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HTS Systems
®000

What is High-Throughput-Screening?

@ Purpose of HTS: analyse large number of substances
@ HTS plant: fully automated system with various resources (e.g.,
pipettors, incubators, readers, transportation devices)
@ Typical mode of operation:
- Aggregate (up to 1536) substances on microplates
- Possibly need auxiliary plates to convey reactants etc
- Batch: physical entity (one or several plates) needed for analysis

CyBio AG
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Requirements

User Provided Requirements:

... pertain to the single batch ...
@ Sequence of activities on available resources
@ Minimal (sometimes also max.) times for (inter) activity durations
@ Toy example:
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Requirements

User Provided Requirements:

... pertain to the single batch ...
@ Sequence of activities on available resources
@ Minimal (sometimes also max.) times for (inter) activity durations
@ Toy example:
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P2t ty

Global Requirements:

@ I|dentical time scheme for all batches!
@ Subject to above constraints: maximise throughput!
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Scheduling Problem

@ This amounts to an optimal scheduling (activity resource
allocation) problem

@ Solved in first project stage [Mayer & R 2004, Mayer et al. 2008]

- Formulate problem as an MINLP
- Can transform MINLP into MILP (by approp. change of variables)

@ Solution for our toy problem:
- naive approach: “stacking” minimal-time single batches click below

Ress .
Resy I
N TR

- optimal solution: click below
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The Need for Feedback

@ Scheduling solution obtained off-line ~~ cannot cope with
unforeseen disturbances

@ disturbances come in form of delays
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Specifications:

@ Recover optimal schedule while guaranteeing max. throughput

@ If solution is non-unique: minimise number of batches with
different time scheme (“waste batches”)
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@ Control input: change starting times of activities

@ Measurements: time of occurrence of all events (including start
and finish times for all activities)
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The Need for Feedback

@ Scheduling solution obtained off-line ~~ cannot cope with
unforeseen disturbances

@ disturbances come in form of delays

Specifications:

@ Recover optimal schedule while guaranteeing max. throughput

@ If solution is non-unique: minimise number of batches with
different time scheme (“waste batches”)

Mechanism of interaction:

@ Control input: change starting times of activities

@ Measurements: time of occurrence of all events (including start
and finish times for all activities)

~ Need model for feedback synthesis ...
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User defined single batch requirements
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Model Ingredients

User defined single batch requirements

For our toy example
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Model Ingredients

User defined single batch requirements

For our toy example

diz
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Model Ingredients Cid.

Nesting of batches in optimal schedule

For our toy example

Res,

t fo+2  to+4  fo+6  tog+8  fo+10  t+12  to+ 14ty 16 time

I .
batch k=2 k-1 k k41 k+2
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@ Model is a Timed Event Graph (TEG)
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TEG Model

@ Model is a Timed Event Graph (TEG)
@ Provides information on event times

For our toy example

e.g.,
x7(k) ... time when activity 3 in batch k starts
x7(k) > max{xs(k) +1,x(k) +6,xo(k +1),xs(k — 1)}
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@ In general:

(k) > max{byx(k — 1) + ay},

bj € {0,1}, aj € R" (resp. Z"), i=1,...n
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@ Looks awful (nonlinear implicit high-order difference relation)



Modelling for Feedback
oooe

TEG Model Ctd.

@ In general:
(k) > max{byx(k — 1) + ay},
bj € {0,1}, aj € R" (resp. Z"), i=1,...n

@ Note that / also ranges over negative integers
@ Looks awful (nonlinear implicit high-order difference relation)
@ Will look much nicer (linear!) in suitable dioid algebras
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Dioids

A dioid (or idempotent semiring) is an algebraic structure containing
two binary operations @ (“addition”) and ® (“multiplication”) defined
on a set D, such that
@ @ is associative and commutative
@ ¢ isidempotent,i.e.,ada=avVaeD
@ ® is associative
@ ® is distributive w.r.t. &
@ zero elemente,i.e.,ade=avVaeD
@ unitelemente,ie,are=e®a=avaeD
@ cis absorbing for ®, i.e.,e®a=a®e=cVaeD



Dioid Algebras
®0000

Dioids

A dioid (or idempotent semiring) is an algebraic structure containing
two binary operations @ (“addition”) and ® (“multiplication”) defined
on a set D, such that
@ @ is associative and commutative
@ ¢ isidempotent,i.e.,ada=avVaeD
@ ® is associative
@ ® is distributive w.r.t. &
@ zero elemente,i.e.,ade=avVaeD
@ unitelemente,ie,are=e®a=avaeD
@ cis absorbing for ®, i.e.,e®a=a®e=cVaeD

Note: there are no inverse elements for &, there may be none for ®
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Examples of Dioids

Max-Plus Algebra:

(max, +)-algebra defined on Z U {—o0} (resp. R U {—o0}):
@ Addition: a® b := max(a, b)
@ Multiplication: a® b:=a+ b
@ Zero element: € := —c0

@ Unit element: e :=0
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Examples of Dioids

Max-Plus Algebra:

(max, +)-algebra defined on Z U {—o0} (resp. R U {—o0}):
@ Addition: a® b := max(a, b)
@ Multiplication: a® b:=a+ b
@ Zero element: € := —c0
@ Unit element: e:=0

Min-Plus Algebra:

(min, +)-algebra defined on Z U {+oo} (resp. R U {+o0}):
@ Addition: a® b := min(a, b)
@ Multiplication: a® b:=a+ b
@ Zero element: € := 00
@ Unit element: e:=0

E.g., [Cuninghame-Green 1979, Baccelli et al. 1992]
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Matrix Operations in Dioids

Dioid operations can be easily generalised to the matrix case: for
A, B e D™mand C € D™/ we have:

addition: [Ae B]; = [A]; & [B;
m

muttiplication: [A % Cl; = @D ([Al @ [Cly)
k=1
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Matrix Operations in Dioids

Dioid operations can be easily generalised to the matrix case: for
A, B e D™mand C € D™/ we have:

addition: [Ae B]; = [A]; & [B;
m

muttiplication: [A % Cl; = @D ([Al @ [Cly)
k=1

Example (Max-Plus Algebra):

¢
¢

3
2

3
2

)= (7 5
)o(5)

)-(5)

Note: the symbol ® is often omitted ...
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Natural Order on Dioids

Dioids are endowed with a natural order:
adb=a<a=b

@ Scalars in the (max, +)-algebra are totally ordered:

e.g.,4®8=max(4,8)=8<8*~4
@ Scalars in the (min, +)-algebra are totally ordered:
eg.,4®8=min(4,8)=4<4>-8

@ Matrices in the (max, +)-algebra are partially ordered:

oo [5]o[3]= 5]
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A dioid (D, &, ®) is complete if
@ it is closed for infinite sums, i.e., T := @, € D (the “top”
element)

@ ® distributes over infinite sums
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Complete Dioids

A dioid (D, &, ®) is complete if
@ it is closed for infinite sums, i.e., T := @, € D (the “top”
element)

@ ® distributes over infinite sums

Remark: can define Kleene star operator on complete dioids:

a=@adeD, witha:=eandd =2 "'a
i€Ng

Useful: least solution of x = ax @ bis a*b

@ (max, +)-algebra becomes a complete dioid if
D =7ZU {00,400}, With T = +00

@ (min, +)-algebra becomes a complete dioid if
D=7ZU{—00,+0c0}, With T = —c0
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B [v,4] ...the set of formal power series s = P ; s(k, t)y* ot with
@ coefficients from the Boolean dioid (< is OR, ¢ is AND)
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A 2-Dimensional Dioid

B [v,4] ...the set of formal power series s = P ; s(k, t)y* ot with
@ coefficients from the Boolean dioid (< is OR, ¢ is AND)
@ exponents inZ = Z U {—o0, +o0}

B [, d] is equipped with the usual rules for addition and multiplication:
S=85 DS s(k,t) = si(k, t)&sa(k, t)
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A 2-Dimensional Dioid

B [v,4] ...the set of formal power series s = P ; s(k, t)y* ot with
@ coefficients from the Boolean dioid (< is OR, ¢ is AND)
@ exponents inZ = Z U {—o0, +o0}

B [, d] is equipped with the usual rules for addition and multiplication:
S=85 DS s(k,t) = si(k, t)&sa(k, t)

S=851® S S(k, t) = @ S1(k1,t1)x\32(k2,t2)
ki +ko=K,ti +to=t

Example and Visualisation

g rrrrrrrrrrrrrrrrrrrrrrrrr st =~16" @362

) Sp =404

3l

of ok $1® 85 =7'6" ® 362 @ 446
1 L

00 1 2 3 4 5 6 7 7
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A 2-Dimensional Dioid

B [v,4] ...the set of formal power series s = P ; s(k, t)y* ot with
@ coefficients from the Boolean dioid (< is OR, ¢ is AND)
@ exponents inZ = Z U {—o0, +o0}

B [, d] is equipped with the usual rules for addition and multiplication:
S=85 DS s(k,t) = si(k, t)&sa(k, t)

S=851® S S(k, t) = @ S1(k1,t1)x\32(k2,t2)
ki +ko=K,ti +to=t

Example and Visualisation

g S1 :71(51@’}/3(52

s 52 = 740

g S1 DS = 7161 @73(52 @74(54
b snerrers
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2-Dimensional Dioid M2 [, {]

@ Want the following interpretation for a monomial 6!
- kth occurrence of event is at time { at the earliest
- equivalently: at time t, event has occurred at most k times
@ To get this: have to consider “south-east cones” (instead of
points) in Z°, i.e., elements By s(k, t)y*6" mod v*(571)*
@ ~- dioid of equivalence classes (quotient dioid) M2 [, J]
[Cohen et al. 1989, Gaubert & Klimann 1991, Bacoelll et al. 1992]

Example: s = 716" @ 1362 @ +*6°
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2-Dimensional Dioid M2 [, {]

M2 [, 6] is a complete dioid g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Al

) 133 S S S
Properties: D I S s oos
o fykét@'yl(st :'ymin(kvl)(st 1, ,,,,,,,, — .....
P ,yk(;t @ ’yk5T _ ,ykamax(t,r) 0 i 5‘3 ;1 r?
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MZ¥ [, 0] is a complete dioid
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2-Dimensional Dioid M2 [, {]
MZ¥ [, 0] is a complete dioid g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
/U SO

. ] SU T ,
Properties: ol S

0 AK5t @ 4/t = Amintl) gt 1h.... : /
° ,yk(;t @ ’yk5T _ ,ykamax(t,r) J L ) ;/ £ e
) fyk(st ® ")//57— = fy(k+l)5(t+"—) 7777777777777777777 ////
g ~

@ Zero element:
e = ,Y+oo5foo

@ Unit element: e = ~%4°
@ Top element: T = y=°§*>
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2-Dimensional Dioid M2 [, {]

MZ¥ [, 0] is a complete dioid

Properties:
Py ’ykét e ,yl(st — ,ymin(k,l)(gt
P ,yk(;t ey ’yk5T _ ,ykamax(t,r)
o ’Yk(St ® ,Yl(g-r — ,y(k+l)5(t+r)

@ Zero element:
= ,Y+oo5foo

@ Unit element: e = ~%4°
@ Top element: T = y=°§*>

Interpretation of partial order:

. . . =2
@ inclusion in Z
@ Example: s = sp
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2-Dimensional Dioid M2 [, {]

MZ¥ [, 0] is a complete dioid

Properties:
Py ’ykét e ,yl(st — ,ymin(k,l)(gt
P ,yk(;t ey ’yk5T _ ,ykamax(t,r)
o ’Yk(St ® ,Yl(g-r — ,y(k+l)5(t+r)
@ Zero element:
g =t
@ Unit element: e = 4°4°
@ Top element: T = y=°§*>

Interpretation of partial order:
. . . =2
@ inclusionin Z
@ Example: s = sp
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TEG Model in M2 [, 0]

Recall our toy example:




Feedback Synthesis

@®00000

TEG Model in M2 [, 0]

Recall our toy example:

In general:

X = Ax
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@ Provides earliest possible times for start events of activities:
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@ In our toy example: B an 8 x 3 matrix, with By1, Bsp, B3 = €
@ Can observe everything ~~ state feedback: u = Kx & v
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@ Time for the “finish” event of the last activity: y = Cx
@ In our toy example: C = (g, ¢,¢,¢,¢,¢,¢, €)
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Equipping the Model with Control and Outputs

@ Provides earliest possible times for start events of activities:

X =Ax ® Bu

@ In our toy example: B an 8 x 3 matrix, with By1, Bsp, B3 = €
@ Can observe everything ~~ state feedback: u = Kx & v

Performance output

@ Time for the “finish” event of the last activity: y = Cx
@ In our toy example: C = (g, ¢,¢,¢,¢,¢,¢, €)

Closed loop

@ Closed loop state equations: x = (A@ BK)x & Bv
@ ...with least solution x = (A® BK)*Bv
@ ...and corresponding output y = C(A & BK)*Bv
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Scalar Example for the Star Operator in M2 [, {]

Recall: the least solution of  x = (y'6? @ +25°) xpe isx =a*
—_———

a
Doing the calculations:
(,\/152 @7256)* _ ,7,050%7,152 %7’25687254%W’358$7’4512$---
—_——— ~~~

a* e a a2
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Scalar Example for the Star Operator in M2 [+, d]

Recall: the least solution of  x = (y'6? @ +25°) xpe isx =a*
—_———

a
Doing the calculations:

(,\/152 gj,\/z(sﬁ)* _ ’\/’0(50& ()2 P A 256@'\/254 358 4512
S— ~
a* e a a2

Rewriting the rhs

(,\/1 52 o ,\/256)*
,\,050 LB A (;2 o W2(§6 D ,\’,358%
~ (512 CP(ES 14 6518
( OOO 152) (7”256)*
gives a periodic series, where a basic
pattern (7°6° @ +'62) is repeated

perlodlgally with t.wo events occurring T
every six time units
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with G,er @ given maximal throughput reference model
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Determining the Feedback K

@ Recall aims of feedback:

- recover optimal schedule while guaranteeing maximal throughput
- use remaining degrees of freedom to minimise number of batches
with different time scheme

@ This is equivalent to starting all activities as late as possible while
preserving maximal throughput (just-in-time policy)
@ Formally: find greatest K such that

Get = C(A® BK)*B

with G,er @ given maximal throughput reference model
@ Note:

- “greatest” and “>" are in the sense of the natural order in M3 [v, 4]
- a maximal throughput reference model is readily available, e.g.,
Gt = CA*B

@ Solution needs residuation theory
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A Flavour of Residuation

@ a® x = band x ® a = b generally don’t have solutions
@ Instead, look for greatest solution of

ax=<b and x®a=<b

@ These are called left and right residuals, aysband b ¢ a

@ Can be extended to the matrix case: the greatest solutions of
A X <Band X ® A< Bare AyBand B ¢ A, where

(A}QB)U = /\Aki§Bkj and (B 525 A),/ = /\ Bik }2{ A/'k
k k

@ Example: 5
- W?rg grea;tgst solutaloQ of Bl W 7
(v 0" @87 )x =46 ] SRR SOUOINON £/t A
- Is given by left residual L RS S

(A)/1§2 D ’7’263)?%”/3(54 — “/261

NSRRI 77
- Check by computing ‘ f /2

("/162 @“,2(53)’}/2(51
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Putting the Pieces Together

@ Recall: want greatest K s.t. Gief = C(A@® BK)*B with Gi¢s any
maximal throughput reference model

@ Choose G, = CA*B

@ Apply standard manipulations involving the star operator and
residuation ([Lhommeau et al. 2005]) to obtain ([B et al. 2012a])

Kopt = (CA*B) 3CA*B ¢ (A*B)

@ Need causal projection of Ky . ..

@ Simulation of disturbance scenario: open loop (top), closed loop
(bottom) — click below

2 4 6 8 100 12 14 16 18 20 2 24 26 28 30 32 34 36 38 40 time

2 4 6 s 100 12 14 16 18 20 2 24 26 28 30 32 3436 38 40 time
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Conclusions

@ Addressed feedback synthesis problem for HTS systems
@ Approach based on available optimal (off-line) schedule

@ Model for feedback synthesis is a Timed Event Graph; time
relations become linear & algebraic in the dioid M2 [, 0]

@ Feedback recovers optimal schedule after delays; starts all
activities a late as possible subject to maintaining maximal
throughput (~~ minimise number of “waste” batches)

@ Have illustrated results for a toy example

@ Approach successfully applied to full scale industrial problems,
which may involve hundreds of activities on dozens of resources

@ Approach can be extended to handle minimal and maximal time
intervals (~ dual product, dual residuation ([B et al. 2012b]))
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