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What is High-Throughput-Screening?

Purpose of HTS: analyse large number of substances
HTS plant: fully automated system with various resources (e.g.,
pipettors, incubators, readers, transportation devices)
Typical mode of operation:

- Aggregate (up to 1536) substances on microplates
- Possibly need auxiliary plates to convey reactants etc
- Batch: physical entity (one or several plates) needed for analysis

CyBio AG
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Requirements

User Provided Requirements:

. . . pertain to the single batch . . .
Sequence of activities on available resources
Minimal (sometimes also max.) times for (inter) activity durations
Toy example:

time

Res2

Res1 act3act1

act2

p1 p3

p2

d13
t2t1

Global Requirements:

Identical time scheme for all batches!
Subject to above constraints: maximise throughput!
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Scheduling Problem

This amounts to an optimal scheduling (activity resource
allocation) problem
Solved in first project stage [Mayer & R 2004, Mayer et al. 2008]

- Formulate problem as an MINLP
- Can transform MINLP into MILP (by approp. change of variables)

Solution for our toy problem:
- naive approach: “stacking” minimal-time single batches click below

- optimal solution: click below
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The Need for Feedback

Scheduling solution obtained off-line cannot cope with
unforeseen disturbances
disturbances come in form of delays

Specifications:

Recover optimal schedule while guaranteeing max. throughput
If solution is non-unique: minimise number of batches with
different time scheme (“waste batches”)

Mechanism of interaction:
Control input: change starting times of activities
Measurements: time of occurrence of all events (including start
and finish times for all activities)

 Need model for feedback synthesis . . .
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Model Ingredients

User defined single batch requirements

For our toy example
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Model Ingredients Ctd.
Nesting of batches in optimal schedule

For our toy example
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TEG Model

Model is a Timed Event Graph (TEG)
Provides information on event times

For our toy example

e.g.,

x7(k) . . . time when activity 3 in batch k starts
x7(k) ≥ max{x4(k) + 1, x2(k) + 6, x2(k + 1), x8(k − 1)}



HTS Systems Modelling for Feedback Dioid Algebras A Specific Dioid Feedback Synthesis Conclusions

TEG Model

Model is a Timed Event Graph (TEG)
Provides information on event times

For our toy example

x1 x2
3

1

1

x3 x4 x5

6

0

0

0

0

x7

x6
1

0

x8
4

0

0

e.g.,

x7(k) . . . time when activity 3 in batch k starts
x7(k) ≥ max{x4(k) + 1, x2(k) + 6, x2(k + 1), x8(k − 1)}



HTS Systems Modelling for Feedback Dioid Algebras A Specific Dioid Feedback Synthesis Conclusions

TEG Model Ctd.

In general:

xi(k) ≥ max
j,l
{bijlxj(k − l) + aijl},

bijl ∈ {0,1}, aijl ∈ R+ (resp. Z+), i = 1, . . .n

Note that l also ranges over negative integers
Looks awful (nonlinear implicit high-order difference relation)
Will look much nicer (linear!) in suitable dioid algebras
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Dioids

A dioid (or idempotent semiring) is an algebraic structure containing
two binary operations ⊕ (“addition”) and ⊗ (“multiplication”) defined
on a set D, such that

⊕ is associative and commutative
⊕ is idempotent, i.e., a⊕ a = a ∀a ∈ D
⊗ is associative
⊗ is distributive w.r.t. ⊕
zero element ε, i.e., a⊕ ε = a ∀a ∈ D
unit element e, i.e., a⊗ e = e ⊗ a = a ∀a ∈ D
ε is absorbing for ⊗, i.e., ε⊗ a = a⊗ ε = ε ∀a ∈ D

Note: there are no inverse elements for ⊕, there may be none for ⊗
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Examples of Dioids

Max-Plus Algebra:

(max,+)-algebra defined on Z ∪ {−∞} (resp. R ∪ {−∞}):
Addition: a⊕ b := max(a,b)
Multiplication: a⊗ b := a + b
Zero element: ε := −∞
Unit element: e := 0

Min-Plus Algebra:

(min,+)-algebra defined on Z ∪ {+∞} (resp. R ∪ {+∞}):
Addition: a⊕ b := min(a,b)
Multiplication: a⊗ b := a + b
Zero element: ε := +∞
Unit element: e := 0

E.g., [Cuninghame-Green 1979, Baccelli et al. 1992]
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Matrix Operations in Dioids

Dioid operations can be easily generalised to the matrix case: for
A,B ∈ Dn×m and C ∈ Dm×l , we have:

addition: [A⊕ B]ij = [A]ij ⊕ [B]ij

multiplication: [A⊗ C]ij =
m⊕

k=1

(
[A]ik ⊗ [C]kj

)

Example (Max-Plus Algebra):

(
1 3
4 2

)
⊕
(

4 1
7 6

)
=

(
4 3
7 6

)
(

1 3
4 2

)
⊗
(

2
3

)
=

(
(1⊗ 2)⊕ (3⊗ 3)
(4⊗ 2)⊕ (2⊗ 3)

)
=

(
6
6

)

Note: the symbol ⊗ is often omitted . . .
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Natural Order on Dioids

Dioids are endowed with a natural order:

a⊕ b = a⇔ a � b

Examples

Scalars in the (max,+)-algebra are totally ordered:

e.g., 4⊕ 8 = max(4,8) = 8⇔ 8 � 4

Scalars in the (min,+)-algebra are totally ordered:

e.g., 4⊕ 8 = min(4,8) = 4⇔ 4 � 8

Matrices in the (max,+)-algebra are partially ordered:

e.g.,
[

4
5

]
⊕
[

5
4

]
=

[
5
5

]
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Complete Dioids

A dioid (D,⊕,⊗) is complete if
it is closed for infinite sums, i.e., > :=

⊕
a∈D ∈ D (the “top”

element)
⊗ distributes over infinite sums

Remark: can define Kleene star operator on complete dioids:

a∗ :=
⊕
i∈N0

ai ∈ D, with a0 := e and ak := ak−1a

Useful: least solution of x = ax ⊕ b is a∗b

Examples:

(max,+)-algebra becomes a complete dioid if
D = Z ∪ {−∞,+∞}, with > = +∞
(min,+)-algebra becomes a complete dioid if
D = Z ∪ {−∞,+∞}, with > = −∞
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A 2-Dimensional Dioid

B [[γ, δ]] . . . the set of formal power series s =
⊕

k,t s(k , t)γkδt with
coefficients from the Boolean dioid (⊕ is OR, ⊗ is AND)
exponents in Z = Z ∪ {−∞,+∞}

B [[γ, δ]] is equipped with the usual rules for addition and multiplication:

s = s1 ⊕ s2 . . . s(k , t) = s1(k , t)⊕s2(k , t)

s = s1 ⊗ s2 . . . s(k , t) =
⊕

k1+k2=k,t1+t2=t

s1(k1, t1)⊗s2(k2, t2)

Example and Visualisation

s1 = γ1δ1 ⊕ γ3δ2

s2 = γ4δ4

s1 ⊕ s2 = γ1δ1 ⊕ γ3δ2 ⊕ γ4δ4

s1 ⊗ s2 = γ5δ5 ⊕ γ7δ6
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2-Dimensional DioidMax
in [[γ, δ]]

Want the following interpretation for a monomial γkδt :
- k th occurrence of event is at time t at the earliest
- equivalently: at time t , event has occurred at most k times

To get this: have to consider “south-east cones” (instead of
points) in Z2

, i.e., elements
⊕

k,t s(k , t)γkδt mod γ∗(δ−1)∗

 dioid of equivalence classes (quotient dioid)Max
in [[γ, δ]]

[Cohen et al. 1989, Gaubert & Klimann 1991, Baccelli et al. 1992]

Example: s = γ1δ1 ⊕ γ3δ2 ⊕ γ4δ5
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2-Dimensional DioidMax
in [[γ, δ]]

Max
in [[γ, δ]] is a complete dioid

Properties:

γkδt ⊕ γ lδt = γmin(k,l)δt

γkδt ⊕ γkδτ = γkδmax(t,τ)

γkδt ⊗ γ lδτ = γ(k+l)δ(t+τ)

Zero element:
ε = γ+∞δ−∞

Unit element: e = γ0δ0

Top element: > = γ−∞δ+∞

Interpretation of partial order:

inclusion in Z2

Example: s1 � s2
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TEG Model inMax
in [[γ, δ]]

Recall our toy example:

x1 x2
3

1

1

x3 x4 x5

6

0

0

0

0

x7

x6
1

0

x8
4

0

0

e.g., x7 = (γ0δ6 ⊕ γ−1δ0)x2 ⊕ γ0δ1x4 ⊕ γ1δ0x8

In general:
x = Ax
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Equipping the Model with Control and Outputs

Control
Provides earliest possible times for start events of activities:

x = Ax ⊕ Bu

In our toy example: B an 8× 3 matrix, with B11,B32,B73 = e
Can observe everything state feedback: u = Kx ⊕ v

Performance output

Time for the “finish” event of the last activity: y = Cx
In our toy example: C = (ε, ε, ε, ε, ε, ε, ε,e)

Closed loop

Closed loop state equations: x = (A⊕ BK )x ⊕ Bv
. . . with least solution x = (A⊕ BK )∗Bv
. . . and corresponding output y = C(A⊕ BK )∗Bv
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Scalar Example for the Star Operator inMax
in [[γ, δ]]

Recall: the least solution of x =
(
γ1δ2 ⊕ γ2δ6)︸ ︷︷ ︸

a

x ⊕ e is x = a∗

Doing the calculations:(
γ1δ2 ⊕ γ2δ6)∗︸ ︷︷ ︸

a∗

= γ0δ0︸︷︷︸
e

⊕ γ1δ2 ⊕ γ2δ6︸ ︷︷ ︸
a

⊕ γ2δ4 ⊕ γ3δ8 ⊕ γ4δ12︸ ︷︷ ︸
a2

⊕ . . .

Rewriting the rhs(
γ1δ2 ⊕ γ2δ6)∗ =
γ0δ0 ⊕ γ1δ2 ⊕ γ2δ6 ⊕ γ3δ8⊕
γ4δ12 ⊕ δ5δ14 ⊕ γ6δ18 ⊕ . . .

=
(
γ0δ0 ⊕ γ1δ2) (γ2δ6)∗

gives a periodic series, where a basic
pattern (γ0δ0 ⊕ γ1δ2) is repeated
periodically with two events occurring
every six time units
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Determining the Feedback K

Recall aims of feedback:
- recover optimal schedule while guaranteeing maximal throughput
- use remaining degrees of freedom to minimise number of batches

with different time scheme

This is equivalent to starting all activities as late as possible while
preserving maximal throughput (just-in-time policy)
Formally: find greatest K such that

Gref � C(A⊕ BK )∗B

with Gref a given maximal throughput reference model
Note:

- “greatest” and “�” are in the sense of the natural order inMax
in [[γ, δ]]

- a maximal throughput reference model is readily available, e.g.,
Gref = CA∗B

Solution needs residuation theory
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with Gref a given maximal throughput reference model
Note:

- “greatest” and “�” are in the sense of the natural order inMax
in [[γ, δ]]

- a maximal throughput reference model is readily available, e.g.,
Gref = CA∗B

Solution needs residuation theory
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A Flavour of Residuation

a⊗ x = b and x ⊗ a = b generally don’t have solutions
Instead, look for greatest solution of

a⊗ x � b and x ⊗ a � b

These are called left and right residuals, a◦\b and b 6 ◦ a
Can be extended to the matrix case: the greatest solutions of
A⊗ X � B and X ⊗ A � B are A◦\B and B 6 ◦ A, where

(A◦\B)ij =
∧
k

Aki◦\Bkj and (B 6 ◦ A)ij =
∧
k

Bik 6 ◦ Ajk

Example:
- Want greatest solution of
(γ1δ2 ⊕ γ2δ3)x � γ3δ4

- Is given by left residual
(γ1δ2 ⊕ γ2δ3)◦\γ3δ4 = γ2δ1

- Check by computing
(γ1δ2 ⊕ γ2δ3)γ2δ1 . . .
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Putting the Pieces Together

Recall: want greatest K s.t. Gref � C(A⊕ BK )∗B with Gref any
maximal throughput reference model
Choose Gref = CA∗B
Apply standard manipulations involving the star operator and
residuation ([Lhommeau et al. 2005]) to obtain ([B et al. 2012a])

Kopt = (CA∗B) ◦\CA∗B 6 ◦ (A∗B)

Need causal projection of Kopt . . .
Simulation of disturbance scenario: open loop (top), closed loop
(bottom) – click below
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Conclusions

Addressed feedback synthesis problem for HTS systems
Approach based on available optimal (off-line) schedule
Model for feedback synthesis is a Timed Event Graph; time
relations become linear & algebraic in the dioidMax

in [[γ, δ]]

Feedback recovers optimal schedule after delays; starts all
activities a late as possible subject to maintaining maximal
throughput ( minimise number of “waste” batches)
Have illustrated results for a toy example
Approach successfully applied to full scale industrial problems,
which may involve hundreds of activities on dozens of resources
Approach can be extended to handle minimal and maximal time
intervals ( dual product, dual residuation ([B et al. 2012b]))
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