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Many-particle storage systems

1. Interconnected rubber balloons

2. Lithium-ion batteries Key features
ﬁ_ _machine ]<—|_ e fast relaxation to local equilibrium
6 ‘ — e free energy of single-particle system

is double-well potential
e moment of the many-particle system
is controlled (dynamical constraint)

FeP 04

-+
FePO4 LZ

FePOs  electrolyte
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First guess for model

simple gradient flow — T;(t) = o(t) — H'(x;(t))

dynamical constraint ~ N~ Z x;(t) = £(t)

1=1
N
nonlocal multiplier o(t) =N Z H'(x;(t)) + T4(t)
i=1

Problem Macroscopic evolution is ill-posed |

Remedy Take into account entropic effects !
Quenched Disorder Mielke & Truskinovsky (ARMA 2012)
Boltzmann Entropy non-local Fokker-Planck eqautions
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Nonlocal Fokker-Planck equations

more details in Dreyer, Guhlke, Herrmann (CMAT 2011)

relaxation time entropy dynamical multiplier

7O 0 = Oy (Vzaxg + (H'(z) —

/Rxg(x, t)dx = £(t)

dynamical constraint

/H’ oz, t)dz + T0(t)

stable interval unstable interval stable interval
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3 Time scales

Goal Understand small parameter dynamics !

Different times scales:
e relaxation time of single particle system
(relaxation to metastable state)

e 'chemical reactions’ (Kramers’ formula)
(relaxation to equilibrium)

e dynamical constraint (= 0(1)
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Overview on different scaling regimes




Simple initial value problems

simplifying assumptions ¢ >0 AY /
8(0) < — T, Q(ZE,O) ~ 65(0) (ZC) /\/ ]

Macroscopic

output L (é(t), 77@))? L (Z(t), :u(t))
stress-strain relation phase-fraction - strain relation
mean force / H' (z)o(x,t)dz = o(t) — 14
+ 00
phase fraction / o(x,t)dx + / o(x,t)dr
— 00 0
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Numerical simulations - macroscopic view

slow
reactions

Type I
Type 11

fast
reactions

Type III
Type 1V
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Numerical simulations - microscopic view
(A) =-08 Ao (A) £=-00 Ao (A) r=08 Ao

G) r=-16 Ao (G) £=-00 Ao (G) r=16 Ao
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Scaling regimes for parameters T, v =0

Tlogl/v — oo single-peak evolution
@ piecewise continuous
T .
log1/v U <a < dei two-peaks evolution
T =P 0<p<2/3 open problem
T = P 2/3 <p < o0 limit of Kramers’ formula
b
T = exp > s 0 < b < berit Kramers’ formula
v
v* log 1/7 — o0 quasi-stationary limit
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Kramers’ formula and Type-II transitions




Kramers formula

AH,(x) =H(x) —ox

particles can cross the energy barrier
due to stochastic fluctuations
(large deviations, tunneling)

Kramers’ formula provides mass flux between wells

12 12

AH, n{h_.h
_|_ ) — T exp (mln{ _|_}

time scale = 7 exp (

Observation For T = exp(—b/v*) there exists 03, such that
(1) mass flux is of order 1 provided that o(t) = oy, + v21)(t)
(2) small fluctuations of o are sufficient to satisfy the constraint

)
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Inner and outer expansions

Idea (1) for each o we have three positions T_, xg, T4 with H’(:(:_/O/+) = 0

(2) two narrow peaks with masses M+ (t) at r. (t)

my (¢)

Inner expansion

outer expansion

mass flux due to Kramers

0 for x =~ xy(t), outerexpansion
2 / L T ,
V00 + Ho ) (7)o = { R(t) for x = uxg(t). inner expansion
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Matching of inner and outer expansions

Outer expansion

Matching conditions result from equating the time-dependent pre-factors !
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Kramers formula for mass flux

Observation Foreach(Q < b < b.,;+ there exists ) < o < ¢, such that

Strategy Adjust 1 according to dynamical constraint
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Main result for fast reactions

Main result. Suppose that the dynamical constraint and the initial data satisfies (4) and (5),
and that 7 and v are coupled by
b
T=exp|——5
p 2

for some constant b € (0, heiit). Then there exists a constant o, € (0, o) such that

1. the dynamical multiplier satisfies

o ( H'(L(t))  for t<t,
ot) === { oy for  ta <t<ty,
|\ H'(Lt))  for  t >ty

where t1 and ty are uniquely determined by £(t1) = X_(op) and £(t2) = X1 (o),

2. the state of the system satisfies

v—0

o(x,t) —— m_(t)0x_ (o) (®) +my(t)dx, (o) (T).
where m4(t) =1 —m_(t) and

(1 for t<tq,
Xy (0p) — £(2)
Xy (op) — X (o)
0 for t>to.

m_(t) = 4

for 1 <t<ty,

\

Moreover, the assertions remain true

1. with op =0 if T < exp (—M),

V2

2. with op =04 If T K Vi but T > exp (—V—bQ) for all b > 0.
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Slow reaction limit: Type-I/II transitions




Overview - states for increasing constraints

Single-peak configurations

Ly

AY
/(
!

stable unstable stable
é ooooo ) é
. . Yy
Two-peaks configurations .

Ay \Y

transport due to constraint

/ / splitting events

A
stable-stable < "¢ unstable-stable merging events
— —
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Overview - Type-I phase transitions

Ay
/(
)

transport
—
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A
transport merging transport
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WIAS Berlin, 21 February 2012

20



Overview - Type-II phase transitions

AY AY AY
> / >

Y

transport transport transport
: A
splitting . merging
v .

AY LY

Y
Y

/

transport transport
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Overview - Simplified models

transport
localised peaks move due \

to the constraint
— two-peaks ODE

merging
unstable peaks merge rapidly

with stables ones . .
peak-widening model
splitting /
unstable peaks split rapidly \
mass-splitting problem

into two stables ones
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two-peaks approximation

transport, switching, and merging of peaks




Two-peaks approximation to FP

Dynamical model

Quasi-stationary limit

0 H'(z1) = H'(2)

M1T1 + Mooy = /4

Multiple solution branches ! Which ones are selected by dynamics ?
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Two-peaks approximation to FP

T
To(t
2(t) (t) ©
T
: >
to t1 2 AE /
o H'(z1) = H'(z2) ©
merging g
x1(t) m1x1 + max2 = £(io) T1
XLy % @ I I I
— L xx — Lk 0 L x
— <« —

/(
)
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entropic effects

widening and splitting of unstable peaks

e peak-widening model: width of unstable peaks blows up (almost) instantaneously,

determines splitting time
e mass splitting problem: system forms (almost) instantaneously two stable peaks
determines jump of the system




Peak-widening model

AY
TO:0 = O, (V26‘x@ -+ (H’(m) — 0) @)
/ g TLIZ:QIO'—H/(ZE‘Q)

O'—mlfRH/ de+m1H’(x2)—|—7‘€

&Q — ml@ _|_ m25$2
{ =my [ x0ds + moxs

position of peak
Tjil — 0 — H’(Q?l)

width of peak

w(t) = VAW (8(1)) o(x, 1) =: 1t)R ( (@ = m (1)) ,O(t))

V(L)
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Formula for width of unstable peaks

e define scaling factors
e expand nonlinearity (fine if width is small)

as long as width
IS small

evolution of
width

can be computed by quasi-stationary two-peaks approximation
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Mass splitting problem

ansatz v=0, t=1s,+ TS

[(s) = const = [(ts))

asymptotic initial data

0,0 = 0. ((H'(x) = o(5)) o)
T = o(s) — H'(x2)

o(s) :mlfRﬂ’(zv)@dathmgH’(wg)
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Mass splitting problem

Conjecture
Data at s = 400 depend continuously on data at s = —o©..
mi>/My VErsus mjy
] . . —  §/o,=—0.98
Mass Splitting Function — 5/0.=-0.80
= /0,=+0.00
—  /0,=+0.80
1.00 — 4/0,=+0.98
= M(l,mq) D —
0910 0.0 1.0
data just data just
before splitting after splitting
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Main result for slow reactions

/—__—__—_

s —— — — — — —

‘ stable transport (in z < —x,)

v

( switching: t = tswitching ) ‘ stable-stable transport ‘ —> ( switching: t = tswitching )

vy ) v

mass splitting problem ‘
mass update: m; = m; + [m;]

R g e
> ( splitting: t = tpiitting ) <
A v

/_i Grivial merging: t = tmergin; —> ‘ stable transport (in v > +7.) | €—— ( merging: t = tmerging )
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Summary

Fast reaction regime

e Kramers formula describes Type-II transitions
e Type-I transitions as limiting case

Slow reaction regime

e Type-I and Type-II transitions can be described by

- intervals of quasi-stationary transport
- singular times corresponding to switching, splitting, merging

e Splitting events require to solve Mass Splitting Problem

Open problems

e Find rigorous proofs !
e Fill the gap in the scaling regimes !
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Thank you for listening !




