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Output: Ẑ, such that 1− ε ≤ Ẑ/Z ≤ 1+ ε with probability > 1/2

Runtume: poly(n, ε−1)

Burley ’60 as a lattice version of the hard-sphere model

2



Computational phase transitions and the hard-core model

The hard-core model as a computational problem

Undirected graph G = (V,E) and parameter λ ∈ R≥0

Independent set I ∈ I
(
G
)
has weight λ|I|

Partition function: Z
(
G,λ

)
=∑

I∈I(G) λ|I|

Gibbs distribution: µG,λ(I) = λ|I|

Z(G,λ) for I ∈ I
(
G
)

λ3

Two computational Problems

Sample from the Gibbs distribution

Approximate the partition function Z(G,λ)

(Approximately)

Input: G with n vertices and max degree ∆, ε ∈ (0, 1). Parameter: λ

Output: Ẑ, such that 1− ε ≤ Ẑ/Z ≤ 1+ ε with probability > 1/2

Runtume: poly(n, ε−1)

⇕ Sinclair and Jerrum ’89

Burley ’60 as a lattice version of the hard-sphere model
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Sampling algorithm via MCMC
Idea: simulate the steps of a MC until it converges to its stationary distribution

Choose v ∈ V(G) u.a.r.
If v ∈ Xt remove it with probability 1

1+λ

If v /∈ Xt add it with probability λ
1+λ if possible

With the remaining probability do nothing

We can easily show that µ is the stationary dis-
tribution of this MC.

If it converges to ε-close after poly(n, ε−1) steps
we are done

Dyer and Greenhil ’00, Vigoda ’01 showed that this is true when λ < 2
∆−2

They used a path coupling argument

3



Computational phase transitions and the hard-core model

Hard-core model PT on ∆-regular trees

· · ·

4



Computational phase transitions and the hard-core model

Hard-core model PT on ∆-regular trees

· · ·

The hard-core model exhibits a phase tran-
sition at

λc(∆) =
(∆− 1)∆−1
(∆− 2)∆ ≈ e

∆

(uniqueness vs non-uniqueness of the
Gibbs measure) Kelly ’85

4



Computational phase transitions and the hard-core model

Hard-core model PT on ∆-regular trees

· · ·

The hard-core model exhibits a phase tran-
sition at

λc(∆) =
(∆− 1)∆−1
(∆− 2)∆ ≈ e

∆

(uniqueness vs non-uniqueness of the
Gibbs measure) Kelly ’85

Many results at early 00’s showing that
MC’s mix slowly (in exponential time), for
λ >> λc(∆) in various graphs

4



Computational phase transitions and the hard-core model

Hard-core model PT on ∆-regular trees

· · ·

The hard-core model exhibits a phase tran-
sition at

λc(∆) =
(∆− 1)∆−1
(∆− 2)∆ ≈ e

∆

(uniqueness vs non-uniqueness of the
Gibbs measure) Kelly ’85

Many results at early 00’s showing that
MC’s mix slowly (in exponential time), for
λ >> λc(∆) in various graphs

It was conjectured that λc(∆) is a threshold
for themixing time of the MC (rapidmixing
vs torpid mixing) for all graphs Sokal ’00
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|Pµ(v ∈ I | τ)− Pµ(v ∈ I | τ′)| ≤ Ce−dT(v,τ̸=τ′)

for independent set configurations τ, τ′.

More importantly gave a method of showing
this for every graph ofmax degree ∆, bymap-
ping it onto a rooted tree

We can compute the marginal probability
of the root of a tree under µ by recursion

Exponential decay ⇒ we can cut off
Weitz’s tree at logarithmic depth

logn

This results to an algorithm for comput-
ing the partition function in O(nlog∆) for
bounded degree graphs
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SSM ⇒ rapid mixing of glauber dynamics for λ < λc(∆)

On trees Glauber dynamics are fast mixing for all G,λ (Martinelli, Sinclair
and Weitz ’04)

On random ∆-regular bipartite graphs Glauber dynamics have exponen-
tial mixing time when λ > λc(∆) (Mossel, Weitz, Wormald ’09)

Moreover, on these graphs when λ > λc(∆) the system is with high proba-
bility in one of two phases
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Sly ’10, Galanis et al. ’11: When λ > λc(∆) it is NP-hard to compute the
partition function

Idea: Reduce from MaxCut
Input: G

Reduction: G′

For each edge uv connect left
part of the gadget for u to
the left part of the gadget for
v with “many” edges and the
same for the right parts

Sampling an independent set when λ > λc∆ can be ineterpreted as a Max-
Cut solution (w.h.p)
The hardcore model undergoes a computational phase transition at the
tree threshold λc(∆) ≈ e∆−1

7



Computational phase transitions and the hard-core model

Complex λ and Barvinok’s method

Let us view Z(G,λ) =∑n
i=0 aiλi as a polynomial where λ ∈ C

8



Computational phase transitions and the hard-core model

Complex λ and Barvinok’s method

Let us view Z(G,λ) =∑n
i=0 aiλi as a polynomial where λ ∈ C

Shearer ’85: Z has no zeros (and its logarithm is analytic) when

|λ| < λ∗ = (∆− 1)∆−1
∆∆

< λc(∆)

8



Computational phase transitions and the hard-core model

Complex λ and Barvinok’s method

Let us view Z(G,λ) =∑n
i=0 aiλi as a polynomial where λ ∈ C

Shearer ’85: Z has no zeros (and its logarithm is analytic) when

|λ| < λ∗ = (∆− 1)∆−1
∆∆

< λc(∆)
Barvinok ’15: The taylor series expansion of logZ

Converges when |λ| < λ∗

The i-th term can be computed using the number of connected sub-
graphs of G of size ≤ i

Computing up to logn terms yields an ε-additive approximation for
logZ

8



Computational phase transitions and the hard-core model

Complex λ and Barvinok’s method

Let us view Z(G,λ) =∑n
i=0 aiλi as a polynomial where λ ∈ C

Shearer ’85: Z has no zeros (and its logarithm is analytic) when

|λ| < λ∗ = (∆− 1)∆−1
∆∆

< λc(∆)
Barvinok ’15: The taylor series expansion of logZ

Converges when |λ| < λ∗

The i-th term can be computed using the number of connected sub-
graphs of G of size ≤ i

Computing up to logn terms yields an ε-additive approximation for
logZ

This yields an O(nlogn) approximation algorithm for Z

8



Computational phase transitions and the hard-core model

Complex λ and Barvinok’s method

Let us view Z(G,λ) =∑n
i=0 aiλi as a polynomial where λ ∈ C

Shearer ’85: Z has no zeros (and its logarithm is analytic) when

|λ| < λ∗ = (∆− 1)∆−1
∆∆

< λc(∆)
Barvinok ’15: The taylor series expansion of logZ

Converges when |λ| < λ∗

The i-th term can be computed using the number of connected sub-
graphs of G of size ≤ i

Computing up to logn terms yields an ε-additive approximation for
logZ

This yields an O(nlogn) approximation algorithm for Z
Patel and Regts ’17: on graphs of max degree ∆ we can ennumerate
their connected subgraphs in O(nlog∆)-time
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The picture on the complex plane

λ∗ λc

Shearer ’85
Peters and Regts ’17
Bencs and Csikvári ’18

Zero-free regions by:

Bezáková et al. ’18: Hardness
of approximation outside the cardioid

Buys ’21: existence of zeros inside
the cardioid

de Boer et al. ’21: zeros imply
hardness of approximation
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map Glauber dynamics to random walk on a simplicial complex

investgate spectrum via local walks and influence between vertices
This yields O(nc) mixing time when λ < λc(∆)

Diaconis and Strook ’91 Themixing time of a MC can be bounded by∼ γ−1
2 ,

where γ2 is the second eigenvalue of its transition matrix

Chen, Liu and Vigoda ’20: Mixing time in O(n2+ϵ)

Chen, Liu and Vigoda ’21: Mixing time in O(n logn)

Chen, Feng, Yin and Zhang ’22: Mixing time in O(n2 logn) and ∆ = ∆(n)
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Perfect sampling

Feng, Guo and Yin ’22, Anand and Jerrum ’22

When G has subexponential growth

SSM ⇒ perfect sampling in O(n) time

Very high level idea:
Choose a vertex u.a.r. and update its state using the correct marginal
distribution
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Results on Gibbs point processes

paper potentials regime running time type
hard-sphere

hard-sphere

repulsive

randomized

randomized

deterministic

randomized

deterministic

randomized

smooth, repulsive
with bounded range

repulsive with
bounded range

λ < e/CϕR

λ < e/CϕR

λ < e/Cϕ

λ < e/∆ϕ

λ < e/∆ϕ

poly
(
vol (V)

)
Õ
(
vol (V)4

)

Õ
(
vol (V)4

)
Õ
(
vol (V)3

)
vol (V)O(log(vol(V)))

vol (V)O(log(vol(V))2)

ε-approximation of partition functions:

Friedrich et al.
’21

Friedrich et al.
’22

Friedrich et al.
’22
Michelen et al.
’22

Jenssen et al.
’22

repulsive with
bounded range

λ < e/∆ϕ perfect
sampler

Õ
(
vol (V)

)Anand et al.
’23

16



Computational phase transitions and the hard-core model

Results on Gibbs point processes

paper potentials regime running time type
hard-sphere

hard-sphere

repulsive

randomized

randomized

deterministic

randomized

deterministic

randomized

smooth, repulsive
with bounded range

repulsive with
bounded range

λ < e/CϕR

λ < e/CϕR

λ < e/Cϕ

λ < e/∆ϕ

λ < e/∆ϕ

poly
(
vol (V)

)
Õ
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Gρ = (Vρ,Eρ) λρ = λ
ρd
= λvol(V)|Vρ|

intuition: limρ→∞Z
(
Gρ,λρ

)
= ΞV (ϕR,λ)

Friedrich et al. 2022:
∣∣ΞV (ϕR,λ)− Z

(
Gρ,λρ

)∣∣ ≤ vol(V)1/d
ρ · ΞV (ϕR,λ)

2. for λ < e
CϕR

we have λρ <
e

∆Gρ
≈ λ∗ (∆Gρ

)1. for ρ ∈ Θ
(
vol (V)1/d

)
we have |Vρ| ∈ Θ

(
vol (V)2

)
and ∆Gρ

∈ Θ
(
vol (V)

)Observations:
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Z
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(
vol (V)2

)
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Theorem:
Let Y = Y1× · · · ×Ym and f : Y → R≥0. If, for all yyy,y(i)y(i)y(i) ∈ Y that differ only at
position i, ∣∣∣f (yyy)− f (y(i)y(i)y(i))

∣∣∣ ≤ cimin{f (yyy), f (y(i)y(i)y(i))}
with C :=∑

i c2i < 1 then
Pν

[∣∣f − Eν

[
f
]∣∣ ≥ εEν

[
f
]]

≤ C · ε−2

for all ε > 0 and product distributions ν on Y.
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Repulsive potentials: assembling the pieces

Theorem: For n ≥ Θ
(
vol (V)2 δ−1ε−2

)
it holds that

P
[∣∣Z (

G(xxx,uuu),λn(λ)
)
− E

[
Z
(
G(xxx,uuu),λn(λ)

)]∣∣ ≥ εE
[
Z
(
G(xxx,uuu),λn(λ)

)]]
≤ δ.
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Computational phase transitions and the hard-core model

Perfect sampling

Efficient perfect sampling for GPPs:

Huber ’12: perfect sampler for finite-range and repulsive if λ < 2
Cϕ

Guo et al. ’18: perfect sampler for hard-sphere model if λ < 1√
2CϕR
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Computational phase transitions and the hard-core model

Perfect sampling

Bounded-range repulsive potentials under SSM
(with Konrad Anand, Marcus Pappik and Will Perkins)

Idea: adapt perfect samping algorithm for discrete spin systems by
Feng et al. ’21 and combine it with Bernoulli factories

Efficient perfect sampling for GPPs:

Huber ’12: perfect sampler for finite-range and repulsive if λ < 2
Cϕ

Guo et al. ’18: perfect sampler for hard-sphere model if λ < 1√
2CϕR
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