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From dynamics to thermodynamics



Some inspiration from reading

▸ Zemanski: Heat and Thermodynamics (my book of 1st year
undergraduate in physics)

▸ Fermi: Thermodynamics

▸ Callen: Thermodynamics, and introduction of
thermostatistics. (axiomatic approach)

▸ Lawrence Evans: Entropy and Partial Differential Equation
(unpublished notes, can be found in his web site)
http://math.berkeley.edu/ evans/entropy.and.PDE.pdf
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From dynamics to thermodynamics

Thermodynamic crash course

Some inspiration from reading



A one dimensional system

Mechanical Equilibrium:
L = L(τ)

Thermodynamic Equilibrium

L = L(τ, θ)

θ is the temperature
Empirical definition of temperature.
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From dynamics to thermodynamics

Thermodynamic crash course

A one dimensional system

Draw picture bar, L, τ etc.
If a system A remains in equilibrium when isolated and placed in
thermal contact first with system B and then with system C, the
equilibrium of B and C will not be disturbed when they are placed in
contact with each other.
Here “remains in equilibrium” means that L(τ) does not change. We
also use here the concept of isolated system and thermal contact, that
require respectively the notion of adiabatic wall and conductive wall.
The system A and B are separated by an adiabatic wall if they can have
different equilibrium relation between L and T . They are separated by a
conductive wall if the must have the same equilibrium relation.

One could see all these as circular definition, in fact all this is equivalent

as postulating the existence of adiabatic and diathermic (thermally

conductive) walls that are defined as devices that have the above

properties. From all this we obtain the existence of the parameter θ that

we call temperature (see in Zemanski a very detailed discussion of this

point).
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Differential changes of equilibrium states

Performing (slowly) a differential change of tension dτ or a change
of temperature dθ, the equilibrium length will change

dL = (
∂L

∂θ
)
τ

dθ + (
∂L

∂τ
)
θ

dτ (1)

What does it mean physically?

▸ Reversible or quasi-static transformations

▸ Irreversible trasformations
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From dynamics to thermodynamics

Thermodynamic crash course

Differential changes of equilibrium states

One of the main issues in discussing foundations of thermodynamics is
the physical meaning of these differential changes of equilibrium states.
In principle, as we actually change the tension of the cable, the system
will go into a sequence of non-equilibrium states before to relax to the
new equilibrium. But, quoting Zemanski, thermodynamics does not
attempt to deal with any problem involving the rate at which the process
takes place. And, always quoting Zemanski:
Every infinitesimal in thermodynamics must satisfy the requirement that
it represents a change in a quantity which is small with respect to the
quantity itself and large in comparison with the effect produced by the
behavior of few molecules.



Differential changes of equilibrium states

Performing (slowly) a differential change of tension dτ or a change
of temperature dθ, the equilibrium length will change

dL = (
∂L

∂θ
)
τ

dθ + (
∂L

∂τ
)
θ

dτ (1)

What does it mean physically?

▸ Reversible or quasi-static transformations

▸ Irreversible trasformations

S. Olla - CEREMADE From dynamics to thermodynamics

Differential changes of equilibrium states

Performing (slowly) a differential change of tension dτ or a change
of temperature dθ, the equilibrium length will change

dL = (
∂L

∂θ
)
τ

dθ + (
∂L

∂τ
)
θ

dτ (1)

What does it mean physically?

▸ Reversible or quasi-static transformations

▸ Irreversible trasformations

2
0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Thermodynamic crash course

Differential changes of equilibrium states

One of the main issues in discussing foundations of thermodynamics is
the physical meaning of these differential changes of equilibrium states.
In principle, as we actually change the tension of the cable, the system
will go into a sequence of non-equilibrium states before to relax to the
new equilibrium. But, quoting Zemanski, thermodynamics does not
attempt to deal with any problem involving the rate at which the process
takes place. And, always quoting Zemanski:
Every infinitesimal in thermodynamics must satisfy the requirement that
it represents a change in a quantity which is small with respect to the
quantity itself and large in comparison with the effect produced by the
behavior of few molecules.



Work → Energy

From the mechanics we have the notion of infinitesimal work done
by the force/tension τ

dW = τdL

that change the energy U of the system.

If the system is thermally isolated, we have adiabatic work and

dU = τdL

U(L, θ)
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From dynamics to thermodynamics

Thermodynamic crash course

Work → Energy

This permit to define the energy (called internal energy) as a function of
the state of the system: U(L, θ).

So positive work, dW > 0, means the external force tau has done work

nto the system and that energy of the system is increased.
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Non-adiabatic work: heat

If the work is not adiabatic, there is exchange of energy with the
system that is not due to the work of the (external) force τ . This
is called heat

dU = τdL + d/Q

τdL and d/Q are not exact differential, and the total work or total
heat exchanged during a thermodynamic transformation:

W = ∫

f

i
τdL, Q = ∫

f

i
d/Q

depend from the particular path chosen, i.e. from the particular
procedure (isothermal, isochore....) that takes from one equilibrium
i to the equilibrium f.
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Non-adiabatic work: heat



1st principle of thermodynamics

dU = τdL + d/Q

This is usually only referred as a statement on conservation of
energy.

But the mechanical interpretation is deeper: we separate
here the change of energy due to

▸ the external work τdL doen by a known, slow, controllable,
macroscopic force τ ,

▸ from the work done by unknown, fast, microscopic forces, we
call heat this work.
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Thermodynamic crash course

1st principle of thermodynamics

I think this is the main conceptual point of point thermodynamics, in

particular in its connection to the microscopic mechanics. This

decomposition contains the separation of scales (time and space)

between microscopic and macroscopic.
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Thermodynamic transformations and Cycles

▸ reversible or quasi-static tranformations:
Often is used the T − L diagrams.

In the third transformation the work is given by the integral
along the cycle

∆W = ∮ τdL (2)

that by the first principle will be equal to −∆Q, where ∆Q is
the total heat produced by the process during the cycle and
transmitted to the exterior (or absorbed by the exterior,
depending from the sign).

S. Olla - CEREMADE From dynamics to thermodynamics

Thermodynamic transformations and Cycles

▸ reversible or quasi-static tranformations:
Often is used the T − L diagrams.

In the third transformation the work is given by the integral
along the cycle

∆W = ∮ τdL (2)

that by the first principle will be equal to −∆Q, where ∆Q is
the total heat produced by the process during the cycle and
transmitted to the exterior (or absorbed by the exterior,
depending from the sign).

2
0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Thermodynamic crash course

Thermodynamic transformations and Cycles

We can represent a finite thermodynamic transformation by integration

along path of the differential forms defined above. Each choice of a path

defines a different thermodynamic process or quasi static transformation.

Depending on the type of transformation it may be interesting to make a

different choice of the coordinates to represent it graphically. The first

diagram on the left describe a quasi-static transformation for lenght Li to

Lf . If this is happening for example as a free expansion means that the

tension T is decreasing, but it could be increasing if instead T is pulling

with respect the mechanical equilibrium. The second diagram represent a

compression from Lf to Li , and the third a so called cycle, returning to

the original state. The shaded area represent the work done during the

transformation (taken with the negative sign in the second diagram).



Irreversible themodynamic transformations

In principle any transformation that is not quasi-static, but brings
the system from an initial equilibrium state i = (L0, τ0) to a final
state f = (L1, τ1).

Thermodynamics does not attempt to describe
in detail these transformations, nor investigate their time scale.
Still funny pictures appears in the thermodynamic books:

from the Fermi’s Thermodynamics

from the Zemanski Heat and Thermodynamics
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Special quasi-static transformations

▸ Isothermal:
System in contact with a thermostat while the external force
τ is doing work:

d/W = τdL = τ (
∂L

∂τ
)
θ

dτ = −d/Q + dU (3)
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Special quasi-static transformations

While a force perform work on the system, this is in contact with a
thermostat, a huge system in equilibrium at a given temperature θ, so
big that the exchange of heat with our elastic does not perturb the
equilibrium state of the thermostat. Ideally a thermostat is an infinite
system. During a isothermal transformation only the length L changes as
effect of the change of the tension dT , and the infinitesimal exchanges of
heat and work are related by (??).
The isothermal transformations defines isothermal lines parametrized by
the temperature (each temperature defines an isothermal line in the τ −L
plane.



Special quasi–static Transformations

▸ Adiabatic: d/Q = 0.

d/W = τdL = dU

dτ

dL
= −

∂LU

∂τU
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Special quasi–static Transformations

▸ Isocore: Thermodynamic transformation at fixed length L.
Consequently d/W = 0, no work if perfomed to or by the
system, and

d/Q = dU

▸ Isobar: Thermodynamic transformation at fixed tension L,
dτ = 0
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Carnot Cycles

A→ B , C → D isothermal
B → C , D → A adiabatic

W = ∮ τdL = Qh −Qc = −∮ d/Q
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Carnot Cycles

W > 0 means that has done a work W on the exterior (heat machine).

W < 0 is a refrigerator.
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Carnot Cycles



Second Principle of Thermodynamics

Lord Kelvin statement: if W > 0 then Q2 > 0 and Q1 > 0:

Clausius Statement: if W = 0, then Q2 = Q1 > 0:
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Equivalence of Kelvin and Clausius statement
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Equivalence of Kelvin and Clausius statement

if Kelvin statement is not true, we would contradict Clausius, we could

use a perfectly efficient carnot machine to make work on another

reversible Carnot machine and obtain just transfer of heat from cold to

warm.



Kelvin’s theorem

For any Carnot cycle operating between temperatures θh and θc ,
the ratio Qh

Qc
depends only from (θh, θc) and there exist a universal

function g(θ) such that

Qh

Qc
=

g(θh)

g(θc)

T = g(θ) absolute temperature
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Thermodynamic Entropy

From Kelvin’s theorem:

0 =
Qh

Th
−

Qc

Tc
= ∮

d/Q

T

Extension to any cycle C : ∮c
d/Q
T = 0
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Thermodynamic Entropy

There exists a function S of the thermodynamic state such that

dS =
d/Q

T

If we choose the extensive coordinates U,L:

dS(U,L) = −
τ

T
dL +

1

T
dU

▸ In isothermal transformation ∆S = ∆Q/T .

▸ Adiabatic quasistatic transformations are isoentropic.
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Axiomatic approach

Extensive quantities: M,U,L = (mass, energy, length)

There exist an open cone set Γ ⊂ R+ ×R+ ×R, and (M,U,L) ∈ Γ.
There exists a C 1–function

S(M,U,L) ∶ Γ→ R

such that

▸ S is concave,

▸ ∂S
∂U > 0,

▸ S is positively homogeneous of degree 1:

S(λM, λU, λL) = λS(M,U,L), λ > 0
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Axiomatic approach

We can proceed differently and make a more mathematical set-up of the
thermodynamics with an axiomatic approach where the extensive
quantities U,L are taken as basic thermodynamic coordinates to identify
an equilibrium state and entropy is assumed as a state function satisfying
certain properties.
It is convenient in this context to add another macroscopic extensive
parameter M > 0 that represent the mass of the system. This function S
contains all the informatuon about the thermodynamics of the system.

One can proceed in inverse way as before and construct Carnot cycles and

deduce Kelvin or the equivalent Clausius statement of the second law.
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Axiomatic Approach

Choose S and L as thermodynamic coordinates,
there exists a function U(M,S ,L) such that ∂U

∂S > 0.

T =
∂U

∂S
temperature

τ =
∂U

∂L
tension

U(M,S ,L) is homogeneous of degree 1 (extensive), and T , τ are
homogeneous of degree 0 (intensive).
Since M is constant in most transformations we can set M = 1 or
just omit it if not necessary.
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Irreversible Transformations

For irreversible thermodynamic transformations (not quasi-static),
we find in thermodynamics books the expression

∮
d/Q

T
< 0 Clausius Inequality

or

∫

B

A

d/Q

T
≤ S(B) − S(A)

Not very clear the meaning of this.
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Irreversible Transformations

Of course there is a huge literature on this, see Evans notes for a short

review.



Isothermal Irreversible Transformations

A = (L0,T ), B = (L1,T )

Q ≤ T [S(B) − S(A)]

By the first principle: W = [U(B) −U(A)] −Q

−W ≤ −[U(B) −U(A)] +T [S(B) − S(A)].

F (L,T ) = inf
U

{U −TS(U,L)} free energy (4)

U(L,T ) = ∂T (
1

T
F (L,T )) (5)

F = U −TS convex function of L.
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Isothermal Irreversible Transformations

For an isothermal transformation, it is more clear what it means that it is
irreversible. The system it is always in contact to a thermostat at
temperature T and during the transformation it exchange the heat Q
with it. Going from the state A to the state B, this implies that A and B
are at the same temperature. It is convenient here to use (L,T ) as
thermodynamic coordinates

This is an upper bound of the amount of heat that can be exchanged

during any quasi static isothermal transformation.this is a limit about the

amount of work that can be obtained from such transformation. It is

then interesting to define the free energy F (L,T ) as
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Irreversible Transformations

For isothermal transformations, F = U −TS

W ≥ F (B) − F (A) = ∆F

For adiabatic transformations Q = 0. Adiabatic reversible processes
are always isoentropic. But there exists non reversible adiabatic
processes for which

0 = Q < S(B) − S(A)

d/Q = TdS

has a meaning only in quasistatic processes.
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So in a reversible isothermal trasformation we have equality and the work

done by the system is equal to the difference of the free energy. In a non

reversible one, the difference in free energy is only a bound.
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Extended thermodynamics

Two systems: (M1,U1,L1), (M2,U2,L2).
If attached they are not in equilibrium.
We can define the total entropy as

S(M1,U1,L1) + S(M2,U2,L2)

By concavity and 1-homogeneity:
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Extended thermodynamics

A possible definition of a non-equilibrium state is to consider the system,
in our case the wire, as spatially extended, and with different parts of the
system in different equilibrium states. For example our wire could be
constituted by two different wires, that have the same constitutive
materials (i.e. they are make by the same material) and they have mass
M1 and M2 respectively, but they are prepared in two different
equilibrium state, parametrized by the extensive quantities:
(U1,L1), (U2,L2). The internal energy of the total system composed by
the two wires glued together, will be U1 +U2, while its length will be
L1 + L2. Even though the wire is not in equilibrium, we can say that also
the other extensive quantities are given by the sum of the corresponding
values of each constitutive part in equilibrium, i.e. in the example the
entropy will be given by S(M1,U1,L1) + S(M2,U2,L2).

If the thermodynamic evolution is governed by a dynamics conserving

Energy (adiabatic) and length (isocore), and it reach global equilibrium,

then the final entropy is higher than the initial sum of the two entropies.
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Irreversible transformations from non-equilibrium

Second principle of thermodynamics intended as a strict increase of
the entropy if the system undergoes a non-reversible transformation

⇑

Property of this transformation to bring the system towards global
equilibrium
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Irreversible transformations from non-equilibrium



Local equilibrium thermodynamic states

x ∈ [0,M], U(x), r(x).

L(x) = ∫
x

0
r(x ′)dx ′ displacement of x

Ltot = ∫

M

0
r(x)dx , Utot = ∫

M

0
U(x)dx , Stot = ∫

M

0
S(1,U(x), r(x))dx .

Stot ≤ MS(1,M−1Utot ,M
−1
Ltot) = S(M,Utot ,Ltot)
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Thermodynamic crash course

Local equilibrium thermodynamic states

By successive partition, we can go to a continuous description where at
each material point x is associated a system in equilibrium at energy
U(x) and lenght (stretch) r(x)

Usual thermodynamics does not worry about time scales where the

thermodynamic processes happens. But in the extended thermodynamics

we can consider time evolutions of these profiles (typically evolving

following some partial differential equations). The actual time scale in

which these evolution occurs with respect to the microscopic dynamivcs

of the atoms, will be the subject of the hydrodynamic limits that we will

study in the later chapters.
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Example: adiabatic evolution by Euler Equations

x ∈ [0,1]. The velocity of the material point x is

π(x , t) = ∂tL(x , t)

the force acting on the material element x is

∂xτ(U(x , t),L(x , t))

the total energy of x is

E(x , t) = U(x , t) +
π(x , t)2

2

∂tr = ∂xπ

∂tπ = ∂xτ

∂tE = ∂x(τπ)

π(0, t) = 0, τ(1, t) = τ̄(t)
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∂tr = ∂xπ

∂tπ = ∂xτ

∂tE = ∂x(τπ)

∂tU = τ∂xπ

d

dt
S(U(x , t), r(x , t)) =

1

T
∂tU −

τ

T
∂tr = 0

After shock appears, Entropy should increase:

d

dt
S(U(x , t), r(x , t)) ≥ 0

Uniqueness of the weak entropy solution is an open problem.
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This is an hyperbolic non-linear system of PDE, for smooth initial
conditipns will stay smooth up to a certain time then it will develop
shocks and the solution should be indended in the weak sense.
In the smooth regime the evolution is isoentropic in the sense...
When shocks comes out, we have to consider weak solutions and
uniqueness can be lost. Until the solution is smooth, entropy is constant
(per material point) and the equation is completely reversible in time.
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Example: isothermal transformations by diffusion equations

τ̄(x , t) = τ(r(x , t),T )

∂tr(x , t) = ∂2
x τ̄(x , t)

∂x r(0, t) = 0, τ̄(1, t) = τ1

free energy of the nonequilibrium profile {r(x , t), x ∈ [0,1]}:

F(t) = ∫
1

0
F (r(x , t),T ) dx , (F = U −TS) (6)

d

dt
F(t) = −∫

1

0
(∂x τ̄(x , t))2 dx + τ1∂xτ(1, t)
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Example: isothermal transformations by diffusion
equations

The rubber is immersed in a very viscous liquid at temperature T .
Velocity are dunped down by the viscosity. We will see later how to
obtain this diffusion equation from a microscopic model.

The convenient coordinates are L,T .
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Isothermal by diffusion

d

dt
L(t) = ∫

1

0
∂xx τ̄(x , t) dx = ∂xτ(1, t)

i.e.

F(t) − F(0) = τ1 (L(t) − L(0)) − ∫
t

0
ds ∫

1

0
(∂x τ̄(x , s))2 dx

= W − ∫

t

0
ds ∫

1

0
(∂x τ̄(x , s))2 dx

initial global equilibrium r(x ,0) = r0, τ0 = τ(r0,T ).
t →∞ we have r(x , t) → r1, τ1 = τ(r1,T ).

F (r1,T ) − F (r0,T ) = τ1(r1 − r0) − ∫

∞

0
ds ∫

1

0
(∂x τ̄(x , t))2 dx

∆F < W
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Isothermal by diffusion

Notice that τ1 (L(t) − L(0)) is the work done up to time t by the force
τ1, i.e. equal to W .
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Irreversible Isothermal Cycle

initial global equilibrium r(x ,0) = r0, τ0 = τ(r0,T ).

t →∞ we have r(x , t) → r1, τ1 = τ(r1,T ).

F (r1,T )−F (r0,T ) = τ1(r1−r0)−∫

∞

0
ds ∫

1

0
(∂xτ(r(x , t),T ))

2 dx

Inverse transformation: initial global equilibrium

r(x ,0) = r1, τ1 = τ(r1,T ),
and we apply the tension τ0 = τ(r0,T ).
t →∞ we have r̃(x , t) → r0, τ0 = τ(r0,T ).

F (r0,T )−F (r1,T ) = τ0(r0−r1)−∫

∞

0
ds ∫

1

0
(∂xτ(r̃(x , t),T ))

2 dx
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Irreversible Isothermal Cycle

Summing up we have a cycle and

W = (τ1 − τ0)(r1 − r0)

= ∫

∞

0
ds ∫

1

0
[(∂xτ(r(x , t),T ))

2
+ (∂xτ(r̃(x , t),T ))

2
] dx

this work is gone to the thermostat as heat.
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Reversible quasi static isothermal transformation

Pull slowly: τ̄(t) smooth and τ̄(0) = τ0, τ̄(1) = τ1

∂tr ε(x , t) = ∂2
x τ(r ε(x , t))

∂x r ε(0, t) = 0, τ(r ε(1, t)) = τ̄(t/ε)

after the limit as t →∞

F (r1,T ) − F (r0,T ) = ∫

∞

0
τ(r ε(1, εt)∂Lε(εt)dt

+ε∫
∞

0
ds ∫

1

0
(∂xτ(r(x , εt),T ))

2 dx

= W + ε∫
∞

0
ds ∫

1

0
(∂xτ(r(x , εt),T ))

2 dx

and take ε→ 0: ∆F = W .
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Reversible quasi static isothermal transformation

In order to obtain the reversible (quasi static) transformation, we need to
push or pool very slowly, with a tension τ̄(t/ε) with τ̄ that goes smoothly
from τ0 to τ1.

then we have to wait an infinite time in this diffusive time scale, then still

rescale time to slow down, and we obtain the reversible transformation

where work done is equal to the change in free energy!
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Local Central Limit Theorem

Theorem
ν(dx) centered probability on Rr , σ2 < ∞

φ(k) its characteristic function,

▸ ∣φ(k)∣ < 1 if k ≠ 0

▸ ∃n0 ≥ 1 such that ∣φ∣n0 is integrable.

Xj i.i.d. with common law ν,
Let g̃n(x) density of (X1 + ⋅ ⋅ ⋅ +Xn)/

√
n.

Then

lim
n→∞

g̃n(x) =
e−x⋅(σ2)−1x/2

(2π)d/2
√

det σ2
.
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Local Large Deviations Theorem

Ŝn =
1
n ∑

n
j=1 Xj on Rr has density fn(x).

Theorem

lim
n→∞

1

n
log fn(y) = −I (y) . (7)

I (y) = sup
λ

{λ ⋅ y − log∫ eλ⋅xdν(x)}
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Local Large Deviations Theorem

Proof.

fn(x , y) =
en(x+y)λ

M(λ)n
fn(x + y) = en(I(y)+λx)fn(x + y)

It follows that
fn(y) = e−nI(y)fn(0, y)

◻



Tilting

Ω measurable topological space (Rd ,Sd , . . . )

α positive measure (Lebesgue, ...)

g ∶ Ω→ Rr,

Z(λ) = log ∫Ω eλ⋅g(ω)dα(ω)

Z∗(x) = supλ {λ ⋅ x −Z(λ)}.

x̄ = ∇Z(λ̄)

λ̄ = ∇Z
∗
(x̄)

dαλ(ω) = eλ⋅g−Z(λ)dα(ω) tilted probability measure on Ω
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preliminaries: the art of tilting

Tilting

Z(λ) is convex and lower semicontinuous (it maybe not continuous).
Again strict convexity follows by assuming that every component of g is
not constant. Furthermore DZ is convex.
The Fenchel-Legendre transform is now defined by

With respect to αλ, g can be seen as a vector valued random variable

with average ∇Z(λ) and covariance matrix HessZ(λ) = ∇2Z(λ). Also

now HessZ(λ) > 0 just because g is not constant.
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α positive measure (Lebesgue, ...)

g ∶ Ω→ Rr,

Z(λ) = log ∫Ω eλ⋅g(ω)dα(ω)

Z∗(x) = supλ {λ ⋅ x −Z(λ)}.

x̄ = ∇Z(λ̄)

λ̄ = ∇Z
∗
(x̄)

dαλ(ω) = eλ⋅g−Z(λ)dα(ω) tilted probability measure on Ω
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Tilting
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Large deviation rate function, under αn
λ on Ωn, for

g(n)
=
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In particular notice that the rate function Iλ(x) corresponding to the

tilted measure αλ is given by
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Conditioning

α positive measure on Ω, g ∶ Ω→ Rr .

On Ωn, with the product measure dαn = ⊗jdα(ωj),
define

g(n)
=

1

n

n

∑
j=1

g(ωj)

On the surface (microcanonical)

Σn(y) = {(ω1, . . . , ωn) ∈ Ωn
∶ g(n)

= y} .

define a finite (not normalized) measure γn(⋅,y) by

∫
Ωn

F (g(n)
)G(ω1, . . . , ωn)dαn

(ω1, . . . , ωn)

= ∫Rr
F (y)∫

Σn(y)
G(ω1, . . . , ωn)dγn(ω1, . . . , ωn,y)
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Tilting and conditioning

Define the (microcanonical) volume

Wn(y) = ∫
Σn(y)

dγn(ω1, . . . , ωn; y)

in the scalar case equal to

Wn(y) =
d

dy ∫g(n)≤y
dαn

(ω1, . . . , ωn).

Under αn
λ, g(n) = ∑j g(ωj)/n has probability density

fn,λ(y) = en[λ⋅y−Z(λ)]Wn(y)

and the conditional probability of αn
mbλ on Σn(y) is given by

dα
(n)
λ ( ⋅ ∣g(n)

= y) = dγn(⋅,y)/Wn(y)
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Boltzmann formula

Wn(y) = e−n[λ⋅y−Z(λ)]fn,λ(y)

that imply

lim
n→∞

1

n
log Wn(y) = −Z∗(y)
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Equivalence of Ensembles

y = ∇Z(λ).

Theorem
There exists a constant C > 0 such that for any ε > 0

lim
n→∞

1

n
log∫

Σn(y)
1[∣F (n)−∫ Fdαλ∣≥ε]dα

(n)
(ω1, . . . , ωn∣y) ≤ −Cε2. (9)

Theorem
Let F (ω1, . . . , ωk) a bounded continuous function on Ωk and
y ∈ Do

Z∗ , then

lim
n→∞∫Σn(y)

F (ω1, . . . , ωk)dα(n)
(ω1, . . . ,dωn∣y)

= ∫
Ωk

F (ω1, . . . , ωk)αλ(dω1) . . . αλ(dωk)
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Equivalence of Ensembles

Along these line, with a bit more work one can prove the following

convergence on conditional measure to the unconditioned oneThis

include the so-called Poincare lemma (even though Poncare had nothing

to do with this statement, that goes back to Maxwell): Choose Ω = R
and g(x) = x2. The uniform measure on the n-dimensional sphere with

radius
√

n converges, in terms of the finite dimensional distributions, to

the product of gaussian measures e−x2
i /2/

√
2π.
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Chain of Oscillators

- m = [nM], M = macroscopic mass.

- (qj ,pj) ∈ R2, j = 1, . . . ,m.

- V (qi+1 − qi), V (r) → +∞.

Z(λ,β) ∶= ∫ e−βV (r)+λr dr < +∞ ∀β > 0, λ ∈ R.

{rj = qj − qj−1 − a, j = 1, . . . ,m}, and

H =
m

∑
j=1

Ej Ej =
1

2
p2
j +V (rj), j = 1, . . . ,m
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Chain of Oscillators

We study a system of m = [nM] anharmonic oscillators, where M > 0 is a

positive parameter corresponding to the macroscopic mass of the total

system. The particles are denoted by j = 1, . . .m. We denote with

qj , j = 1, . . . ,m their positions, and with pj the corresponding momentum

(which is equal to its velocity since we assume that all particles have

mass 1). We consider first the system attached to a wall, and we set

q0 = 0,p0 = 0. Between each pair of consecutive particles (i , i + 1) there is

an anharmonic spring described by its potential energy V (qi+1 − qi). We

assume V is a positive smooth function such that V (r) → +∞ as ∣r ∣ → ∞

and such that It is convenient to work with interparticle distance as

coordinates, rather than absolute particle position, so we define

{rj = qj − qj−1 − a, j = 1, . . . ,m}.
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Chain of Oscillators

Isobar Dynamics:

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,m,

ṗj(t) = V ′
(rj+1(t)) −V ′

(rj(t)), j = 1, . . . ,m − 1,

ṗm(t) = τ −V ′
(rm(t)),

Equilibrium measures:

dαn,gc
τ,β =

m

∏
j=1

e−β(Ej−τ rj)
√

2πβ−1Z(βτ, β)
drjdpj ∀β > 0.
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The microscopic model: chain of anharmonic oscillators

Chain of Oscillators

At the other end of the chain we apply a constant force τ ∈ R on the

particle n (tension). The position of the particle m is given by

qn = ∑
m
j=1 rj . We consider the isobar Hamiltonian dynamics:
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ṗm(t) = τ −V ′
(rm(t)),

Equilibrium measures:

dαn,gc
τ,β =

m

∏
j=1

e−β(Ej−τ rj)
√

2πβ−1Z(βτ, β)
drjdpj ∀β > 0.

S. Olla - CEREMADE From dynamics to thermodynamics

Chain of Oscillators

Isobar Dynamics:
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dαn
τ,β =

m

∏
j=1

e−β(Ej−τ rj)
√

2πβ−1Z(βτ, β)
drjdpj =

m

∏
j=1

eλ⋅g(ri ,pi)−Z(λ)drjdpj .

Ω = R2, dα = drdp,

g(r ,p) = E(p, r), λ = (−β,−τ/β),

Z(λ) = log [Z(βτ, β)
√

2π
β ].

Microcanonical surface: M > 0,U > 0,L ∈ R,

Σ̃m(M,MU,ML) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(r1,p1, . . . , rm,pm) ∶
1

n

m

∑
j=1

Ej = MU,
1

n

m

∑
j=1

rj = ML

⎫⎪⎪
⎬
⎪⎪⎭

= Σm(U,L) = {(r1,p1, . . . , rm,pm) ∶ E
(m)

= U, r (m)
= L} .

S. Olla - CEREMADE From dynamics to thermodynamics

dαn
τ,β =

m

∏
j=1

e−β(Ej−τ rj)
√

2πβ−1Z(βτ, β)
drjdpj =

m

∏
j=1

eλ⋅g(ri ,pi)−Z(λ)drjdpj .

Ω = R2, dα = drdp,

g(r ,p) = E(p, r), λ = (−β,−τ/β),

Z(λ) = log [Z(βτ, β)
√

2π
β ].

Microcanonical surface: M > 0,U > 0,L ∈ R,

Σ̃m(M,MU,ML) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(r1,p1, . . . , rm,pm) ∶
1

n

m

∑
j=1

Ej = MU,
1

n

m

∑
j=1

rj = ML

⎫⎪⎪
⎬
⎪⎪⎭

= Σm(U,L) = {(r1,p1, . . . , rm,pm) ∶ E
(m)

= U, r (m)
= L} .2

0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Statistical Mechanics

The microscopic model: chain of anharmonic oscillators



Entropy!

Σm(U,L) = {(r1,p1, . . . , rm,pm) ∶ E
(m)

= U, r (m)
= L} .

Wm(U,L) = ∫
Σm(U,L)

γn(dr1,dp1, . . . ,dpm; U,L)

The limit

S(M,MU,ML) ∶= lim
n→∞

1

n
log Wm(U,L) = MS(1,U,L)

exists and is concave and homogeneous of degree 1, and

S(U,L) ∶= S(1,U,L) = inf
λ,β>0

{−λL + βU − log (Z(λ,β)
√

2πβ−1)} .
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Thermodynamic relations

U,L are here the coordinates:

τβ = λ = −
∂S

∂L
, β =

∂S

∂U

They can be inverted:

L(λ,β) =
∂ log Z(λ,β)

∂λ
= ∫ r

eλr−βV (r)

Z(λ,β)
dr = ∫ rj dµgc

τ,β

U(λ,β) = −
∂ log (Z(λ,β)

√
2π/β)

∂β
= ∫ V (r)

eλr−βV (r)

Z(λ,β)
dr +

1

2β

= ∫ Ej dµgc
τ,β
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Example: harmonic chain

V (r) = r 2, so that, for L2 ≤ 2U,
Σ̃m(M,MU,ML) is the 2m − 2-dimensional sphere (even
dimension) of radius

√
m(U − L2/2) , and γm the uniform measure

and

Wm(U,L) =
(2π)m−1[m(U − L2/2)]m−3/2

2 ⋅ 4 . . . (2m − 4)
= 2

πm−1[m(U − L2/2)]m−3/2

Γ(m − 1)

S(M,MU,ML) = M (1 + logπ + log [U − L
2
/2]) = MS(U,L)

β = T−1
=
∂S

∂U
= [U − L

2
/2]

−1
, τ = −T

∂S

∂L
= L

S = 1 + log(πT ), F (L,T ) = U −T−1S , ∂LF = ∂LU = L
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Entropy depends only on the temperature in the harmonic chain!

Free energy depends on the lenght only through the internal energy, so L

is the thermodynamic force (the derivative of the free energy F with

respect to the lenght L), not influenced by temperature.
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Isocore dynamics: microcanonical measure.

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,m − 1,

ṗj(t) = V ′
(rj+1(t)) −V ′

(rj(t)), j = 1, . . . ,m − 1,

rm(t) = mL −
m−1

∑
j=1

rj(t) .

H = ∑j Ej = mU and ∑m
j=1 rj = mL are conserved.

Corresponding conditioned measure (microcanonical) are
stationary.
Usually not the only one! Other conservation laws can be present.
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Instead of applying a tension τ , we fis the ends of the chain between two

walls of distance mL
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Local Equilibrium measures

Definition
Given two profiles β(y) > 0, τ(y), y ∈ [0,1], we say that the
sequence of probability measures µn on R2n has the local
equilibrium property (with respect to the profiles β(⋅), τ(⋅)) if for
any k > 0 and y ∈ (0,1),

lim
n→∞

µn∣([ny],[ny]+k) = µ
k,gc
τ(y),β(y)
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Local Equilibrium measures

The Gibbs distributions defined in the above sections are also called
equilibrium distributions for the dynamics. Studying the non-equilibrium
behaviour we need the concept of local equilibrium distributions. These
are probability distributions that have some asymptotic properties when
the system became large (n →∞), vaguely speaking locally they look like
Gibbs measure. We need a precise mathematical definition, that will be
useful later for proving macroscopic behaviour of the system.
Sometimes we will need some weaker definition of local equilibrium (for
example relaxing the pointwise convergence in y).

It is important here to understand that local equilibrium is a property of

a sequence of probability measures.



Example: Local Gibbs

n

∏
j=1

e−β(j/n)(Ej−τ(j/n)rj)
√

2πβ(j/n)−1Z(β(j/n)τ(j/n), β(j/n))
drjdpj = gn

τ(⋅),β(⋅)

n

∏
j=1

drjdpj

or 1st order perturbations:

e
1
n ∑j Fj(rj−h,pj−h,...,rj+h,pj+h)gn

τ(⋅),β(⋅)

n

∏
j=1

drjdpj (10)

with Fj local functions.
As in extended thermodynamics, define entropy of the local
equilibrium

S(r(⋅),u(⋅)) = ∫
1

0
S(r(y),u(y)) dy

where r(y),u(y) are computed from τ(y), β(y)
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Example: Local Gibbs

The most simple example of local equilibrium sequence is given by the
local Gibbs measures:
Of course are local equilibrium sequence also small order perturbation of
this sequence like
1st order corrections are very important to understand heat conduction
and other phenomenaOf course we do not have a Boltzmann’s formula
for this entropy. The search of a Boltzmann formula out of equilibrium is
a long story...

The question is: do we need a Boltzmann formula out of equilibrium?
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Isothermal dynamics

Langevin thermostats in each site:

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,n,

dpj(t) = (V ′
(rj+1(t)) −V ′

(rj(t)))dt − pj(t)dt +
√
βdwj(t),

j = 1, . . . ,n − 1,

dpn(t) = (τ1 −V ′
(rn(t)))dt − pn(t)dt +

√
βdwn(t)

wj(t) i.i.d. standard Wiener processes.

dαn
β,τ1

is the only stationary probability.
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Langevin thermostats are attached to each particle. They maintain the

temperature of each site close to β−1 = T , in the sence that if there

where not other interactions they would converge exponentially fast to a

distribution of the velocities given by the corresponding maxwellian
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Non-equilibrium isothermal dynamics

We start instead with dαn
β,τ0

, for τ0 ≠ τ1.

Eventually we converge to dαn
β,τ1

. At which time
scale? How?

Empirical Distribution: diffusive scaling

µn(t)(G) =
1

n

n

∑
i=1

G (
i

n
) ri(n2t)

µn(0) → r0dy , with τ(r0, β
−1) = τ0.
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Isothermal diffusion limit

Theorem

1

n

n

∑
i=1

G (
i

n
) ri(n2t) Ð→

n→∞∫
1

0
G(y)r(y , t)dy

in probability, with r(y , t) solution of

∂tr(y , t) = ∂2
y τ(r(y , t),T )

∂y r(0, t) = 0, τ(r(1, t),T ) = τ1

with T = β−1.
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This is the isothermal non-equilibrium transformation we describe in
thermodynamic before.



Isothermal Diffusion: local equilibrium

Local Gibbs:

gn
τ(⋅,t) =∏

i

e−β(Ei−τ(i/n,t)ri+
1
n
(∂y τ)(i/n)pi)−Z(τ(i/n,t))

∂t fn(t, r1,p1, . . . ) = n2Lfn(t, r1,p1, . . . )

L = A + S

A = ∑
i

(pi − pi−1)∂ri + (V ′
(ri+1) −V ′

(ri))∂pi + τ1∂pn

S = ∑
i

β−1∂2
pi
− pi∂pi

fn(t) ∼ gn
τ(⋅,t) in some sense.
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Isothermal Diffusion: local equilibrium

a first order correction to the local Gibbs is needed here: the average of
the velocities are a bit tilted because of the gradient in the tension, the
intuition is that velocities are small because damped, but of the order 1/n
and pushed by the gradient of the tension.

the real distribution of the particles at time n2t is given by the solution of

the forward equation
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Relative Entropy

Hn(t) = ∫R2n
fn(t) log

⎛

⎝

fn(t)

gn
τ(⋅,t)

⎞

⎠
∏
i

dpidri

If Hn(t) ∼ o(n) then fn(t) has the local equilibrium property:

1

n
∑
j

G(i/n)F (ri+1,pi+1, . . . , ri+k ,pi+k) Ð→
n→∞∫

1

0
G(y) ⟨F ⟩τ(y ,t) dy

in fn(t)-probability.

∀δ > 0

∫ F fn(t)dpdr ≤
1

δ
∫ eδF gn

τ(⋅,t)dpdr +
Hn(t)

δ
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Relative Entropy

Add remark of relative entropy in probability, connected to LD, and
thermodynamic entropy.
local equilibrium property in a bit weaker sense than pointwise: for any
local function F of the configurations and a test function G on the
macroscopic interval.

this can be proven by Large deviation via the entropy inequality
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Relative Entropy method

Compute

dHn(t)

dt
≤ ∫

n2L∗gn
t − ∂tgn

t

gn
t

fn(t)dαn
0,β

= ∫ ∑
i

(∂tτ)(i/n, t) [V ′
(ri) − τ(r(i/n, t)) −

dτ

dr
(ri − r(i/n, t))] fn(t)dαn

0,β

+o(n)

In the harmonic case: V ′(ri) = ri , τ(r) = r , and dHn(t)
dt ≤ o(n)

in anharmonic case we need

1

k

k

∑
j=i

V ′
(ri+j) ∼ τ

⎛

⎝

1

k

k

∑
j=i

ri+j ,T
⎞

⎠
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if we can justify

1

k

k

∑
j=i

V ′
(ri+j) ∼ τ

⎛

⎝

1

k

k

∑
j=i

ri+j ,T
⎞

⎠

then we are left with

∫ ∑
i

(∂tτ)(i/n, t)[τ (r̄i ,k) − τ(r(i/n, t)) −
dτ

dr
(r̄i ,k − r(i/n, t))]fn(t)dαn

0,β

≤ C ∫ ∑
i

(r̄i ,k − r(i/n, t))2 fn(t)dαn
0,β

+ o(k ,n)

ri ,k =
1

k

k

∑
j=1

ri+j
o(k ,n)

n
Ð→

n→∞,k→∞
0.
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⎛
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⎠
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relative entropy (end)

Use again the relative entropy inequality:

≤
C

δ
log∫ eδ∑i(r̄i,k−r(i/n,t))2

gn(t)dαn
0,β + C

Hn(t)

δ
+ o(n, k)

≤ C
Hn(t)

δ
+ o1(n, k)

and conclude by Gronwall that Hn(t) ∼ o(n).
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1-block estimate

lim
k→∞

lim
n→∞∫

t

0
∫R2n

1

n
∑
i

RRRRRRRRRRR

1

k

k

∑
j=i

V ′
(ri+j) − τ

⎛

⎝

1

k

k

∑
j=i

ri+j ,T
⎞

⎠

RRRRRRRRRRR

fn(t)dαn
0,β = 0

1

t ∫
t

0
fn(t) = f̄n

∑
i
∫

(∂pi f̄n)
2

f̄n
dαn

0,β ≤
C

n

Ô⇒ f̄n∣
[i ,i+k]

Ð→
n→∞

f̃ (i ,k)
(r1, . . . , rk)

independent of the p’s!
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1-block estimate

We have here already some information about the local equilibrium: the

velocities are automatically distributed by a maxwellian at temperature

T = β−1.
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1-block estimate

f̄n∣
[i ,i+k]

αk
β,0 Ð→

n→∞
f̃ (i ,k)αk

β,0 Ð→
k→∞

νi

νi(drj ,dpj , j ∈ Z) stationary measure for the infinite Hamiltonian
dynamics: for any local smooth function F , Fi its translation by i ,

∫ AF dνi = ∫ (A + S)F dνi = lim
n→∞∫

LFi f̄ndαn
β,0

= lim
n→∞

1

n2t ∫
t

0
ds ∫ n2LFi fn(s)dαn

β,0

= lim
n→∞

1

n2t ∫
Fi [fn(t) − fn(0)]dαn

β,0 = 0.

Ô⇒ dνi = ∫ dα∞β,τ d ν̃i(τ)
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1-block estimate

This argument shows that just from the presence of the thermostats

(noisy), the local distributions are maxwellian on the velocities with the

right temperature, and in the positions is a convex combinations of Gibbs

of different tensions τ . The hard part is to show that this convex

combination is a delta on the right one given by the solution of the

macroscopic equation.



Adiabatic dynamics

Balistic dynamics:

ṙj(t) = pj(t) − pj−1(t), j = 1, . . . ,n,

dpj(t) = (V ′
(rj+1(t)) −V ′

(rj(t)))dt, j = 1, . . . ,n − 1,

dpn(t) = (τ1 −V ′
(rn(t)))dt

Deterministic dynamics: difficult!

Locally momentum and energy are also conserved:
Ô⇒ hyperbolic scaling and (non-linear) wave
equations.
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Hyperbolic Adiabatic Dynamics

3 conserved quantities:

stretch Rn(t)[G ] = 1
n ∑i G(i/n)ri(nt)

momentum πn(t)[G ] = 1
n ∑i G(i/n)pi(nt)

energy en(t)[G ] = 1
n ∑i G(i/n)Ei(nt)

(Rn(t), πn(t), en(t)) Ð→ (r(x , t)dx , π(x , t)dx , e(x , t)dx)

∂tr = ∂xπ

∂tπ = ∂xτ

∂te = ∂x(τπ)

∂r(0, t) = 0, τ(r(1, t),U(1, t)) = τ1
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Hyperbolic Adiabatic Dynamics

we expect the convergence to the hyperbolic system of PDE
this is an open problem also in the smooth regime of the equations, and
it is not true for the harmonic case.

Its validity depends from the ergodic properties of the corresponding

infinite dynamics.
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Ergodicity of the infinite dynamics

Consider the dynamics of the infinite system:

ṙj(t) = pj(t) − pj−1(t), j ∈ Z
dpj(t) = (V ′

(rj+1(t)) −V ′
(rj(t)))dt j ∈ Z,

We say that it is ergodic if all stationary translational invariant
probability measures locally absolutely continuous are convex
combinations of the Gibbs measures:

dαβ,π,τ =∏
j∈Z

e−βEj+πpj+τ rj−Z(β,π,τ)drjdpj

Not true for harmonic chain or any other completely integrable
system.
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Ergodicity of the infinite dynamics

Under this ergodic property, the 1-block estimate that we described

before it is possible to prove, and relative entropy method works fine at

least in the smooth regime of the macroscopic equations.



Ergodicity of the infinite dynamics

Consider the dynamics of the infinite system:
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ṙj(t) = pj(t) − pj−1(t), j ∈ Z
dpj(t) = (V ′

(rj+1(t)) −V ′
(rj(t)))dt j ∈ Z,

We say that it is ergodic if all stationary translational invariant
probability measures locally absolutely continuous are convex
combinations of the Gibbs measures:

dαβ,π,τ =∏
j∈Z

e−βEj+πpj+τ rj−Z(β,π,τ)drjdpj

Not true for harmonic chain or any other completely integrable
system.2

0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Statistical Mechanics

Adiabatic dynamics

Ergodicity of the infinite dynamics

Under this ergodic property, the 1-block estimate that we described

before it is possible to prove, and relative entropy method works fine at

least in the smooth regime of the macroscopic equations.



Velocity echeangeability

Theorem (Fritz, Funaki, Lebowitz, 1993)

if dν is a (regular) translation invariant probability on (R2)Z

stationary for the infinite dynamics and such that

dν(p∣r)

is excheangeable, then it is a convex combination of Gibbs
measures.
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Velocity echeangeability

So it should be the collision mechanism due to the non-linearities of the
dynamics, to induce this excheangeability properties of the stationary
measures.

This ergodic property seems too difficult to be proven for determnistic

dynamics, but this theorem suggest what a stochastic perturbation

should do in order to garantier the ergodicity of the infinite dynamics.



Stochastic dynamic perturbations

We search for stochastic perturbations that conserve energy,
momentum, length, and that will give the ergodic property
requested:

momentum exchange For each couple of nearest neighbor particle,
we randomly exchange momentum,
(pi ,pi+1) → (pi+1,pi), with intensity 1. The resulting
infinite dynamics has the ergodic property.

diffusive exchange of momentum Done with three body exchange.

With this stochastic perturbation, we can prove the convergence to
the Euler system of PDE, at least in the smooth regime.
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(pi ,pi+1) → (pi+1,pi), with intensity 1. The resulting
infinite dynamics has the ergodic property.

diffusive exchange of momentum Done with three body exchange.

With this stochastic perturbation, we can prove the convergence to
the Euler system of PDE, at least in the smooth regime.
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Harmonic case

If V (r) = r2

2 , we have τ(L,U) = L, and the system became

∂tr = ∂xπ

∂tπ = ∂x r

∂te = ∂x(rπ)

∂r(0, t) = 0, r(1, t) = τ1

Linear wave equation + explicit e(x , t) as function of the solution
of it.

No dissipation on the hyperbolic space-time scale.
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In the harmonic case there is no dissipation in the hyperbolic time scale,
the equation itself will not converge to equilibrium.
But we know that the stochastic mechanism makes the dynamics ergodic
and eventually the system will converge to equilibrium, but not in the
hyperbolic scale.

Observe that the coherent evolution of the energy in the equation is due

to the stochastic mechanism. Otherwise energies of each mode will be

conserved.
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Adiabatic diffusion of Energy

Adding a pinning potential U(qi) we destroy the conservation of
momentum (as we have seen with the thermostatted dynamics
with the Langevin heat bath).
Also ∑i ri is not conserved anymore, so we only condider the
diffusion of the energy, that has to happen at a diffusive
space-time scale.
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Chain of Anharmonic oscillators

pi ,qi ∈ R, i ∈ Λ, ∣Λ∣ = N or Λ = Z.

H =∑
i

[
p2
i

2
+V (qi − qi−1) +U(qj)]

= ∑
i

ei

dqi = pi dt

dpi = −∂qiH dt

dQβ =
e−βH

Zβ
dpdq β = T−1

> 0
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ei =
p2
i

2
+V (qi − qi−1) +U(qi) Energy of atom i .

ėi = (i−1,i − i ,i+1) local conservation of energy.

i ,i+1 = −piV
′
(qi+1 − qi) hamiltonian energy currents
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Non-stationary behavior

We would like to prove that

1

N
∑
i

G(i/N)ei(N2t) Ð→
N→∞∫

G(y)u(t, y)dy

with u(t, y) solution of the nonlinear heat equation:

∂tu = ∂yD(u)∂y u

with the thermal conductivity defined by the Green-Kubo formula:

D(u) = χ−1
β ∑

i∈Z
∫

∞

0
⟨i ,i+1(t)0,1(0)⟩

β
dt , β = β(u)

Not clear under which initial conditions such limit would be true
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Equilibrium Fluctuations: Linear response

Here is a theorem that has a clear and precise mathematical
statement:

Consider the system in equilibrium at temperature T = β−1, and
perturbe it at time 0 in atom 0 by adding some energy there: so
we start with the measure

dQ ′
β =

e0

< e0 >β
dQβ

We want to study the time evolution of

< ei(t) >Q′
β
= ∫ eidQ ′

β,t =
< ei(t)e0(0) >

< e0 >
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Linear response

Assuming that the corresponding limits exist, we have that

D =
κ

β2χ(β)
=
< e0 >β

χ(β)
lim
t→∞

1

t
∑
i∈Z

i2
< ei(t) >Q′

β

with χ(β) = ∑i(< eie0 >β − < ei >β< e0 >β).

In fact, using stationarity and translation invariance

< e0 >β ∑
i∈Z

i2
< ei(t) >Q′

β
= ∑

i∈Z
i2
< (ei(t) − ei(0))ei(0) >β

= 2∫
t

0
ds ∫

s

0
dτ∑

i

⟨i ,i+1(s − τ)0,1(0)⟩

Ð→
t→∞

2∫
∞

0
∑
i

⟨i ,i+1(s)0,1(0)⟩ ds
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Linearized heat equation

Define
C(i , j , t) =< ei(t)ej(0) >β − ē2

Conjecture:

NC([Nx], [Ny],N2t) Ð→
N→∞

(2πD)
−1/2 exp(−

(x − y)2

2tD
)

i.e. the limit follows the linearized heat equation

∂tC = D∂xxC

this is more challenging than proving existence for D.

S. Olla - CEREMADE From dynamics to thermodynamics

Linearized heat equation

Define
C(i , j , t) =< ei(t)ej(0) >β − ē2
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Conjecture:

NC([Nx], [Ny],N2t) Ð→
N→∞

(2πD)
−1/2 exp(−

(x − y)2

2tD
)

i.e. the limit follows the linearized heat equation

∂tC = D∂xxC

this is more challenging than proving existence for D.

2
0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Statistical Mechanics

Adiabatic dynamics

Linearized heat equation



Linearized heat equation

Define
C(i , j , t) =< ei(t)ej(0) >β − ē2
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How to prove this?

Define, for a good choice of a sequence of smooth local functions
Fn

Φn = 0,1 −D(e1 − e0) − LFn

with L the generator of the dynamics,

and pick a nice test function G(x):

1

N
∑
i ,j

G (
i

N
)F (

j

N
) [C(i , j ,N2t) − C(i , j ,0)]

=
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N
∑
i ,j

G (
i

N
)F (

j

N
) ⟨(ei(N2t) − ei(0))ej(0)⟩
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t
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∑
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N
)F (

j

N
) ⟨i ,i+1(N2s)ej(0)⟩ds
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)F (
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N
)D ⟨ei(N2s)ej(0)⟩ds
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i ,j

∇G (
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N
)F (
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N
) ⟨(N2L)τiFn(N2s)ej(0)⟩ds

+ ∫

t

0
∑
i ,j

∇G (
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N
)F (
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N
) ⟨τiΦn(N2s)ej(0)⟩ds

∼∫
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∆G (
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N
)F (
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N
)DNC(i , j ,N2t)ds
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N
)F (
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N
) ⟨τi(Fn(N2t) − Fn(0))ej(0)⟩ds
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0
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i ,j

F (
j

N
)∇G (

i

N
)⟨

1

2k
∑

∣i−l ∣≤k
τlΦn(N2s)ej(0)⟩ds
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Φn = 0,1 −D(e1 − e0) − LFn

Φ̂n,k =
1

2k
∑
∣j ∣≤k

τjΦn

By Schwarz we can bound the square of the last term by

∥F ∥
2ē2

⟨(∫

t

0
N∑

i

G ′
(

i

N
) τi Φ̂n,k(N2s)ds)

2

⟩

= C ⟨(∫

N2t

0

1

N
∑
i

G ′
(

i

N
) τi Φ̂n,k(s)ds)

2

⟩

We are left to prove that this is negligeable as N →∞, k →∞ and
n →∞.
For a deterministic hamiltonian infinite dynamics, I do not know
how to show that this variance is small.
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Stochastic dynamics perturbations

For stochastic dynamics there is a technique to prove this (in some
cases...):
Varadhan’s Non Gradient methods.

▸ S.R.S. Varadhan (1990): Non-gradient Ginzburg-Landau
conservative model (reversible).

▸ Quastel (1990): two color exclusion model (reversible).

▸ Funaki, Uchiyama, Yau (1996); Varadhan, Yau (1997):
Kawasaki dynamics(reversible).

▸ Lin Xu (NYU-PhD thesis-1993): Mean Zero Asymmetric
Simple Exclusion, non-reversible but with Sector Condition.

▸ Landim, Yau (1997), ...: Asymmetric Simple Exclusion
(graded sector condition obtained by duality methods).

▸ ....

▸ Romero (Dauphine-PhD thesis 2010): Energy conserving
momentum dynamics (non-linear vector fields, reversible).
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▸ Landim, Yau (1997), ...: Asymmetric Simple Exclusion
(graded sector condition obtained by duality methods).

▸ ....

▸ Romero (Dauphine-PhD thesis 2010): Energy conserving
momentum dynamics (non-linear vector fields, reversible).
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Varadhan’s non-gradient method

For stochastic dynamics, roughly the idea is the following:

Φn = 0,1 −DT (e1 − e0) − LFn

Φ̂n,K =
1

2k
∑

∣j ∣≤k−rΦ

τjΦn

How can the space-time variance be small?

For the finite set Λk = {−k , . . . , k}, consider the generator LΛk
,

with free B.C. The corresponding dynamics conserve the energy of
the box ∑i∈ΛK

, if the noise is sufficiently nice (ellipticity, spectral
gap ...), there will be ergodicity in the corresponding
microcanonical surface, and it will be possible to solve the equation

LΛK
uk =

1

2k

k−1

∑
i=−k

i ,i+1
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Varadhan’s non-gradient method

LΛK
uk =

1

2k

k−1

∑
i=−K

i ,i+1

going back to the full generator of the infinite dynamics:

1

2K

k−1

∑
i=−k

i ,i+1 = −(L − LΛk
)uk + Luk

It is the boundary term (L − LΛk
)uk that gives origin to the

gradient DT (ek − e−k), in the proper limit.
This requies some work and two ingredients: bounds on the
spectral gap and a sector condition.
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Chain un unpinned anharmonic oscillators with
conservative noise

Joint work with Makiko Sasada (Keio University, Tokyo).
Take U = 0 (unpinned), and

ri = qi − qi−1

Equilibrium measure are product:

dQβ =∏
i

e−β(p
2
i /2+V (ri))

Zβ
dpidri β = T−1

> 0

V ∈ C2, 0 < C− ≤ V ′′(r) ≤ C+ < +∞ .
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Energy Conserving Noise

We use the vector fields tangent to the microcanonical surface:

Yi ,j = pi∂rj −V ′
(rj)∂pi ,

Xi = Yi ,i

The Hamiltonian vector field is

A = ∑
i

(pi − pi−1)∂ri −V ′
(ri)(∂pi − ∂pi−1) = ∑

i

(Xi −Yi−1,i)

We add stochastic dynamics with generator defined by

S = ∑
i

(X 2
i +Y 2

i ,i+1)

L = A + S

It will be interesting extend this to different type of noise or
chaotic mechanism.
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Currents

ai ,i+1 = Yi ,i+1ei = −piV
′
(ri+1)

si ,i+1 = Y 2
i ,i+1ei = −p2

i V ′′
(ri+1) +V ′

(ri+1)
2

NON GRADIENT CURRENTS

In the harmonic case (V (r) = r 2/2) we have the decomposition:

0,1 = D(e1 − e0) + LF

for a homogeneous second order polynome F (r ,p) and D constant.
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Φn = 0,1 −DT (e1 − e0) − LFn

Φ̂n,K =
1

2K
∑
∣j ∣≤K

τjΦn

By a general inequality valid for all Markov processes:

⟨
⎛

⎝
∫

t

0
N∑

j

G ′
(i/N)τi Φ̂n,K(N2s)ds

⎞

⎠

2

⟩

≤ Ct ⟨∑
i

G ′
(i/N)τi Φ̂n,K , (−S)

−1
∑
i

G ′
(i/N)τi Φ̂n,K⟩

∼≤ Ct∥G ′
∥

2
L2K ⟨Φ̂n,K , (−SΛK

)
−1Φ̂n,K ⟩

We are left to prove that this is negligeable as N →∞, K →∞ and
n →∞.
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Microcanonical variance

< ⋅ >K ,E : microcanonical expectation on the energy shell

ΣK ,E = {(r1,p1, . . . , rK ,pK) ∶
K

∑
i=1

ei = KE}

Hypothesis on V Ô⇒ connected surface.

For two local functions f ,g define

⟪f ,g⟫ = lim
K→∞

1

K
⟨

k−`
∑

i=−k+`
τi f , (−SK)

−1
k−`
∑

i=−k+`
τig⟩

K ,E

We need to prove that there exists Fn such that

⟪Φn,Φn⟫ Ð→ 0

for Φn = 0,1 −D(e1 − e0) − LFn.
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variational formulas

Let Φ = X0F +Y0,1G , for some local F ,G , then

lim
K→∞

1

2k
⟨

k−`
∑

i=−k+`
τiΦ, (−SK)

−1
k−`
∑

i=−k+`
τiΦ⟩

k,E

= ⟪Φn,Φn⟫

≤ sup
(ξ0,ξ1)closed

{2 < F , ξ0
> +2 < G , ξ1

> −γ (< (ξ0
)

2
+ (ξ1

)
2
>)}

Def: (ξ0, ξ1) ∈ L2 × L2 is a closed form if

Xi(τjξ
0
) = Xj(τiξ0) Yj ,j+1(τiξ

1
) = Yi ,i+1(τjξ

1
)

Xi(τjξ
i
) = Yj ,j+1(τiξ

0
) i ≠ j , j + 1

. . .
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exact forms

We need to show that closed form are approximated (in L2(Qβ))
by exact forms:
Def: (ξ0, ξ1) ∈ L2 × L2 is an exact form if there exists F local and a
constant a ∈ R such that

ξ0
= X0(∑

i∈Z
τiF )

ξ1
= Y0,1(∑

i∈Z
τiF ) + ap0V ′

(r1)

This is proven by a careful construction, integrating the form

{ξmj , j = 1, . . . ,K ,m = 0,1}

on the microcanonical surface ΣE ,K , that has the same
cohomology of the 2K-sphere, and controlling the boundary
conditions as K →∞, with the spectral gap on SK .
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Ingredients to prove this:

▸ Spectral gap bound for SK : SG(SK) ≥ CK−2 .

▸ Sector condition: ∣ < vAu > ∣2 ≤ C < v(−S)v >< u(−S)u >.
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▸ Spectral gap bound for SK : SG(SK) ≥ CK−2 .

i.e. for any smooth local f such that < f >K ,E= 0

< f 2
>K ,E ≤ C1

K

∑
i=1

⟨(Xi f )
2⟩

K ,E
+ C2K 2

K−1

∑
i=1

⟨(Yi ,i+1f )2⟩
K ,E

Yi ,i+1 = pi∂ri+1 −V ′
(ri+1)∂pi ,

Xi = Yi ,i = pi∂ri −V ′
(ri)∂pi ,
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Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

S. Olla - CEREMADE From dynamics to thermodynamics

Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

2
0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Statistical Mechanics

Adiabatic dynamics

Sector Condition



Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

S. Olla - CEREMADE From dynamics to thermodynamics

Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

2
0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Statistical Mechanics

Adiabatic dynamics

Sector Condition



Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

S. Olla - CEREMADE From dynamics to thermodynamics

Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

2
0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Statistical Mechanics

Adiabatic dynamics

Sector Condition



Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

S. Olla - CEREMADE From dynamics to thermodynamics

Sector Condition

For any i decompose f = fi ,odd + fi ,even

fi ,odd(p) =
1

2
(f (p(i)

) − f (p)), fi ,even(p) =
1

2
(f (p(i)

) + f (p)),

with p
(i)
i = −pi and p

(i)
j = pj if j ≠ i .

⟨vAu⟩ = ∑
i

⟨v(Xi −Yi−1,i)u⟩

⟨vXiu⟩ = ⟨vi ,oddXiui ,even⟩ + ⟨vi ,evenXiui ,odd⟩

= ⟨vi ,oddXiui ,even⟩ − ⟨ui ,oddXivi ,even⟩

≤ ⟨v 2
i ,odd⟩

1/2
⟨(Xiui ,even)

2⟩
1/2

+ ⟨u2
i ,odd⟩

1/2
⟨(Xivi ,even)

2⟩
1/2

≤ C ⟨(Xiv)
2⟩

1/2
⟨(Xiu)

2⟩
1/2

+ ⟨(Xiu)
2⟩

1/2
⟨(Xiv)

2⟩
1/2

and similarly for < vYi−1,iu >.
Ô⇒ ∣ ⟨vAu⟩ ∣ ≤ C ⟨v(−S)v⟩ ⟨u(−S)u⟩.

2
0
1
2
-0

3
-1

8

From dynamics to thermodynamics

Statistical Mechanics

Adiabatic dynamics

Sector Condition



equilibrium fluctuations

Equivalently we can express the result in term of the fluctuation
field

Y N
=

1
√

N
∑
i

δi/N {ei(0) − e}

It converges in law to a delta correlated centered gaussian field Y

E [Y (F )Y (G)] = χ∫ F (y)G(y)dy

Theorem

Y N
t =

1
√

N
∑
i

δi/N {εi(N2t) − e}

converges in law to the solution of the linear SPDE

∂tY = D ∂2
y Y dt +

√
2Dχ ∂y B(y , t)
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proof of spectral gap bound

start with the martingale decomposition:

Gk = σ {e1, . . . , ek ,pk+1, rk+1, . . . ,pL, rL}

fk ∶= E [f ∣Gk], fL = fL(e1,⋯, eL)

< f 2
>L,E=

L−1

∑
k=0

< (fk − fk+1)
2
>L,E + < f 2

L >L,E

each X 2
k has his uniform spectral gap in the corresponding

microcanonical surface (Xkek = 0):

< f 2
>L,E≤ C

L−1

∑
k=0

< (Xk+1fk)
2
>L,E + < f 2

L >L,E
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proof of the spectral gap bound

Yk,k+1 = pk∂rk+1
−V ′

(rk+1)∂pk

Yk,k+1fL = pkV ′
(rk+1)(∂ek

− ∂ek+1
)fL(e1, . . . , eL)

< (Yk,k+1fL)
2
>L,E ∼ ⟨ekek+1 [(∂ek

− ∂ek+1
)fL]

2
⟩
L,E

Dirichlet form of the Ginzburg Landau model! We are left to prove
G for this GL model:

< f 2
L >L,E ≤ C2L2

L−1

∑
k=1

⟨ekek+1 [(∂ek
− ∂ek+1

)fL]
2
⟩
L,E
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proof of the spectral gap bound

The microcanonical marginal density on the energies e1, . . . , eL has
a linear behavior at large values, and not strictly convex, also the
weight ekek+1 does not allow easy telescoping arguments.

Caputo approach + a smart telescoping + the elementary
inequality

∫

1

0
g(t)2dt ≤

1

2 ∫
1

0
g ′(t)2t(1 − t)dt
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