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1. Introduction

Semiconductor model: van Roosbroeck system

—div(eVe) =d—n-+p electrostatics
i = div (un(Vn —nVe)) + g — rnp electron balance
p=div(up (Vp+pVe)) +g—rnp hole balance
Motivation: ;
i understand the van Roosbroeck system O y o
as the limit of a many-particle system MH;{
i learn how to model diffusion in random media - L.
(organic semiconductors) A S
p . p-Gebiet n\:’
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1. Introduction

particle system

~ differential equation

random walk ~ diffusion equation
Uy = pM? (um_l — 22Uy, + Um+1) U = uAU
chemical master equations ~ reaction kinetic
Up = YUp_1 + a}\l,—l;,unﬂ — (o )up U= ~ —aUP
Markov chain ODEs / PDEs
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1. Introduction

particle system ~ differential equation
random walk ~ diffusion equation
Uy = pM? (um_l — 22Uy, + Um+1) U = uAU
chemical master equations ~ reaction kinetic
Up = YUp_1 + a}\l,—l;,unﬂ — (o )up U= ~ —aUP
Markov chain ODEs / PDEs

Main philosophy: | Use gradient structure & = —/C(u)DE(u)

(X,&,K) gradient system
X state space containing the states u € X.
€ : X — R energy functional with differential DE(u) € T X

g(’u,)_l = K(u): T X—TyuX inverse of metric: Onsager oper. | I = K* >0
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1. Introduction

(X, €&, K) gradient system u = —K(u)DE(u)

X state space containing the states u € X.
€ : X — R energy functional with differential DE(u) € T X

G(u)™t = K(u) : TLX — T5X inverse of metric (Onsager operator)

Study discrete-to-continuum limit for gradient structures

u® solves (X, &, K.) discrete model e = % N = # particles

4

u solves (X,&,K) continuum model

We want to conclude u®(t) — u(t) from (&, K;) ~ (€, K) I

{81C A Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21-23.2.2012 5 (27)
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2. Markov chains as gradient systems

@ Otto 1999: Fokker-Planck equation U = div (VU +UVYV)

is a gradient system (X, &, K):
EWU) = JoUlog(U/W) with W (z)=ce™V®) ~+ DEU) =logU +V
KU)¢ = —div(UV¥E) ~ U = —K(U)DE(U)

# M'10: Reaction-diffusion systems satisfying the detailed-balance
condition (and possibly including temperature or drift due to electric
charges) have a gradient structure for the relative entropy.

@ Maas'1l1l, M'11: Discrete Markov chains with detailed-balance
condition have a gradient structure for the relative entropy.
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2. Markov chains as gradient systems

Discrete Markov chain on states j € J (e.g. Z4, or NI)
X = Prob(J) = {u = (u5)jes € 1(J) |y = 0, 3 u; = 1}
1 = Qu linear evolution with unique steady state w = (w;);
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2. Markov chains as gradient systems

Discrete Markov chain on states j € J (e.g. Z4, or NI)
X =Prob(J) = {u=(uj)jes € *(J)|u; >0, > ;u; =1}
1 = Qu linear evolution with unique steady state w = (w;);

Theorem (M’11, Maas’11).
If @ satisfies the detailed balance condition (DBC)

w; > 0 and Qjpwy, = Qrjw; for all j, k € J,
then we have the gradient structure @ = Qu = —Ky,(u)DE(u)
with £(u Zuj log(u;/wj) and

] IxJ
ICMV ;J Q]kwk A( wk) E]k € R X where
J

Ejx = Ej, = (ej—ex) © (ej—ek) > 0.and Aa,b) = gz 2 0

e": A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21-23.2.2012 8 (27)
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2. Markov chains as gradient systems

E(u) = ujlog(uj/w;) and Kuy(u) = Z] ke Qijwk A(w ,Z’;) Ek

Ejr = Ej), = (ej—ex) ® (ej—ex) > 0 and A(a,b) = log(a/b) > 0.
To be proved: @ = Qu = — Ky (u)DE(u)
e DE(u) = (log(uj/w;) + 1) —
E;x,DE(u (log uj/w;) —log(uk/wk)) (ej—ek)

i W
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2. Markov chains as gradient systems

E(u) =3 ujlog(u;/wy) and Kuy(u) = Z] keJ szkwk A(w ; Zi) Ejk

Ejr = Ej), = (ej—ex) ® (ej—ex) > 0 and A(a,b) = log(a/b) > 0.
To be proved: @ = Qu = — Ky (u)DE(u)
e DE(u) = (log(uj/w;) + 1) —
E;x,DE(u (log uj/w;) —log(uk/wk)) (ej—ek)

e Using the cancellation A(a,b)(loga—logb) = (a—b) gives
Kmv(w)DE(u) =37 e s ngw’“ (Z—J]—Z—’Z) (ej—ex) (already linear)

e Using detailed balance gives Ky (u)DE(u) = —Qu.
QED
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3. Reaction-diffusion systems as gradient systems

u = (u1(t,z),...,ur(t, z)) densities of chemical species

Reaction-diffusion systems @ = div (M (u)Vu) + R(u)

Example: Ammonia synthesis

N2 + 3H2 = 2NH3 u = (UNQ,ZLH2,UNH3) = (ul,ug,ug)

’lll mq Aul — (k:fulu%—k:bu%)

’llg - mgAUQ + —3(kfu1u§—kbu§)

U3 msAus —|—2(kfu1u%—kbu§)
=R(u)

The usual guess of Allen-Cahn or Cahn-Hillard type

E(u) = [, m1|Vur|? + ma|Vus|? + ms|Vus|? + F(u) dz does NOT work,
since curl R # 0 !

erc A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21-23.2.2012 11 (27)
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3. Reaction-diffusion systems as gradient systems

Reaction-diffusion systems (RDS) @ = div (M (u)Vu) + R(u)

Reaction kinetic of mass-action type with detailed balance cond. (DBC)
aT‘ uﬁ”‘

R 1
= R(w) =~k =5 ) (=8 wt =T

u
w”

r=1 v M stoich. vect.
educts products

(DBC = for u = w each reaction r = 1, ..., R is balanced)

12 (27) %
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3. Reaction-diffusion systems as gradient systems

Reaction-diffusion systems (RDS) @ = div (M (u)Vu) + R(u)

Reaction kinetic of mass-action type with detailed balance cond. (DBC)

s ‘s I
. u® uP .
u= Zk ( — —r)(oér—ﬁr) ’UJFY:HU;“
wa wh N—— .
r=1 M stoich. vect. =1

ed ucts products

(DBC = for u = w each reaction r = 1, ..., R is balanced)

Gradient structure for reaction kinetics: @ = R(u) = —K(u)DE(u)
E(u) = 21 u; log(u; /w;) and

ar U/Br T T T T
Zk: ( _ﬁ) (@ —B")@(a"—p7) € RLY
with A(a b) W >0 [ use again ~ - (logv;) = log(v?) ]

i W
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3. Reaction-diffusion systems as gradient systems

Reaction-diffusion systems (RDS) @ = div (M (u)Vu) + R(u)

Reaction kinetic of mass-action type with detailed balance cond. (DBC)

aT‘ uIB”‘ I .
(R
r=1 w &/-/ =1

stoich. vect.
educts products

(DBC = for u = w each reaction r = 1, ..., R is balanced)

Gradient structure for RDS with DBC: & = —/Crps(u)DE(u)

u) = [ E(u(z))dr = [;ui(z)log(ui(z)/w;i(z)) dx
Krps(u)é = —dlv( (w)VE) + K(u)¢
——
diffusion react
Onsager'31: K =K* > 0 and M = M* > 0 mobilities
M (u) = M(u)D?E(u) = M(u)diag(;-, ..., 7-) not necess. symm.
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3. Reaction-diffusion systems as gradient systems

Example: Ammonia synthesis Ny + 3Hy = 2NH,

(01 myAuy — (kruru3—kyu3)
’iLQ = mQA’U,Q + —3(k:fu1u§’—kbu§)
U3 msAus —|—2(kfu1u§—kbu§)

i reference density w = (ky, kf, k?)

i relative entropy
E(u) = fQ uy log(uy /wy) + ug log(ug/wse) + ug log(us/ws) da

i Onsager operator

mq diV(U1V£1) 3 5 1 3 -2
Kros(u)€ = — | madiv(uaVE) | + A(;i%, %'gi) 3 9 —6
ms dIV(’U,3V§3) -2 —6 4

&1
3
€3
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3. Reaction-diffusion systems as gradient systems

Semiconductor model: van Roosbroeck system

—div(eV¢) =d—n+p electrostatics
n = div (,un(Vn —anﬁ)) +g—rnp electron balance
p=div(pp (Vp+pVe)) +g—rnp hole balance

Gradient structure! (n,p) = —K,r(n,p)DE(n, p)

IM.: Grad. structures for RDS and energy-drift-diffusion systems, Nonlin. 2011
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3. Reaction-diffusion systems as gradient systems

Semiconductor model: van Roosbroeck system

—div(eV¢) =d—n+p electrostatics
n = div (,un(Vn —nV(]ﬁ)) +g—rnp electron balance
p = div (up (Vp—i—pV(]ﬁ)) +g—rnp hole balance

Gradient structure! (n,p) = —K,r(n,p)DE(n, p)

@ Reference density w = (w, w) with w = (g/r)"/?
@ Free energy Er(n,p) = [ nlog(n/w) + plog(p/w) + 5|V p|* dz

& Onsager oper. Kyr(n, p) (g:) - _(fiii\\//((zzzgg))) +gA (1L, 2B) (1 1) (gz)

Crucial observation (AlbGajHiin’01) D&g = (llgigy%)ii) + ¢n,p(;})

IM.: Grad. structures for RDS and energy-drift-diffusion systems, Nonlin. 2011
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4. Discrete-to-continuum passage

From random walk to diffusion
e already very well understood with many approaches
e here: add another approach that will be compatible with reactions

16 (27) %
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4. Discrete-to-continuum passage

From random walk to diffusion
e already very well understood with many approaches

e here: add another approach that will be compatible with reactions
State space J = Zy = Z/uz

U = M (Upy—1 — 2Upy + Uy 1) = Qu = —KM(u)DEM (u)
o EM(u) = Zjlw u;log(Mu;) where w = 4-(1,...,1) and

o KM(u) = Zjlw M2 A(tpy, U 1) Epymy1 > 0 (tridiagonal)
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4. Discrete-to-continuum passage

From random walk to diffusion
e already very well understood with many approaches

e here: add another approach that will be compatible with reactions

State space J = Zy = Z/uz

Uy = M (U —1 — 2y + U 1) = Qu=—KM(u)DEM (u)
o EM(u) = Zjlw u;log(Mu;) where w = 4-(1,...,1) and

o KM(u) = Zjlw M2 A(tpy, U 1) Epymy1 > 0 (tridiagonal)

Riemannian transport distance on X™ = Prob(Zy,)
dicr = XM x &M — [0, 00] defined via
dyen (wo, ur)? = inf { [ u/(s) - KM (u(s))™ u/(s)ds | ug  us }.
———— —
Riemannian tensor

Markov chain is metric gradient flow (X, &M diar) in De Giorgi's sense!

i W
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4. Discrete-to-continuum passage

U = M2 (U —1 — Uy + Umy1), M € Ly u = —KM(u)DEM (u)

Limit passage: embed XM = Prob(Z);) into X = Prob(S*')
U = Iyu with U(Qﬁ) = Z%:l MumX](m—l)/M,m/M] (.23)

to be shown

U = NM2(um—1 — 2uy, + um—i—l) U = NUmc

it W
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4. Discrete-to-continuum passage

U = M2 (U —1 — Uy + Umy1), M € Ly u = —KM(u)DEM (u)

Limit passage: embed XM = Prob(Z);) into X = Prob(S*')
U = Iyu with U(a:) = Z%:l MumX](m—l)/M,m/M] (.23)
Uy = NM2(um—1 — U, + um+1) to be shown U — Uy
EM () = M y; log (Mus) wvelva i, g() = [l Ulog U da
&MY ()€ = (E,KU)E) =
in w nse?
Zi\/[ NA(uma um+l)M2(€m_€m+1)2 hat sense ? fol :U/U‘E/|2 dz

o formally KM (u) ~» KC(U) as quadratic forms

e but in what sense do we need convergence
to guarantee convergence of solutions?
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4. Discrete-to-continuum passage

Limit passage: ., = ,uMQ(um_l — 22U + Ut1) M U= wUzy

Use metric approach instead:
Evolutionary variational inequality (EVI) (cf. Ambrosio,Gigli,Savaré'05)
If £ is geodesically convex with respect to di, then

u=—Ku)DEu) <= (EVI) Sd(u(t),v)?+E(u(t) < E(v)
forallt>0andve X

i W
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4. Discrete-to-continuum passage

Limit passage: ., = ,uMQ(um_l — 22U + Ut1) M U= wUzy

Use metric approach instead:
Evolutionary variational inequality (EVI) (cf. Ambrosio,Gigli,Savaré'05)
If £ is geodesically convex with respect to di, then

@ =-KuDEw) = (EVI) Sd(u(t),v)? + E(ut) < E(v)
forallt>0andve X

Theorem M'12.
If (XM EM dirr) and (X, E,dw) are given as above, then

IyuM(0) @ U0) = IyuM@E) ™ U@) forall t > 0.

# M.11: (XM M dia) is geodesically 0-convex (indep. of M)
® Gigli-Maas'11/12: dw = T-limps 00 dicm
@ Use EVI and € = T-limy/ oo EM
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5. Limit of chemical master equations

Simple reaction equation ¢ = 1 — a? (1=generation, —aP annihilation)

Gradient system ([0, 0o[, alog a—a, K) with K(a) = A(1, a?)p

Chemical master equation: keep track of number of particles!
a= % # number of particles, where N = typical number of particles
u, = probability of having exactly n particles
Markov chain: %, = lun,_1 — (1 + (%)p)un + ("T'H)punﬂ
~——

-
generation losses annihilation

erc A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21-23.2.2012 20 (27) A
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5. Limit of chemical master equations

Simple reaction equation ¢ = 1 — a? (1=generation, —aP annihilation)

Gradient system ([0, 0o[, alog a—a, K) with K(a) = A(1, a?)p

Chemical master equation: keep track of number of particles!

a= % # number of particles, where N = typical number of particles

u, = probability of having exactly n particles
Markov chain: %, = lun,_1 — (1 + (%)p)un + ("T'H)punﬂ
——

-
generation losses annihilation

@ DBC holds for w" = (w)Y) with wY = (Nn)pwév

n nl
& We have the gradient structure (Xcme, £V, KV) with
e XcMmE = {u S El(No) | Up > 1, Hu||1 = 1}

° SN(u) = ZZOZO Un log(un/wzzv)

o KV (w) = S50, i A (5, ) E1n >0

erc A. Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21-23.2.2012 20 (27)



5. Limit of chemical master equations

Limit passage N — oo
We embed Xcme into Prob([0, oof) via

U = Iyu with U(CL) = 27];/[:1 N uy X](n—l)/N,n/N](a) “a =~ TL/N”

We use the expansion (large deviation argument)
—% logw) ~ E(n/N) where E(a) = p(aloga —a+1) (rate fcn.)
~EN (u) ~ 3°0° (unlog uy, + Nuy E(n/N))

We find I'-convergence &N L E where E(U) = [;°U(a)E(a)da

{8rc A, Mielke, Discr.Markov & RDS, Particle Systems to Diff. Eqns, 21-23.2.2012 21 (27) \*g\



5. Limit of chemical master equations

Limit passage N — oo

We embed Xcme into Prob([0, oof) via

U = Iyu with U(a) = S0 N uy Xjn-1)/nn/n (@) “a~n/N"
We use the expansion (large deviation argument)

—% logw) ~ E(n/N) where E(a) = p(aloga —a+1) (rate fcn.)
~EN (u) ~ 3°0° (unlog uy, + Nuy E(n/N))

We find I'-convergence &N L E where E(U) = [;°U(a)E(a)da
Moreover,
€ NEN(uM)g = X7 wpl A5t 2% ) N2 (6n—6n-1)

w

v~

~U(n/N)A(1,(n/N)P)
omely [ Ua)A(1,a)(Z/(a))* da

i W
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5. Limit of chemical master equations

Markov chain: 4, = up—1 — (1 + (%)p)un + ("Tﬂ)punﬂ
Gradient structure (X, &N, KN) with
X={ueltiNg)|u,>1]Jul1=1}

EN(u) = 3207 un log(un /wy),

V) = X 0 A (5 2B 1

The embedding (Prob([0, oo[), EN oIy, KN oly) converges formally
to the Iimiting gradient system (Prob([0, oco[), E, K) with
fo a)da where E(a) = p(aloga —a+ 1)

= —(U(a)K(a)E'(a))’ where K (a) = A(1,a?) = (&1

[1]

K(U)

i W
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5. Limit of chemical master equations

Markov chain: i, = wn—1 — (14 (2)P)un + () Pun 41
Gradient structure (X, &N, KN) with
X={ueltiNg)|u,>1]Jul1=1}

EN(u) = 3207 un log(un /wy),

KN (uw) =307 wil A(“"LJ17 :LLZV)En—l,n

The embedding (Prob([0, oo[), EN oIy, KN oly) converges formally
to the Iimiting gradient system (Prob([0, oco[), E, K) with
fo a)da where E(a) = p(aloga —a+ 1)

K(U) = —(U(a)K(a)E'(a))’ where K (a) = A(1,a?) = (&1

[1]

Result: Liouville equation = transport equation  (cf. T.R.Kurtz'67-70)
Ult,a) = —((1—a7’)U(t,a))/ since DE = E and K(a)E'(a) = aP—1
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5. Limit of chemical master equations

Inspired by Eindhoven group (Mark Peletier, Michiel Renger, ....)
A similar result holds for N-particle Markov chains

o = Qu single-particle process

u = (uj)jes € Prob(J), Ewmv(u) =3_;c;uslog(u;/w;)

N independent particles: U = %QN[U (time rescaling)
U = (Up)nesy € Prob(Jn) where Jy = {n € N{ | djesnj =N}

i W
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5. Limit of chemical master equations

Inspired by Eindhoven group (Mark Peletier, Michiel Renger, ....)
A similar result holds for N-particle Markov chains

4 = Qu single-particle process

u = (uj)jes € Prob(J), Ewmv(u) =3_;c;uslog(u;/w;)

N independent particles: U = %QNU (time rescaling)
U = (Up)nesy € Prob(Jn) where Jy = {n € N{ | djesnj =N}

Lemma If & = Qu satisfies DBC for w, then U = %QNU satisfies
DBC for W with
W = (Wn)nepy with Wy, = N[ w)? /(nj!)
Jj€J

Gradient structure (Prob(Jn), En,Ky) with Ex(U) = Y Uplog(Uy,/Wy,)

nely
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5. Limit of chemical master equations

Independence of particles gives a large-deviation result
%logwn ~ —5MV(%n) < single-part. energy!
We again embed Prob(Jy) into Prob( Prob(.J) ) via

———
Gibbs simplex
U = INU where U(u) = Y. Upc¥yxo(u—%n)

neJy

As above —IENOIN L E with E(U fpmb w)Emy (u) du

Ky ™Y, K with K(U) = — divy, (U ’CMV(“>V“5)

i W
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5. Limit of chemical master equations

Independence of particles gives a large-deviation result
%logwn ~ —5MV(%n) < single-part. energy!
We again embed Prob(Jy) into Prob( Prob(.J) ) via

———
Gibbs simplex
U = INU where U(u) = Y. Upc¥yxo(u—%n)

neJy
As above —IENOIN L E with E(U fpmb w)Emy (u) du
Ky ™Y g with K(U) = — dive, (Uszv(u)vug)

Limiting system: Liouville equation = transport equation
U(t,u) = —dive (U(t,u)Qu)

since DyE = &y, and —K(U)DE = divu(UICMVDuEMV) = —div,, (UQu)
—_————
:—Qu
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6. Coupling reaction and diffusion

Open problem: Can we find similar PDE limits for a
Markov chain coupling reaction and diffusion?

Attempt: Model U = pulU,, +1 — U? e o ee 0 ce o

using Jg xv = {m = (n1,..,na) € NY | M n,, = KN} and
, M)

Unp = U, . n,) = Prob. that site m has n,, part. (m =1, ...
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6. Coupling reaction and diffusion

Open problem: Can we find similar PDE limits for a
Markov chain coupling reaction and diffusion?

Attempt: Model U = plU,, + 1 — U? M2 T UM

using Jg xv = {m = (n1,..,na) € NY | M n,, = KN} and
Unp, = U, . n,) = Prob. that site m has n,, part. (m =1,..., M)

Idea: model directly the gradient structure (instead of Markov chain)
]EM,N([U) - Z Un 10g (Un/wn) and K = Kdiﬂ’ + Kreact

nelyu, N
£ Kea(U)E= ) ZpM VWA (2, ) (6n — Enten)?
n&la, v M=l where e,, = (0,..,0,1,0..)
6 -Kd,ff Z Z /J,M NW A &:,ﬁ)(gn _§n+6m)2

nely, vy m=1
where §,, = e —€m—1
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Conclusion

# Markov chains and RDS with DBC have gradient structures
@ The Onsager form © = —/C(u)DE(u) allows for easy modeling
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Conclusion

Markov chains and RDS with DBC have gradient structures
The Onsager form & = —K(u)DE(u) allows for easy modeling

For discrete systems the concave logarithmic mean
_ Uj—Uk . oo . .
A(uj,ug) = Toata;/ur) replaces the density “u" in Wasserstein metric.

Limit passages in many-particle systems often lead to Liouville-type
equations which need further reduction.

Metric gradient structures allow for easy limit passages with uniform
geodesic A-convexity holds ~» (EVI), evolutionary variational inequality
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Conclusion

# Markov chains and RDS with DBC have gradient structures
The Onsager form & = —K(u)DE(u) allows for easy modeling

@ For discrete systems the concave logarithmic mean

Aluj,ug) = % replaces the density “u” in Wasserstein metric.

i Limit passages in many-particle systems often lead to Liouville-type
equations which need further reduction.

i Metric gradient structures allow for easy limit passages with uniform
geodesic A-convexity holds ~» (EVI), evolutionary variational inequality

Thank you for your attention

WIAS preprints at http://www.wias-berlin.de/people/mielke/
M.: Geodesic convexity of the relative entropy in reversible Markov chains. WIAS prep.1650

Arnrich, Mielke, Peletier, Savaré, Veneroni: Passing to the limit in a Wasserstein gradient
flow: From diffusion to reaction. Calc. Var. PDE to appear, WIAS prep. 1593.

M.: A gradient structure for RDS and for energy-drift-diffusion systems. Nonlinearity 2011.
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