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= P: computational problems for which we can find a solution efficiently
(e.g. Sorting integers, MinCut)

® NP: computational problems for which, given a solution, we can verify
it efficiently (e.g. Satisfiability, MaxCut)

Efficiently: in polynomially many steps in the size of the input

Given a computational problem C we want to characterise its complexity

® Tractable (C € P): there is an algorithm that solves it in polynomial
time

m Intractable (NP-hard): there is a polynomial-time reduction from a
known NP-hard problem to C

Spin systems — computational problems to solve efficiently
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Sample from the Gibbs distribution
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Gibbs distribution: (/) = Z(}\THA) for I ez (G)

Two computational Problems

Sample from the Gibbs distribution(Approximately)
Approximate the partition function Z(G, A)
® |nput: G with n vertices and max degree A, ¢ € (0,1). Parameter: A
® Output: Z, such that 1 — ¢ <Z/Z < 1 + ¢ with probability > 1/2
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Sampling algorithm via MCMC
Idea: simulate the steps of a MC until it converges to its stationary distribution

Choose v € V(G) u.a.r.

If v € X; remove it with probability 3+

If v ¢ X; add it with probability 2 if possible
With the remaining probability do nothing

= \We can easily show that u is the stationary dis-
tribution of this MC.

= |f it converges to e-close after poly(n, 1) steps
we are done

Dyer and Greenhil ‘00, Vigoda ‘01 showed that this is true when A < <25

They used a path coupling argument
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sition at

B (A . 1)A—1 N E
(A=2)2 T A
(uniqueness vs non-uniqgueness of the
Gibbs measure) Kelly '85

Ac(A)

Many results at early 00's showing that
MC’s mix slowly (in exponential time), for

A >> Ac(A) in various graphs
It was conjectured that A.(A) is a threshold
for the mixing time of the MC (rapid mixing

vs torpid mixing) for all graphs Sokal '00
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Ac(A). That is
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for independent set configurations T, 7'.

logn

. More importantly gave a method of showing
. this for every graph of max degree A, by map-
ping it onto a rooted tree

...................................... We can compute the marginal probability

of the root of a tree under u by recursion
Exponential decay = we can cut off
Weitz’'s tree at logarithmic depth

This results to an algorithm for comput-
ing the partition function in O(n'°92) for
. bounded degree graphs
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When the graph has subexponential growth:
SSM = rapid mixing of glauber dynamics for A < Ac(A)

On random A-reqgular bipartite graphs Glauber dynamics have exponen-
tial mixing time when A > A-(A) (Mossel, Weitz, Wormald '09)

Moreover, on these graphs when A > A.(A) the system is with high proba-
bility in one of two phases
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Idea: Reduce from MaxCut
Input: G

Reduction: G’

For each edge uv connect left
part of the gadget for u to
the left part of the gadget for
v with “many” edges and the
same for the right parts

Sampling an independent set when A > A.A can be ineterpreted as a Max-
Cut solution (w.h.p)
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Sly 10, Galanis et al. '11: When A > A.(A) it is NP-hard to compute the
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Reduction: G’

For each edge uv connect left
part of the gadget for u to
the left part of the gadget for
v with “many” edges and the
same for the right parts

Cut solution (w.h.p)
The hardcore model undergoes a computational phase transition at the
tree threshold Ac(A) ~ eA—1
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Shearer '85: Z has no zeros (and its logarithm is analytic) when

A — 1)A-1
Al < A" = ( AA) < Ac(A)

Barvinok '15: The taylor series expansion of logZ
= Converges when |A| < A*

= The /-th term can be computed using the number of connected sub-
graphs of G of size <

= Computing up to logn terms yields an e-additive approximation for
logZ

This yields an O(n'°9") approximation algorithm for Z

Patel and Regts '17: on graphs of max degree A we can ennumerate
their connected subgraphs in O(n'°94)-time

Computational phase transitions and the hard-core model 8



R EEEEE—————————
The picture on the complex plane ﬂHasso

Plattnher
Institut

Computational phase transitions and the hard-core model 9



R EEEEE—————————
The picture on the complex plane ﬂHasso

Plattnher
Institut

Zero-free regions by:
Shearer '85

Peters and Regts '17
Bencs and Csikvari '18

0.3 }\
C

Computational phase transitions and the hard-core model 9



R EEEEE—————————
The picture on the complex plane ﬂHasso

Plattnher
Institut

Zero-free regions by:
Shearer '85

Peters and Regts '17
Bencs and Csikvari '18

Bezdkova et al. '18: Hardness
of approximation outside the cardioid

Ac

Computational phase transitions and the hard-core model 9



The picture on the complex plane

Hasso
Plattnher
Institut

Computational phase transitions and the hard-core model

Zero-free regions by:
Shearer '85

Peters and Regts '17
Bencs and Csikvari '18

Bezdkova et al. '18: Hardness
of approximation outside the cardioid

Buys "21: existence of zeros inside
the cardioid



The picture on the complex plane

Hasso
Plattner
Institut

Computational phase transitions and the hard-core model

Zero-free regions by:
Shearer '85

Peters and Regts '17
Bencs and Csikvari '18

Bezakova et al. '18: Hardness
of approximation outside the cardioid

Buys "21: existence of zeros inside
the cardioid

de Boer et al. '21: zeros imply
hardness of approximation
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Diaconis and Strook ‘91 The mixing time of a MC can be bounded by ~ ygl,
where v- is the second eigenvalue of its transition matrix

Anari et al '20
= map Glauber dynamics to random walk on a simplicial complex

B nvestgate spectrum via local walks and influence between vertices
This yields O(n¢) mixing time when A < A(A)

Chen, Liu and Vigoda ’'20: Mixing time in O(n?*¢)
Chen, Liu and Vigoda '21: Mixing time in O(nlogn)

Chen, Feng, Yin and Zhang '22: Mixing time in O(n?logn) and A = A(n)
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When G has subexponential growth

SSM = perfect sampling in O(n) time
Feng, Guo and Yin '22, Anand and Jerrum '22

Very high level idea:

Choose a vertex u.a.r. and update its state using the correct marginal
distribution
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0 if dist(x,y) >R

Pr(X,y) = {oo if dist(x,y) <R

Temperedness constant:

Co = SUPxcRd {/
yeRd

hard-sphere model:  Cg, = vol (B (R))
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Meeron "70:
e analyticity and uniquness for repulsive potentials for A < C%p

Helmuth et al. '20:
e strong spatial mixing and uniqueness of hard-sphere model for A < %
R

Michelen et al. '20:
e unigueness and zero-freeness for repulsive potentials for A < C%

Michelen et al. 21.:
e unigueness and zero-freeness for repulsive potentials for A < A%

Michelen et al. '22:
e strong spatial mixing for bounded-range repulsive potentials for A < A%
Potential-weighted "connective constant": A, <(C,

best known bound is for the hard-sphere model: Ay, < (1 —(1/8)+1) Cy,
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c-approximation of partition functions:
paper potentials regime | running time type
Friedrich et al. hard-sphere A < e/Cyp, poly (vol (V)) randomized
21
Friedrich et al. hard-sphere A < e/Cy, O (vol (V)“) randomized
22

vol (V)@(leg(vol(¥)) I deterministic

Friedrich et al.

55 repulsive A <e/Cq O (vol (V)“) randomized
’I\g|2chelen etall  repulsive with A< e/Ay O (vol (V)3) randomized
bounded range

Jenssen et al] smooth, repulsive A<e/Ay | vol (v)olleatvol)??)] deterministic
'22 with bounded range

Anand et al. repulsive with A< e/A O (vol (V)) perfect
‘23 bounded range sampler
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c-approximation of partition functions:

paper potentials regime | running time type

Friedrich et al.

21

hard-sphere

poly (vol (V)) randomized

Friedrich et al.

22

hard-sphere

O (vol (V)“) randomized

vol (V)@(leg(vol(¥)) I deterministic

Friedrich et al.

‘22

Michelen et al.

repulsive randomized

O (vol (V)“)

repulsive with A<e/A O (vol (V)3 randomized
' ¢
22 bounded range ( )
Jenssen et al] smooth, repulsive A<e/Ay | vol (V)O(lealvolv)?) | deterministic
'22 with bounded range
Anand et al. repulsive with A< e/A O (vol (V)) perfect
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Basic idea: (V,A,R) —® (G,,7A,) suchthatZ (G, A,) = Zv (dg,A)
V . o
H —\) } ) V,: contains vertex vy for each grid point x
. 3

E,. edge between vy,v, iff x # y and
dist (x,y) <R

<

) Go = (V,, Ey) Ao =25 = NG

intuition: |limg_..Z (G, \y) = Zv (g, A)

CIN
N7
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pERyg
Basic idea: (V,A,R) —® (G,,7A,) suchthatZ (G, A,) = Zv (dg,A)

V
’ /TN V,: contains vertex vy for each grid point x

K L
RPN

Q;g; Gp = (Vp:Ep) A = % — }\V(|)\I/(pY)

intuition: |lim,_..Z (G, A,) = Zv (g, A)

|

E,. edge between vy,v, iff x # y and
dist (x,y) <R

%
NI

Friedrich et al. 2022: Sy (dr,A) — Z (G, Ap) | < O = (4, )
Observations:
1. forpe® (vol (V)l/d) we have |V,| € © (vol (V)Z) and Ag, € © (vol (V)
2. for A < %R we have A, < AiGp ~ N (Ag,)
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Problems with general repulsive potentials:
adversarial potentials —® randomize vertices

soft interactions —» randomize edges
Given V, ¢, Aand n € N,

X, random graph model ({7

‘~~~--"j~ x: choose x1,---, xp ~ U(V) (uniform) i.i.d.
e X u: for i < j choose u;; ~ U[0, 1] i.i.d.
°
°
AV °
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soft interactions —» randomize edges
Given V, ¢, Aand n € N,
X; random graph model ({7

Uij <1 — e X)) . .
/= X: choose x1,---, X, ~ U(V) (uniform) i.i.d.

u: fori<jchoose u;; ~ U[0, 1] i.i.d.

output G(x,u): connect v;, v; iff u;; <1 — e ¢XiX)

vol (V)
n

weight: An(A) = A

\%

What can we say about Z (G(x, u),Ay(7))?
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Lemma: E [Z (G(x,u),An(A))] = Zy (¢, A) forn > © <V0| (V)2>

Does Z (G(x,u),\,(A)) concentrate around its expectation?

Observation: function of independent random variables

Idea: McDiarmid’s inequality (a.k.a. bounded differences) x

Requirement: function needs to be c-Lipschitz w.r.t. Hamming distance
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Does Z (G(x,u),\,(A)) concentrate around its expectation?
Observation: function of independent random variables

Observation: Z (G(x,u),An(A)) exhibits small relative differences
(IZ—-Z2'| <c(n) -min{Z,Z'} for c(n) — 0)
Theorem:

Let Yy =1 x---xYmand f:Y — Rug. If, for ally,y? ¢ y that differ only at
position i,

fly) - fly®)| < ¢min{f(y), fy®™))
with C:=Y",c? < 1 then

Py [|f —Ey [f]| > eE, [f]] <C-e*

for all ¢ > 0 and product distributions v on ).
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Observation: function of independent random variables

Observation: Z (G(x, u), \,(A)) exhibits small relative differences
(£ —-2Z'| <c(n) -min{Z,Z'} for c(n) — 0)
Fheerems- Corollary of Efron-Stein inequality:

Let Yy =1 x---xYmand f:Y — Rug. If, for ally,y? ¢ y that differ only at
position i,
fly) — Fiy?)| < cimin{f(y), fy®)}  <—
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Theorem: Forn > 0© (vol (V)? 6—15—2) it holds that

P [|Z (G(x,u),A\n(A)) —E [Z (G(x,U), \n(N))]| = €E [Z (G(x, u), A\n(A))]] < 6.

Recall that E [Z (G(x,u), A\n(A))] =~ Zv (¢, A) for n > © (vol (V)Z).

Corollary: Forn >0 (vol (V)? 5—15—2) it holds that
P [|Z (G, An(N) —Zv (b, A)] > eZv (b, A)] < b.
By Chernoff’s inequality: \,(A) < A*(Ag) (w.h.p.) if A < C%
Algorithm (sketch):
1.draw G ~ (), forn € © (vol (V)Z) sufficiently large
2. if An(A) < A* (Ag): output an approx. of Z (G, An(A))

else: goto 1
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Perfect sampling “ Hasso

Efficient perfect sampling for GPPs:

= Huber '12: perfect sampler for finite-range and repulsive if A < C%)

® Guo et al. '18: perfect sampler for hard-sphere model if A < fC¢
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Efficient perfect sampling for GPPs:

= Huber '12: perfect sampler for finite-range and repulsive if A < Ci

® Guo et al. '18: perfect sampler for hard-sphere model if A < fC¢

Bounded-range repulsive potentials under SSM
(with Konrad Anand, Marcus Pappik and Will Perkins)
Perfect sampler if A < £ in O (vol(V))

Computational phase transitions and the hard-core model 21



Plattner
Institut

Perfect sampling ﬂ Hasso

Efficient perfect sampling for GPPs:

= Huber '12: perfect sampler for finite-range and repulsive if A < Ci

® Guo et al. '18: perfect sampler for hard-sphere model if A < fC¢

Bounded-range repulsive potentials under SSM
(with Konrad Anand, Marcus Pappik and Will Perkins)
Perfect sampler if A < £ in O (vol(V))

Idea: adapt perfect samping algorithm for discrete spin systems by
Feng et al. '21 and combine it with Bernoulli factories
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