their strength is increased
by a combination of bandcoupling and Coulomb corrections, also demonstrated here for
the first time. Moreover, the spectral positions and broadening, number of peaks and their
relative oscillator strengths of the spectra calculated with and without Coulomb effects are
radically different, further highlighting the relevance of our calculations

In summary, our fully quantum mechanical microscopic modeling of transport and optics
of quantum cascade lasers demonstrates how to control the overall strength of Coulomb
corrections by modifying the wavefunction overlap and thus the Coulomb matrix elements
by means of an external bias. Our equilibrium calculations for nonparabolic subband quantum
wells demonstrate strong interplays between bandstrcuture and many-body effects that can be
relevant for the predictive simulations of possible new devices based on both conduction and
valence subband transitions. These result have been obtained in collaboration with Andreas
Wacker (Lund) and Hans Wenzel (FBH Berlin).
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Entropy Estimates

for a Fully Discretized Fokker–Planck Equation

Robert Plato (Berlin)

An initial value problem for a Fokker–Planck equation is discretized in time by an implicit
Euler scheme and in space by a Galerkin scheme. It is shown that this scheme conserves
mass, positivity and decay of the entropy. The approximation properties are investigated and
numerical experiments are provided.
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Application of R-Matrix Formalism in Modeling

of Semiconductor Nanostructures

Paul N. Racec (Cottbus)

We show how the R-matrix formalism can be used for characterizing the transport properties
of open quantum nanostructures. It gives a practical method for calculating the resonances of
the open systems using the poles of the S-matrix. Applications at self-consistent calculations,
capacitance characteristics and leakage current in MIS-type nanostructures are shown. New
idea for calculation of the leakage current based on the decaying probabilities of the resonances
will be discussed. These result have been obtained jointly with E.R. Racec and U. Wulf.
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Newton Iteration Procedure

and Nonlinear Elliptic Boundary Value Problems

with Non-Smooth Data

Lutz Recke (Berlin)

The lecture concerns boundary value problems for quasilinear second order elliptic equations
and systems with non-smooth data. Here non-smooth data means that the domain can be non-
smooth, that the boundary conditions can change type (mixed boundary conditions, where
the Dirichlet and the Neumann boundary parts can touch) and that the coefficients of
the equations and the boundary conditions can be discontinuous with respect to the space
variable x (but they have to be smooth with respect to the unknown function u and its
gradient ∇u). The equations are of divergence type (this is joint work with K. Gröger) as
well as of non-divergence type (joint work with D. Palagachev and L. Softova).

The aim is to state conditions which imply results of the following type: Let u0 be a
weak solution such that the formally linearized (in u = u0) boundary value problem has
no nontrivial solution. Let u1 be sufficiently close to u0 in L∞(Ω) ∩ W 1,2(Ω) (in the case
of divergence type equations) or in W 1,∞(Ω) (in the case of non-divergence type equations),
respectively, and let u2, u3, . . . be the Newton iterations determined by means of the formally
linearized (in u = u1, u2, . . . ) boundary value problem. Then ul → u0 in L∞(Ω) ∩ W 1,2(Ω)
(in the case of divergence type equations) or in W 1,∞(Ω) (in the case of non-divergence type
equations), respectively.
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Transport in Semiconductors at Saturated Velocities

Christian Schmeiser (Wien)

A model for the transport of electrons in a semiconductor is considered, where the electrons
travel with saturation speed in the direction of the driving force computed self consistently
from the Poisson equation. Since the velocity is discontinuous at zeroes of the driving force,
an interpretation of the model in the distributional sense is not necessarily possible. For
a spatially one-dimensional model existence of distributional solutions is shown by passing
to the limit in a regularized problem corresponding to a scaled drift-diffusion model with
a velocity saturation assumption on the mobility. Several explicit solutions of the limiting
problem will be presented and illustrated by the results of numerical computations. A model
for the transport of electrons in a semiconductor is considered, where the electrons travel
with saturation speed in the direction of the driving force computed self consistently from
the Poisson equation. Since the velocity is discontinuous at zeroes of the driving force,
an interpretation of the model in the distributional sense is not necessarily possible. For
a spatially one-dimensional model existence of distributional solutions is shown by passing
to the limit in a regularized problem corresponding to a scaled drift-diffusion model with
a velocity saturation assumption on the mobility. Several explicit solutions of the limiting
problem will be presented and illustrated by the results of numerical computations. This is a
joint work with Jan Haskovec (Charles University Prague).
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Nonlinear and Chaotic Spatio-Temporal Dynamics

in Semiconductor Nanostructures

Eckehard Schöll (Berlin)

Nonlinear transport in semiconductor nanostructure devices can be modelled on the basis of
the spatio-temporal dynamics of charge carriers in combination with the electric field and
circuit equations. Negative differential conductivity, current instabilities and self-organized
pattern formation may arise in the regime of strong nonlinearities far from thermodynamic
equilibrium. In this talk we present simulations of complex and chaotic scenarios of the
current density and field distributions in nanostructure devices. In particular, we study two
models of semiconductor nanostructures which are of current interest [1]:

(i) Charge accumulation in the quantum-well of a double-barrier resonant-tunneling diode
(DBRT) may result in lateral spatio-temporal patterns of the current density. Various oscil-
latory instabilities in form of periodic or chaotic breathing and spiking current filaments may
occur. We demonstrate that unstable current density patterns can be stabilized in a wide
parameter range by means of a delayed feedback loop.

(ii) Electron transport in semiconductor superlattices (SL) exhibits complex scenarios in-
cluding chaotic motion of charge accumulation and depletion fronts under time-independet
bias conditions. We show that self-stabilization of current oscillations corresponding to travel-
ling field domain modes is possible by a novel low-pass filtered time delayed feedback control.

References

[1] E. Schöll, Nonlinear spatio-temporal dynamics and chaos in semiconductors, Cam-
bridge: Cambridge University Press, 2001.
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Advanced Microelectronic Front End Processes,

Transistors, and Back End Processes

Challenging the Modeling and Simulation

of the Semiconductor Processes and Devices

Rolf Stephan (Dresden)

The presentation will give a general overview about advanced microprocessor technologies.
The international technology roadmap of semiconductors is used to guide the process and
device simulation community through the requirements for FEOL processes, transistor for-
mation, and BEOL processes.

Sub-50 nm SOI technologies are mature at AMD and run in high-volume production.
Advanced modules of these technologies are shown to illustrate and to define challenges for
the modeling and simulation of semiconductor processes and devices. Appropriate examples
are the shallow trench isolation, the manufacturing of ultra-thin gate dielectrics, the gate
pattering, and the Cu interconnect using CVD-deposited low-k dielectric.

Forecasting further extendibility and process developments, future requirements for the
process and device simulation will be outlined. This is a joint work with G. Burbach,
T. Feudel, D. Greenlaw, M. Horstmann, P. Hübler, T. Kammler, S. Krügel,
M. Lenski, K. Romero, K. Wieczorek and M. Raab.
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Mesh Generation for Three Dimensional Process Simulation

Norbert Strecker (Mountain View)

The three-dimensional simulation of fabrication processes for the semiconductor industry re-
quires a very robust mesh generation algorithm together with a reliable update of the geom-
etry.

While the process description of a single process step remains simple: dry or wet etch
with a mask, isotropic, planarizing or selective deposition, oxidation or silicide growth, the
complexity of the resulting structure becomes very high, usually already after a few steps.
The situation becomes more complicated due to the presence of non-planar thin layers, e.g. in
non-volatile memory cells.

In our 1D, 2D and 3D simulator we use an implicit geometry representation given by
region-wise level set functions. Each level set function is constructed when defining a new
region. If the initial region geometry is defined by one or several geometry objects, then the
signed distance function from these objects is used as level set function.

The union and subtraction of objects is done using a combination of several level set
functions.

If a new region is defined using a deposit command, the level set function is calculated
based on the exposed regions of the existing mesh according to a formula that depends on the
process step. If the region geometry is changed, e.g. by etching, a similar analysis of exposed
regions and similar mathematical expressions are applied to define the level set functions for
the modified regions.

For the simulation of oxidation and silicide growth the solution of level set equations is
required to account for the motion of the interfaces. Diffusion-reaction equations are solved
for the transport and surface reactions of the oxidant. A viscoelastic stress problem is solved
to account for the mechanical deformation of the structure resulting from both initial or old
stresses and from the surface reactions. Given the local mechanical displacements and the
local material consumption rates, the velocity of the surface of each region is determined and
extended into the entire volume. This extension velocity is used to solve the level set equation

∂ϕ

∂t
+ v · ∇ϕ = 0 .

The level set functions for all regions are utilized to construct a boundary fitted mesh: at the
end of the entire process step for an etching or deposition process and at the end of each time
step for an oxidation or silicide growth process.

Our meshing algorithm combines the tasks of robust mesh generation with the filtering
and correction of small scale noise and topology errors that may be present in the input
description or the solution of the level set equations. This makes the algorithm well suited
for 3D process simulation.

The mesh construction always starts by generating an initial grid. We allow the user to
specify grid lines, by default we construct the grid lines by using all coordinates, provided by
the user: all corners of geometry objects, mask corners and contact end points.

During the mesh refinement, a binary tree of mesh elements is constructed. If an element
satisfies one of the refinement criteria it is split in an edge midpoint along one of the coordinate
axes. The values of the level set functions in the corners of an element defines the regions to
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which the corner is assigned. If several level set functions provide the same maximum value
in a corner, the corner is assigned to several regions. The assignment of corners to regions is
used to control refinement at interfaces, to restrict refinements to certain regions and to pick
appropriate field values during the data interpolation. Extrapolation of level set functions
along edges is used to account for thin regions, since otherwise they might be lost after the
meshing is finished.

Once all refinement is done, the boundary fitted mesh is constructed from the leaf elements
of the tree using several stages.

In a first stage refinement is propagated to separate dangling points from unterminated
refinements and interfaces: subdivided edges must not be cut by an interface.

In the second stage the edges are cut by interfaces. The sets of regions, identified for the
end points of an edge are checked. If the two sets are disjoint, an edge cut is computed, based
on the maximum intersection of two level set functions inside the edge. If the intersection
point is too close to one of the end points, the level set function values and the regions stored
for the end point are adjusted. Otherwise a new mesh point is inserted at the cut. After this
step every edge can be assigned to at least one region.

In the third stage faces of the elements are triangulated using a generic triangulation
that accounts for all points on the perimeter and inside of the face. The region information,
stored for the corners is used to detect if the face is intersected by a triple line (intersection
of three regions). The location of the triple line intersection is calculated as the position of
the intersection of the three level set functions and is inserted to the face. Additionally the
user may assist the mesher by supplying the exact location of ridges and triple lines (very
important lines, VIL).

If a point is inserted to a face, it is connected to all points on the perimeter of the face.
After this step all faces of the mesh elements can be assigned to at least one region.

The fourth stage consists of testing the volume tessellation of the elements. Based on the
regions of the corners, the elements are tested for the presence of intersections of triple lines.
If an intersection of triple lines is detected, it will be inserted in the interior of the element.
Additionally the user may assist the mesher by supplying the exact location of the triple line
intersection or corner (very important point, VIP).

After constructing all elements, a region is assigned to each of the sub-elements. The
assignment utilizes available unambiguous region information for corners, edges, faces or the
element. If no unambiguous information is available (e.g. on a Null patch), the element is
assigned to the region with the maximum level set function in the centroid of the elements.

Once the construction of a boundary fitted mesh is finished, the mesh element quality is
enhanced by a Delaunizer. The mesh points on interfaces and the corners of the bricks are
transferred to the Delaunizer, the faces of the brick elements are flagged as protected and the
faces between elements of different regions are flagged as interface.

The Delaunay algorithm establishes first a basic Delaunay mesh for the points defined
by the mesh. Then it builds a conforming Delaunay triangulation by inserting mesh points
into the protected faces and interfaces. Special tests are applied that guarantee that the
control volumes are properly bounded by the interface faces.
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Macromodeling of Microdevices:

Virtual Prototyping by Predictive Simulation

Gerhard Wachutka (München)

The rapid progress in microsystems technology is increasingly supported by MEMS-specific
modeling methodologies and dedicated simulation tools. These do not only enable the visu-
alization of fabrication processes and operational principles, but they also assist the designer
in making decisions with a view to finding optimized microstructures under technological
and economical constraints. Currently strong efforts are being made towards simulation plat-
forms for the predictive simulation of microsystems, i.e. the virtual fabrication and virtual

experimentation and characterization on the computer.
We discuss the most important aspects and practicable methodologies for setting up physi-

cally-based consistent microdevice and full system models for the effort-economizing and yet
accurate numerical simulation of mechatronical microsensors and actuators and microsystems
built up of them. In this framework, we demonstrate the consistent treatment of coupled fields
and coupled energy and signal domains required for deriving micromechatronical acromodels
from the continuous field level, leading to the concept of full system mixed-level simulation,
and we also address some important issues to be focussed on for the reliable validation and
accurate calibration of the models.

The adequate formal representation of the full system description is provided in terms of
a finite network description in combination with an appropriate analog hardware description
language such as VHDL-AMS or Verilog-A. This makes it possible to code the models of
all the individual system components in a generic and uniform way and to assemble the full
system model by linking the constituent parts on the same descriptional level.

A multitude of computational results obtained for elementary and complex microstructures
such as highly perforated plates are in excellent agreement with accurate 3D-Navier-Stokes
FEM calculations and, thus, corroborate the practicality and quality of this approach to
predictive simulation.
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Simulation of High-Power Semiconductor Lasers

with WIAS-TeSCA

Hans Wenzel (Berlin)

High-power semiconductor lasers are needed for a number of applications, such as for pumping
of solid-state lasers and optical fiber amplifiers, nonlinear optical frequency conversion, med-
ical treatments and material processing. The different requirements concerning the emission
wavelength, optical power, beam quality and spectral purity necessitates the development of
a large variety of lasers tailored to the corresponding application. Because state-of-the-art
lasers operate at the frontiers which is physical and technological feasible, simulation is a must
in order to reach the required electro-optical parameters and to reduce technological cycles.

The two-dimensional simulator WIAS-TeSCA has two capabilities built-in to simulate lasers.
The first one varies the optical power as an additional parameter in the drift-diffusion equa-
tions for the transverse plane and calculates a look-up table to be stored in a file, which is
subsequently used by another program (written at HU Berlin and FBH) to calculate the
power-current and other characteristics. The second capability is based on the solution of an
additional balance equation for a longitudinal-averaged optical power and yields directly the
power-current characteristics.

In my talk, I will address the pros and cons of both methods presenting results on the
mode competition in ridge-waveguide lasers as well as the power-current characteristics of
broad-area lasers. Comparisons with experimental results will be also given.

27



Discrete Transparent Boundary Conditions

for Time-Dependent Systems of Schrödinger Equations

Andrea Zisowsky (Berlin)

The time evolution of the multi-band electronic states in nano-scale semiconductor het-
erostructures can be described by a system of time-dependent kp-Schrödinger equations.
Since this coupled system is usually posed on an unbounded domain, we derive transparent

boundary conditions (TBC) to confine the domain to a finite computational region. In or-
der to maintain stability and to avoid numerical reflections we construct discrete transparent

boundary conditions (DTBC) using the Z-transformation method on a completely discrete
level. Since these exact DTBCs are non-local in time and thus rather costly, we present a
sum-of-exponentials ansatz to approximate the DTBCs, that allows a very fast calculation of
the boundary terms. These results have been obtained in collaboration with Anton Arnold,
Matthias Ehrhardt and Thomas Koprucki.
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Jüngel, Ansgar
Johannes-Gutenberg-Universität Mainz
FB Mathematik und Informatik
Saarstr. 21
55099 Mainz
Germany
juengel@mathematik.uni-mainz.de

Kaiser, Hans-Christoph
Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
Germany
kaiser@wias-berlin.de

Koprucki, Thomas
Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
Germany
koprucki@wias-berlin.de

Langmach, Hartmut
Weierstraß-Institut
Mohrenstr. 39
10117 Berlin
Germany
langmach@wias-berlin.de

34



Lichtner, Mark
Humboldt-Universität zu Berlin
Institut für Mathematik
Unter den Linden 6
10099 Berlin
Germany
lichtner@mathematik.hu-berlin.de

Lobanov, Igor
Humboldt Universität zu Berlin
Institut für Mathematik
Unter den Linden 6
10099 Berlin
Germany
lobanov@mathematik.hu-berlin.de

Manzini, Chiara
Scuola Normale Superiore Pisa
Piazza dei Cavalleri 7
Pisa
Italy
c.manzini@sns.it

Matthes, Daniel
Johannes-Gutenberg-Universität Mainz
Fachbereich 17 - Mathematik & Informatik
Staudingerweg 9
55128 Mainz
Germany
matthes@mathematik.uni-mainz.de
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