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Physical View

B Bounded region of laminar flow. A
W Particle type space X.

B Particles of type (g incepted
with intensity 7 > 0.

B Pairs of particles collide and
coagulate according to K > 0.

position

W Particles drift at velocity u > 0.

B Particles simply flow out of the
domain from its end.

temperature
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Delocalised Model

B Avoid simulating random walks
and detecting collisions!

B Require a model for coagulation
probabilities.

B Look for simulable dynamics.

B Follow Gas DSMC approach:

H discretise space into cells,
B delocaliase coagulation
within each cell.

position

B We consider just one cell of size c=¢

. OH
i oH O 0
Az in 1-d. c=c _ —
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Existing Results

B Infinite homogeneous box, no flow:

B Boltzmann setting: Wagner 92

B Coagulation: Jeon 98, Norris 99

B Famous review by Aldous 99

B More general interactions: Eibeck & Wagner 03, Kolokoltsov book 10

W Diffusion in infinite domain: via jump process Guias 01
Bl Diffusion in infinite domain: via SDE Deaconu & Fournier 02

B Hammond, Rezakhanlou & co-workers 06-10
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Physical Applications

Example Applications:
B Particle synthesis,

B Pollutant formation,

B Precipitation/crystallisation in
clouds.

Mathematical Consequences:
B Bounded domain,

B Inflow & outflow,

B Outflow is dependent on rest of

process,

B Convergence of approximations

not covered in literature.

o

PAH molecule sizes

- -
275 125 175 225 25 35
.. Catoms

y .
' PAH molecule sizes \\

/ N

o=
25 75 125 175 225 275 325
Catoms
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One Cell Particle Systems

Need a sequence of Markov Chains to study convergence; index 7.
Replace continuum with finite computable number of particles.
Spatial cell is [0, 1], i.e. Az = 1.

Scaling factor n: Inverse of concentration represented by one computational
particle.

Coagulation = and y at rate K (z,y)/n.
Formation of new particles of type xy € X at rate nl throughout the cell.
Constant velocity u > 0 for all particles.

Particles absorbed at 1.
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Notation

B Individual particle and position an

elementof X’ = X x [0, 1].

Fock state space for the particle
systems E = [J;=, &'".

Let¢ : X’ — R and define
Y®: E — Rby
O (21,...28) = Z?:l P(x;).

X"™(t) is the E-valued process.

N (X" (t)) is the number of
particles.

X"(t,i) € X’ is the type and
location of the i-th particle.

{3}

{2} «
{1} x

(7]

Figure: The disjoint union F.
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The Generator

LetX € E, X = (X(1),...,X (N(X))), then the generators A,, satisfy

AP (X) =nl (@0, y)dy + uVi®(X)+
[0,1]

Z X(g1) + X (52)) — ¥ (X (1) — ¢ (X (42))]

K (X(jr), X (i)

[\')\»—l

j;ijszj; !
inceptions of xg at times R,

advection with velocity u,

coagulations at times U”,

exits from 1 at times S},

T will be time of any kind of jump.

R™(t), S™(t),U™(t) and T"(t) € N are defined as the respective jump
counting processes hence R™(t) + S™(t) + U™ (t) = T™(t).
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Current Work

B Overall goal is proof of convergence of the simulable particle systems to a
solution of the PBE.
B Immediate goal is relative compactness of approximating sequence via:
B construction of approximating sequence,
B martingales that converge to 0,
B compact containment,
B control of Modified Variation,

B Deviations and confidence intervals also interesting and studied by Kolokoltsov
for the classical cases mentioned previously.

B Uniqueness of limit point is an additional question.
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Non-explosion

We now have piecewise deterministic Markov processes (Davis 1993) defined by
jumps and jump rates.

Theorem

Forallt > 0 and k € N there exists A (t, k) which is O(t*) uniformly inn such

that:
(=)

Coagulation and exit events each remove one particle, hence
U™ (t) + S™(t) < R™(t), thus T™(t) < 2R"(t) and R"(t) ~ Poi(nlt). 0

E < Aot k). (1

A further, important result of Davis (1993) is that the following processes are shown
by direct calculation to be Martingales:
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Martingales

Let) € C’%’I(X "= 0103’1(/\’ x [0, 1]) then for all n the following process is a
Martingale:

Davis (1993) Theorem 31.3. O

The domain of the generator is in some sense restricted to ¢ such that ¢(-, 1) = 0.
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Notation

B Particle leaving at U;" is Z* € X.
B Particle (with position) incepted at R} is Y;* € &”.
B Lety) € Cp(X') = Cp(X x [0,1]) and define [¢)] by

[](z1,22) = (21 + 22) — Y (1) — Y (22) (One coagulation).

B A ‘self coagulation’ is given by [[¢]](x) = [¢](x, x).
B Expected coagulation effects are given by

N(X)

37 W (X (i), X (i) K.

i1,i2=1

1
T on

Ko (4)(X)

B Expected (& unwanted) self-coagulation effects are given by

N L N
Kn()(X) = o Z (Y]] (X (9) K
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Martingales

Expanding the generator gives a representation for the martingale that is easier to
use for calculations:

N(X"(t) N(X"(O))
Z W (X"(t,1)) Z b (X™(0, 1))
S"(t) N(X"(S))

+ - Z’t/i / Z uVy (X" (s,4)) ds

- — [ —Kap (X", s5)d LR (X7, 5)d
t/[071]1p(m0,y)fdy /OnIC P (X", s) s+/0 nIC U ( s)ds
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Square Convergence

Forallt > 0 and<) € Cy'(X') there exists A4(t,)) independent of n such that

E [MY(t)?] < Adt,Y),

" - n

Not proved here. O

Convergence of Simulable Processes - 22 February 2012 - Page 15 (36)



Supremum Vanishes

Forallt > 0 and € C,O3’1 (X') there exists A5 (t, ), independent of n. such that

P (sphol ) < 28

s<t e2n

Doob’s inequality O

This result has two important applications:
B Demonstates properties of weak limit points.
B As a technical tool in the remainder of the talk.

Necessary now to move to a weak point of view ...
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Measure Valued Processes

The processes can be viewed as measures:

1 N(X"(t))
UARES -~ Zl dxn(t,i)s

which are elements of the space of finite measures M (X”), which is given the
topology generated by pairings with ¢ € C’%’l (x".

One therefore has p™ € D (R*, M(X’)) and

0 ((0) = (i) = [ (e (. dy).
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Weak Limit Equation

Note first that if 1(-, 1) = 0 then

t
ME(t) = (1) — (6, ) — / (WY, u) ds — ¢ /[ Pty

-3 | WK e mas+ 5o [ K. ) as

Suppose that u' = e for all ¢ (convergence in Skorohod space is sufficient) then

t
0= (4 1e) — (), ) —/O (¥, 1) ds — t/[o | Ve )iy

1

- 5/0 <[¢]Ka Hs ®Ms> ds,

which is a weak form of the PBE.
Are there any limit points?
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Conditions for Relative Compactness

Let (E7 ) be a complete and separable metric space and let {Xn} be a sequence
of processes with sample paths inD ([0, 00), (E, )). Then {X,,} is relatively
compact if and only if the following two conditions hold:

a) For every 1) > 0 and rational t > 0 there exists a compact setI';, ; C E such that

liminf P (X, (t) €Ty ,) >1—n.
= .
b) For everyn > 0 and T > 0 there exists §(n), T') > 0 such that

limsup P (w' (Xp,8(n,T),T) > n) <.
n

This is Ethier & Kurtz (1986) Chap. 3 Coroll. 7.4. O
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Definition of Modified Variation

Definition

The modified variation of a cadlag function f from R(J{ to a metric space (E, r) is
defined by
w' (f,6,T) = inf max sup r(f(s), f(t)),

{t:} 1 ste[ti_i,ti)

where the ¢; define partitions of [0, 7' with minimum spacing at least 0.

B Modulus of continuity, that can ignore a few awkard points.

B Random if f is random.
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Conditions for Relative Compactness of Measure Valued Processes

Let {X,,} be a sequence of processes with sample paths inD ([0, c0), M(X")).
Then {X,,} is relatively compact if and only if the following two conditions hold:

a) For every ) > 0 and rationalt > 0 and ) € C%’l (X') there exists a compact set
I‘;ﬁt C R such that

lim inf P ((w,Xn(t)> e Fﬁ) >1-1.
- :
b) Foreveryn > 0,T > 0 and1) € C%’I(X’) there exists 0¥ > 0 such that

lim sup P (w' (¥, Xn(")),6%,T) >n) <n.

Vague topology: Kallenberg (2001). Weak topology: Dawson (1993). O
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Compact Containment Result

Theorem

Forevery T > 0 and<) € C'y' (X') there exists v (T') < oo such that

limP (sup [, 12| < wm) =Y
w t<T

B Sufficient, not necessary.
B Growth rate not optimal.
B Assume pg = 0.

B Recall for i € Cy' (X7)

t
ME(t) = (4, ') — / (W, 7 ds — ¢ /[ Vool

S™ (t)

g [ i e assg [ s 3w,
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Containment Estimates

|<w,ut>|<t1/ oy |dy+/ WV, i) ds

/| YU 7 @ |ds+—/| K, i) ds

S"(t)

+ = Z W(Z, )]+ [ MY (t

Defining Ag(n,T') = sup,<r pi'(X”’) one has

3
supl (6 )| < T 10l + Tas(n. ) (vl + 3 101 K )
t<T n

3 1
+ 5T ] K As(n, T)? + —S™(T) ]| + sup | MY (t)
n t<T

)
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Containment Estimates

3
sup [(, ui')| < TI[[Y[| + T As(n,T) (an +3, ||¢||K)
t<T n

3 1
+5T Yl K Ag(n,T)? + —S™(T) ||¢]| + sup [MY(t)| .
n t<T

B T1||¢| is constant.
B Already stated that

P (sup | MY (s)] > e) < %ﬁ’).

s<t

B nAs(n,T) < R™(T) since every particle must have been incepted.

B S™(T) < R™(T) since every particle must have been incepted before it can
leave.
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Containment Estimates

Rr"(T)

3
supl (v, )| < TT 0l + T2 (uvul + 5 1011 )
t<T n

mn 2 n
43l () D 4 sup s o).
t<T

)7nIT and

n

ForeveryT > 0 and ) € C%’l(zl’ ") there exists ¥ (T') < oo such that

R™(T) ~ Poi(nIT) thus P (R"(T> > 2eIT> < 2(e2%

i (sup (6, )] <%(D)) = 1.
n t<T

Just proved. O
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Comments on Containment Proof

B ¥ (T) ~ O(T?), which is not optimal.
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Comments on Containment Proof

B ¥ (T) ~ O(T?), which is not optimal.

B Conjecture v¥(T') ~ O(\/T) possible by exploiting outflow.
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Comments on Containment Proof
B ¥ (T) ~ O(T?), which is not optimal.
B Conjecture v¥(T') ~ O(v/T) possible by exploiting outflow.
B Zero initial condition simplifies the calculation, more general version of the result
is:

Forevery T > 0 and f € C'" (X') there exists v (T, ) < oo such that

lim inf P (sup [, 1)) < AT, n)> >1-p.
n t<T
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Comments on Containment Proof

B ¥ (T) ~ O(T?), which is not optimal.
B Conjecture v¥(T') ~ O(v/T) possible by exploiting outflow.

B Zero initial condition simplifies the calculation, more general version of the result
is:

Forevery T > 0 and f € C'" (X') there exists v (T, ) < oo such that

lim inf P (sup [, 1)) < AT, n)> >1-p.
n t<T

B Can replace P (w > 2(eIT> < 2 (e2%) T it

P (RT(T) > QIT) < \/ =5 to get smaller leading constant in v (T').
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Definition of Modified Variation

Definition

The modified variation of a function f from R{ to a metric space (F, r) is defined by

w'(f,6,T) = infmax  sup 7 (f(s), f(t)),
{ti} U S,te[tifl,ti)

where the ¢; define partitions of [0, 7' with minimum spacing at least ¢.

We will use the following partition: tg = 0,%1 = 0,12 = 26,...,tp = kb, tge1 =T
where k = |T/§] — 1 and consider a ‘majorant’ variation

w (fa 9, T) = max sup r (f(s)7 f(t)) > w' (f7 0, T)

s t€[ti—1,ti)
defined on this particular partition, which has spacing between ¢ and 24.

In the case of non-zero initial conditions which lead to fixed jumps: adjust the partition
points to include the fixed jumps.
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Required Result Concerning Variation

For every T > 0 and<) € C'y"' (X') there exists 5% (T, n) < oo such that

limP (w' (%, '), 8¥(T,m),T) =) =0.

B Sufficient, not necessary.
B Assume pg = 0.
B Recall for ¢ € 0103’1()(’)

t
MY(t) = (4, ) — / wow ) ds ¢ [ vy

0,1
S™(t)

_%/0 <[¢]K,u§®u’;>ds+$/o <H¢]]K,u?>ds+% ; V(2% 1).
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Outline of Proof 1

(Fo) = (Fop)| < / NS o ds + (b — 1)1 / F(zo,9)| dy

" 0.1]
1 [t 1 to
by [N © ) ds + o [ ) s
t1 n t
1 5™ (t2)
iy sz(t @Dl ) - )
1=5"(t1

Recalling Ag(n,t) = sup,<; 7 (X") one has, forr < s <t
n n 3
[, 13) = (s i) < (s = D[Pl + (s = )5 1l K As(n, 1)

+ o= )as(nt) (17l + 2 ] K )

1 (87(s) = 7)) + 2sup A1 5).
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Outline of Proof 2

Focusing on one interval [¢;_1, ¢;) of the time partition and noting ¢; — t;—1 < 28

sup  |(, 18) — (&, )| < 201 ||| + 36 ||| K As(n, T)?

r,8€[ti—1,ti)

+ 20 Ag(n, T) (||uv¢| + % 1l K)

(7 (6) — 8" (1)) 1]+ 2sup [ME(s)]
s<T

B Same bound on R™(T")/n > Ag(n,T) as before provides the key.
B MY vanishes as n — oc.

B S™(t;) — S™(t;—1) can be estimated as Poi(20nI).

Convergence of Simulable Processes - 22 February 2012 - Page 30 (36)



Assembling the Estimate

For every interval

1
r,8€[ti—1,t) n

Recall the partition: 0, 0, 28, 36, . .., k6, T where k = |T/6| — 1 and ‘majorant’
variation.
For fixed § < 6¥ = §%(n,T)

P (w ((¢, ") ,6,T) > n)

i=|T/8]—1 :
< > P( sup  [(v, ) (W )| > 77) = |T/5]O ([) .
i=0 s,r€(ti—1,t:) n
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QED

Theorem

limsup P (w' ((f, uf'),67,T) > n) =0,

See above.

Theorem

The ™ are relatively compact in distribution on D pq(x 1) (]Rar ).

Most of this talk so far!
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Weak Limit Equation
Recall the Martingale

S" (t)

MO = () = () — [ ) s+ Zw
1/t N . 1t .
=t ooy [l 8 ) dok o / (). ) ds.

We only get a limit equation for pairings with ) such that ¢(-, 1) = 0, in which case

t
(6, p12) = (b, o) + /O (¥, 1g) ds + ¢ /[O | Va0 )iy

t
+%/0 (WK, ps ® ps) ds,

which is effectively a restriction on the domain of the generator.
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Density of Limit

B Suppose a limit point 1 (dz, dy) has a density ¢;(z, y)

B Suppose the existence of regular time derivatives.

o / e y)e(r,y)dedy = / (a0, y)Idy
X x[0,1] [0,1]

+ / w (B, (x, ) cr(z, y)dady
X x[0,1]

1

+ 5/ [W(x1 + 22, 91) — (21, Y1) — V(@2 42)] K
(X x[0,1])2

ce(x1, y1)ee(xe, yo)dardyrdradys.

Integrating by parts and using ¥(+, 1) = 0, the second term becomes

—/ uw(x,O)ct(a:,O)dx—/ wp(x, y)Oye(x, y)dedy.
x

X x[0,1]

Convergence of Simulable Processes - 22 February 2012 - Page 34 (36)



Boundary Conditions
Letting 1) approach a ¢ function at any interior point of X' x [0, 1] we see:

8tCt(fE,y) + Uath(l',y) = I]l{aﬁ'o}(x)

1

+ 3 /sz[o,u Kei(x,y)ce (w2, y2)derdaadys

xr1+Tro=x

~ Keua,y) / co(w2, y2)dwadyn.
Ax[0,1]

Letting ¥(x, ) approach ¢, 3 (2) 140y (v):
ucy(z,0) = Lin(x)

where I;, () is the inception rate on the inflow boundary (assumed 0 above).
B No boundary condition at y = 1 since ¢(-,1) = 0.

B First order equation should have one boundary condition.
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Summary

What we know:
B Limit points satisfy a weak equation.
B The simulation algorithm has limit points.
Open questions:
H s there a unique limit point?
B What can we say about the distribution of (f, p*) for finite n.?

B Can we refine the spatial grid and ‘re-localise’ the coagulation?
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