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Many-particle storage systems
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Fig. 11 Eight states of interconnected rubber balloons during loading and unloading with air via the pressure vessel

battery is 10,800 s and for nano-particles of size 10–100 nm we obtain τ in the range 10−3–10−7. Thus, ν2 is
comparable with τ , i.e. we meet the Case C of the table, where the many-particle electrode passes through the
maximal possible hysteresis.

Note that if τ is of order 0.1, the loading time is of order of seconds and the model is not applicable, because
the essential assumptions concerning slow loading and homogeneous storage particles are not met here.

In order to classify a rubber balloon experiment according to Table 2 four material parameter must be
known. These are the two elastic parameter s+ = 30 N/cm2, s− = −0.1s+ of the Mooney-Rivlin constitutive
law, the relaxation time of the rubber balloon system and the size of the undeformed balloons.

The characteristic relaxation time of the balloon system is determined by the sound speed of air, which is
about 343 m/s. The loading time of the system of balloons is 250 s and we take rubber balloons with diameter
0.1 m in the undeformed state, which implies a dimensionless τ = 10−6.

The size of the undeformed balloon is also needed to calculate ν2. For rubber balloons with diameter 0.1 m
in the undeformed state, we obtain ν2 = 10−22. Thus, the necessary simulations of the rubber balloon experi-
ment are numerically much more involved as the simulations of the many-particle electrode. For this reason,
a careful analysis of the limiting case ν2 → 0 becomes necessary. This, however, is a nontrivial mathematical
problem that will be studied in a forthcoming paper.
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2. Lithium-ion batteries

• fast relaxation to local equilibrium 
• free energy of single-particle system 
   is double-well potential
• moment of the many-particle system 
   is controlled (dynamical constraint)

Key features



⌧ ẋi(t) = �(t)�H 0�xi(t)
�

N

�1
NX

i=1

xi(t) = `(t)
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First guess for model
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Problem Macroscopic evolution is ill-posed  !

Remedy Take into account entropic effects !

simple gradient flow

dynamical constraint

�(t) = N�1
NX

i=1

H 0�xi(t)
�
+ ⌧ ˙̀(t)nonlocal multiplier

Quenched Disorder Mielke & Truskinovsky (ARMA 2012)

H(x)

Boltzmann Entropy non-local Fokker-Planck eqautions
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Nonlocal Fokker-Planck equations
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R
H 0(x)%(x, t)dx+ ⌧ ˙̀(t)

dynamical constraint
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x = X�
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stable interval   unstable interval  stable interval

more details in Dreyer, Guhlke, Herrmann (CMAT 2011)



⌧, ⌫ ! 0
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3 Time scales
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• relaxation time of single particle system 
  (relaxation to metastable state)

• ‘chemical reactions’ (Kramers’ formula)
   (relaxation to equilibrium)

• dynamical constraint
  

Goal    Understand small parameter dynamics !

Different times scales: 

⌧@
t

% = @
x

�
⌫2@

x

%+
�
H 0(x)� �(t)

�
%
�

⌧

⌧ exp

✓
4H

⌫2

◆

˙̀ = O(1)



Overview on different scaling regimes



simplifying assumptions

`(0) < �x⇤⇤,

˙̀ > 0
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Simple initial value problems
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%(x, 0) ⇡ �`(0)(x)
x

y

= �(t)� ⌧ ˙̀⌘(t) =
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mean force

phase fraction

macroscopic 
output 

stress-strain relation phase-fraction - strain relation



Type II
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Numerical simulations - macroscopic view
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Numerical simulations - microscopic view
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Scaling regimes for parameters
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single-peak evolution

0 < a < acrit⌧ =

a

log 1/⌫
piecewise continuous 
two-peaks evolution

⌧ = ⌫p 0 < p < 2/3 open problem 

quasi-stationary limit⌫2 log 1/⌧ ! 1

⌧, ⌫ ! 0

2/3 < p < 1

⌧ = exp

✓
� b

⌫2

◆
, 0 < b < bcrit Kramers’ formula

limit of Kramers’ formula⌧ = ⌫p



Kramers’ formula and Type-II transitions

⌧ = exp

✓
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For                             there exists     , such that 
(1) mass flux is of order 1 provided that
(2) small fluctuations of     are sufficient to satisfy the constraint

Observation ⌧ = exp(�b/⌫2)
�(t) = �b + ⌫2 (t)

�b

x+

H�(x) = H(x)� �x

h+h�

x0x�
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Kramers formula
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particles can cross the energy barrier 
due to stochastic fluctuations
(large deviations, tunneling)

time scale = ⌧ exp

✓
+4H�

⌫2

◆
= ⌧ exp

✓
min{h�, h+}

⌫2

◆
Kramers’ formula provides mass flux between wells

�
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Inner and outer expansions
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0 for x ⇡ x±(t) , (outer expansion)

R(t) for x ⇡ x0(t) . (inner expansion)

inner expansion
outer expansion

x�, x0, x+ H 0(x�/0/+) = �Idea 
m±(t) x±(t)

(1) for each    we have three positions                   with

(2) two narrow peaks with masses            at 

x

y

�

inner expansion

outer expansion

mass flux due to Kramers

m�(t) m+(t)
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Matching of inner and outer expansions
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Matching conditions result from equating the time-dependent pre-factors !

Inner expansion

Outer expansion



r±(t) = c±(t) exp
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b� h±(t)
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Kramers formula for mass flux
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R(t)

⌧
= m�(t)r�(t)�m+(t)r+(t)

For each                       there exists                     such thatObservation

Adjust     according to dynamical constraintStrategy

�(t) < �b =) r�(t) ⌧ 1

�(t) = �b + ⌫2 (t) =) r�(t) ⇠ exp( (t))
�(t) > �b =) r�(t) � 1
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Main result for fast reactions

17

The situation is di�erent for ⌅ ⌅ exp
�
�hcrit/⇥2

⇥
since then we expect to find phase transitions

of type IV, that means the mass flows towards the second well as soon as it is energetically
admissible. This regime is governed by the quasi-stationary approximation but can also be
regarded as a limiting case of Kramers regime.

Our main result concerning the fast reaction regime combines the formal asymptotics for the
Kramers regime and the quasi-stationary approximation and can be stated as follows.

Main result. Suppose that the dynamical constraint and the initial data satisfies (4) and (5),
and that ⌅ and ⇥ are coupled by

⌅ = exp

⇧
� b

⇥2

⌃
(11)

for some constant b ⌃ (0, hcrit). Then there exists a constant ⇤b ⌃ (0, ⇤⇥) such that

1. the dynamical multiplier satisfies

⇤(t)
�⇤0���⇧

⌥
 

�

H ⌅�⇣(t)
⇥

for t < t1 ,
⇤b for t2 < t < t2 ,
H ⌅�⇣(t)

⇥
for t > t2

where t1 and t2 are uniquely determined by ⇣(t1) = X�(⇤b) and ⇣(t2) = X+(⇤b),

2. the state of the system satisfies

⌃(x, t)
�⇤0���⇧ m�(t)�X�(⇥(t))(x) +m+(t)�X+(⇥(t))(x) .

where m+(t) = 1�m�(t) and

m�(t) =

⌥
⌦⌦ 

⌦⌦�

1 for t < t1 ,
X+(⇤b)� ⇣(t)

X+(⇤b)�X�(⇤b)
for t1 < t < t2 ,

0 for t > t2 .

Moreover, the assertions remain true

1. with ⇤b = 0 if ⌅ ⇥ exp
⇤
�hcrit

�2

⌅
,

2. with ⇤b = ⇤⇥ if ⌅ ⌅ ⇥
2
3 but ⌅ > exp

�
� b

�2

⇥
for all b > 0.

To justify the limit dynamics we review Kramers’ argument for constant ⇤ in Section 2.1. In
Section 2.2 we then derive similar asymptotic formulas for the constrained case, which allow us to
adjust the mass flux according to the dynamical constraints in Section 2.3. Moreover, in Section
2.4 we discuss the quasi-steady approximation, which governs the regime 0 < ⌅ ⌅ exp

�
�hcrit/⇥2

⇥
.

We finally mention that the limit energy is given by

E := m�H
�
X�(⇤)

⇥
+m+H

�
X+(⇤)

⇥
,

and evolves according to

Ė = ⇤⇣̇�Db⇧{⇥=⇥b}⇣̇, Db :=
H⇥b

�
X�(⇤b)

⇥
�H⇥b

�
X+(⇤b)

⇥

X+(⇤b)�X�(⇤b)
⇤ 0 ,

where H⇥ is defined by H⇥(x) := H(x)�⇤x and ⇧{⇥=⇥b} denotes the usual characteristic function.
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Slow reaction limit: Type-I/II transitions 
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Overview - states for increasing constraints
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Single-peak configurations

Two-peaks configurations

stable stableunstable
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Overview - Type-I phase transitions

20

transport

x

y

x

y

x

y

transport transportswitching merging



From particle systems to differential equations WIAS Berlin, 21 February 2012

Overview - Type-II phase transitions
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Overview - Simplified models
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localised peaks move due 
to the constraint

transport

unstable peaks merge rapidly
with stables ones

merging

unstable peaks split rapidly 
into two stables ones

splitting

stable peaks enter 
unstable interval

switching two-peaks ODE

peak-widening model

mass-splitting problem



two-peaks approximation
 transport, switching, and merging of peaks
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Two-peaks approximation to FP
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⌧ ẋ1 = � �H 0(x1)

⌧ ẋ2 = � �H 0(x2)

� = m1H
0(x1) +m2H

0(x2) + ⌧ ˙̀
ṁi = 0

m1 +m2 = 1

Dynamical model

Quasi-stationary limit

⌧ ! 0
H 0(x1) = H 0(x2)

m1x1 +m2x2 = `

Multiple solution branches ! Which ones are selected by dynamics ?



x

+x⇤⇤

x1(t)

A

C

B

�x⇤

�x⇤⇤

+x⇤

t
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Two-peaks approximation to FP
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entropic effects
widening and splitting of unstable peaks  

• peak-widening model:     width of unstable peaks blows up (almost) instantaneously, 
                 determines splitting time

• mass splitting problem:   system forms (almost) instantaneously two stable peaks
                 determines jump of the system



% = m1%̂+m2�x2

` = m1

R
R x%̂ dx+m2x2
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Peak-widening model

27

%̂(x, t) =:
1
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w(t) = ⌫�(t)W
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width of peak
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H 0(x)� �

�
%̂
�
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Formula for width of unstable peaks
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0 < t < tsw : w(t) = O(⌫)
tsw < t < tsp : ⌫ ⌧ w(t) ⌧ 1

tsp < t : w(t) � 1

evolution of 
width

Z tsp

tsw

H 00�x1(t)
�
dt+ a = 0

can be computed by quasi-stationary two-peaks approximation

✓ � 1 =) R(y, ✓) ⇡ 1p
4⇡⇣

exp

✓
�y2

4✓

◆
, W (✓) ⇠

p
✓

w(t) ⌧ 1 =) @✓R = @2
yRas long as width 

is small

• define scaling factors 
• expand nonlinearity (fine if width is small)



⌫ = 0, t = tsp + ⌧s @
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H 0(x)� �(s)

�
%̂
⌘

ẋ2 = �(s)�H 0(x2)

�(s) = m1

Z

R
H 0(x)%̂ dx+m2H

0(x2)l(s) = const = l(tsp)
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Mass splitting problem
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%̂(x, s)
s!�1�����! 1

2�
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⇡
exp

✓
�x� x1(tsw)

4 exp(2�s)

◆
, � = �H 00�x1(tsw)

�
> 0

asymptotic initial data

ansatz



s = �1s = +1
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Mass splitting problem
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Conjecture
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Main result for slow reactions
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Summary

• Kramers formula describes Type-II transitions
• Type-I transitions as limiting case 

• Type-I and Type-II transitions can be described by

- intervals of quasi-stationary transport
- singular times corresponding to switching, splitting, merging

Fast reaction regime

Slow reaction regime

• Splitting events require to solve Mass Splitting Problem

Open problems  

• Find rigorous proofs !
• Fill the gap in the scaling regimes ! 



Thank you for listening ! 


