Switched Systems Optimal Control Problems

Matthias Gerdts, Konstantin Palagachev

Munich Aerospace Institute of Mathematics and Applied Computing Department of Aerospace Engineering University of the Federal Armed Forces at Munich konstantin.palagachev@unibw.de

Berlin, 7-9 May, 2014

Overview

- (1) Introduction
- (2) Problem formulation
- (3) SSOCP with fixed sequence of phases
- (4) SSOCP with unknown sequence of phases

Introduction

Switched System

A dynamics system that operates by switching between different subsystems or phases.

Switched System Optimal Control Problem

Problem of designing an optimal sequence of phases and optimal control signals for each phase, such that certain cost function is minimized.

Applications:

- Aircraft modelling
- Air traffic control
- Robotics and industrial processes
- Logistics

Introduction

Example Problem

Interaction between quadcopter and robot.

Introduction

Example

Quadcopter flying over several industrial robots

Problem Formulation

Given *M* phase intervals $[T_0, T_1], [T_1, T_2], \ldots, [T_{M-1}, T_M]$ with length p_1, p_2, \ldots, p_M , we consider the following Switched System Optimal Control Problem

Switched System Optimal Control Problem

For each phase $[T_{k-1}, T_k]$

minimize
$$\varphi^k(x(T_{k-1}), x(T_k))$$
 (1)

with respect to $x \in W^{1,\infty}([T_{k-1}, T_k]; \mathbb{R}^{n_x}), u \in L^{\infty}([T_{k-1}, T_k]; \mathbb{R}^{n_u^k})$ and $p_k \in \mathbb{R}$, subject to

$$\dot{x}(t) - f^{k}(t, x(t), u(t)) = 0_{\mathbb{R}^{n_{x}}}$$
 a.a. $t \in (T_{k-1}, T_{k})$ (2)

$$g^{k}(x(t), u(t)) \leq \underset{\mathbb{R}}{0} g^{n_{g}^{k}} \quad \forall t \in (T_{k-1}, T_{k})$$
(3)

$$\phi^{k}(x(T_{k-1}), x(T_{k})) = 0_{\mathbb{R}^{n_{\phi}^{k}}}$$

$$\tag{4}$$

Problem Formulation

Two cases may occur:

- 1) The sequence of phases is fixed:
 - SSOCP can be transformed to standard optimal control problem
 - Solvable by gradient type methods (SQP, Interior point, Quasi-Newton)
 - Easier to implement and solve
- 2) The sequence of phases is unknown:
 - Optimal Control Problem for each phase
 - · Feasible and infeasible sequences of phases may arise
 - Two phases may not occur simultaneously
 - Need of binary (decision) variables
 - Mixed-Integer solvers have to be used

Since the length of the time intervals $[T_{k-1}, T_k]$ is unknown, for each $k \in \{1, ..., M\}$ we consider the time transformation

$$t^{(k)}:[0,1]\to[T_{k-1},T_k]$$

defined as

$$t^{(k)}(\tau) = T_{k-1} + \tau \cdot (T_k - T_{k-1}) = T_{k-1} + \tau \cdot p_k.$$
(5)

Note that the transformation $t^{(k)}(\cdot)$ is continuous and it holds

$$\frac{dt^{(k)}(\tau)}{d\tau} = T_k - T_{k-1} = p_k \quad \forall \ \tau \in (0, 1)$$
(6)

Let us define the new dimensions

$$N_x = M \cdot n_x$$
 and $N_u = \sum_{k=1}^M n_u^k$ (7)

and the new states and controls

$$x \in W^{1,\infty}([0,1]; \mathbb{R}^{N_x})$$
 $x = (x^{(1)}, \dots, x^{(M)})$ $x^{(k)} \in W^{1,\infty}([0,1]; \mathbb{R}^{n_x})$ (8)

$$u \in L^{\infty}([0,1]; \mathbb{R}^{N_u})$$
 $u = (u^{(1)}, \dots, u^{(M)})$ $u^{(k)} \in L^{\infty}([0,1]; \mathbb{R}^{n_u^k})$ (9)

In the same way, we redefine the functions involved in the Switched System Optimal Control Problem as follows.

Cost Function Reformulation

Define

$$\varphi: \mathbb{R}^{N_x} \times \mathbb{R}^{N_x} \to \mathbb{R}$$

such that

$$\varphi(x, y) = \sum_{k=1}^{M} \varphi^{k}(x^{(k)}, y^{(k)})$$
(10)

for every $x = (x^{(1)}, \ldots, x^{(M)})$ and $y = (y^{(1)}, \ldots, y^{(M)})$ in \mathbb{R}^{N_x} .

Dynamics Reformulation

Define

$$f:(0,1)\times\mathbb{R}^{N_x}\times\mathbb{R}^{N_u}\to\mathbb{R}^{N_x},\quad f=(f^{(1)},\ldots,f^{(M)})$$
(11)

where for every $k = 1, \ldots, M$, the k^{th} component

$$f^{(k)}: (0,1) \times \mathbb{R}^{N_x} \times \mathbb{R}^{N_u} \to \mathbb{R}^{n_x}$$
(12)

is defined as

$$f^{(k)}(\tau, x, u) = f^{k}(t^{(k)}(\tau), x^{(k)}, u^{(k)})$$
(13)

for every $\tau \in (0, 1), x = (x^{(1)}, \dots, x^{(M)}) \in \mathbb{R}^{N_x}$ and $u = (u^{(1)}, \dots, u^{(M)}) \in \mathbb{R}^{N_u}$.

Constraints Reformulation

Define $N_g = \sum_{k=1}^{M} n_g^k$ and consider the function

$$g: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{N_g}, \quad g = (g^{(1)}, \dots, g^{(M)})$$
 (14)

where for every $k = 1, \ldots, M$, the k^{th} component

$$g^{(k)}: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x^g}$$

is defined as

$$g^{(k)}(x,u) = g^k(x^{(k)}, u^{(k)})$$
(15)

for every $x = (x^{(1)}, \dots, x^{(M)}) \in \mathbb{R}^{n_x}$ and $u = (u^{(1)}, \dots, u^{(M)}) \in \mathbb{R}^{n_u}$.

Boundary Conditions Reformulation

Define $N_{\phi} = \sum_{k=1}^{M} n_{\phi}^{k}$ and consider the function $\phi : \mathbb{R}^{N_{x}} \times \mathbb{R}^{N_{x}} \to \mathbb{R}^{N_{\phi}}, \quad \phi = (\phi^{(1)}, \dots, \phi^{(M)})$

where for every $k = 1, \ldots, M$, the k^{th} component

 $\phi^{(k)}: \mathbb{R}^{N_x} \times \mathbb{R}^{N_x} \to \mathbb{R}^{n_x^{\phi}}$

is defined as

$$\phi^{(k)}(x,y) = \phi^{k}(x^{(k)}, y^{(k)})$$
(17)

for every $x = (x^{(1)}, \dots, x^{(M)})$ and $y = (y^{(1)}, \dots, y^{(M)})$ in \mathbb{R}^{N_x} .

(16)

Remark

Note that additional boundary conditions have to be imposed, in case continuity of the states between the different phases is not ensured by ϕ^k . Indeed, in that case we consider the function

$$\Phi: \mathbb{R}^{N_X} \times \mathbb{R}^{N_X} \to \mathbb{R}^{(M-1) \cdot n_X}$$
(18)

defined as

$$\Phi(x, y) = \begin{bmatrix} x^{(2)} - y^{(1)} \\ \vdots \\ x^{(M)} - y^{(M-1)} \end{bmatrix}$$
(19)

for every $x = (x^{(1)}, \ldots, x^{(M)})$ and $y = (y^{(1)}, \ldots, y^{(M)})$ in \mathbb{R}^{N_x} .

Finally, let us define the $N_x \times N_x$ diagonal matrix

With the previous reformulation, the Switched System Optimal Control Problem becomes

Reformulated Optimal Control Problem

 $\begin{array}{rcl} & \textit{Minimize} \quad \varphi(x(0), x(1)) \\ \text{with respect to } x \in W^{1,\infty}\left([0,1]; \mathbb{R}^{N_x}\right), u \in L^{\infty}\left([0,1]; \mathbb{R}^{N_u}\right) \text{ and} \\ \rho = (p_1, \ldots, p_M) \in \mathbb{R}^M, \text{ subject to} \\ & \dot{x}(\tau) - P \cdot f(\tau, x(\tau), u(\tau)) &= 0_{\mathbb{R}^{N_x}} & \text{a.a. } \tau \in (0,1) \\ & g(x(\tau), u(\tau)) &\leq 0_{\mathbb{R}^{N_g}} & \forall \tau \in (0,1) \\ & \phi(x(0), x(M)) &= 0_{\mathbb{R}^{(M-1) \cdot n_x}} \end{array}$

Universität 👷 München

Universität 👷 München

Universität 👷 München

Example Problem

Interaction between quadcopter and youBot platform.

We consider a model of the omni-directional mobile platform youBot provided by KUKA, consisting of:

- 1) youBot omni-directional platform
 - 4 KUKA omniWheels
 - 3 degrees of freedom
- 2) youBot arm with gripper
 - 5 axes robot arm
 - 5 degrees of freedom
 - 2 finger gripper

Robot Base

Base Model

- 3 states: x, y and φ representing the position of the robot base in the xy-plane and its orientation
- 3 states: v_x , v_y and v_{φ} representing the velocities of the base (translational and angular)
- 3 controls: u_x, u_y and u_φ representing the accelerations (translational and angular)

Equations of Motion

$\dot{x}(t)$	=	$V_X(t)$	
ÿ(t)	=	$v_{y}(t)$	
$\dot{\varphi}(t)$	=	$v_{oldsymbol{arphi}}(t)$	(21)
$\dot{v}_x(t)$	=	$u_x(t)\cos(\varphi(t)) + u_y(t)\sin(\varphi(t))$	
$\dot{v}_y(t)$	=	$u_x(t)\sin(\varphi(t)) - u_y(t)\cos(\varphi(t))$	
$\dot{v}_{\varphi}(t)$	=	$u_{\varphi}(t)$	

Robot Base

Robot Arm

Arm Model

- 5 states: q_1, \ldots, q_5 representing the angles of the joints
- 5 states: v₁,..., v₅ representing the angular velocities of the joints
- 5 controls: u_1, \ldots, u_5 representing the angular acceleration of the joints

Equations of Motion

$$\dot{q}_{1}(t) = v_{1}(t), \quad \dot{v}_{1}(t) = u_{1}(t)
\dot{q}_{2}(t) = v_{2}(t), \quad \dot{v}_{2}(t) = u_{2}(t)
\dot{q}_{3}(t) = v_{3}(t), \quad \dot{v}_{3}(t) = u_{3}(t)
\dot{q}_{4}(t) = v_{4}(t), \quad \dot{v}_{4}(t) = u_{4}(t)
\dot{q}_{5}(t) = v_{5}(t), \quad \dot{v}_{5}(t) = u_{5}(t)$$

$$(22)$$

Robot Arm

Robot Arm

Let *r* be the offset vector of the first joint with respect to the base and let l_1, \ldots, l_4 be the lengths of the four arms. We define the rotation matrices

$$S_{0}(\alpha) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix} \quad S_{1}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta)\\ 0 & 1 & 0\\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix}. \quad (23)$$
$$S_{01}(\alpha, \beta) = S_{0}(\alpha)S_{1}(\beta)$$
$$S_{012}(\alpha, \beta, \gamma) = S_{0}(\alpha)S_{1}(\beta)S_{1}(\gamma) \quad (24)$$
$$S_{0123}(\alpha, \beta, \gamma, \delta) = S_{0}(\alpha)S_{1}(\beta)S_{1}(\gamma)S_{1}(\delta)$$

Then, the mount points $P_1(q), \ldots, P_4(q)$ and the gripper position $P_5(q)$ are given by the following equations

Universität 🙀 München

Robot Arm

Gripper Position

$$P_{1}(q) = S_{0}(q_{1})r$$

$$P_{2}(q) = P_{1}(q) + S_{01}(q_{1}, q_{2}) \begin{pmatrix} 0 \\ 0 \\ l_{1} \end{pmatrix}$$

$$P_{3}(q) = P_{2}(q) + S_{012}(q_{1}, q_{2}, q_{3}) \begin{pmatrix} 0 \\ 0 \\ l_{2} \end{pmatrix}$$

$$P_{4}(q) = P_{3}(q) + S_{0123}(q_{1}, q_{2}, q_{3}, q_{4}) \begin{pmatrix} 0 \\ 0 \\ l_{3} \end{pmatrix}$$

$$P_{5}(q) = P_{4}(q) + S_{0123}(q_{1}, q_{2}, q_{3}, q_{4}) \begin{pmatrix} 0 \\ 0 \\ l_{4} \end{pmatrix}$$
(25)

Ultralight UAV with four rotors:

- 1) Six states:
 - *x*, *y*, *z* position on the quadcopter
 - yaw, roll and pitch angle
- 2) Four controls:
 - RPM of the rotors

Equations of Motion

$$m \cdot \left[\begin{array}{c} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{array} \right] = F_A + F_m + F_W$$

where

- F_A : lift force generated by the rotors
- Fm: gravitational force

F_W : Drag

Lift generated by the rotors

$$F_{A} = A \left(N_{Blades} \cdot C_{A} \cdot \frac{1}{2} \cdot \rho(z) \cdot A_{Blades} \cdot \left[\begin{array}{c} 0 \\ 0 \\ U_{1}^{2} + U_{2}^{2} + U_{3}^{2} + U_{4}^{2} \end{array} \right] \right)$$

Drag force

$$F_{W} = C_{W} \cdot \frac{1}{2} \cdot \rho(z) \begin{bmatrix} -sign(v_{x}) \cdot v_{x}^{2} \cdot A_{eff,x} \\ -sign(v_{y}) \cdot v_{y}^{2} \cdot A_{eff,y} \\ -sign(v_{z}) \cdot v_{z}^{2} \cdot A_{eff,z} \end{bmatrix}$$

Moment generated by the Lift force

$$M_{A} = A \left(\frac{1}{4} \cdot \rho(z) \cdot N_{Blades} \cdot C_{A} \cdot r^{2} \cdot d \cdot \begin{bmatrix} U_{2}^{2} - U_{4}^{2} \\ U_{3}^{2} - U_{1}^{2} \\ 0 \end{bmatrix} \right)$$

Moment generated by the rotors

$$M_R = A \left(\rho(z) \cdot N_{Blades} \cdot A_{Blades} \cdot C_M \cdot r^3 \cdot \begin{bmatrix} 0 \\ 0 \\ U_1^2 - U_2^2 + U_3^2 - U_4^2 \end{bmatrix} \right)$$

Applications

Problem 1: Two interacting robots

- approach phase
- interaction phase
- return phase
- solution first case
- solution second case

Problem 2: Robot intercepted by a quadcopter

- approach phase
- fly-over phase
- return phase
- solution

- Each phase is an Optimal Control Problem
- Sequencing the single phases
- Not every sequence of phases is feasible

Example

Quadcopter flying over several industrial robots

Example

Air traffic scheduling and control

(1) BILEVEL OPTIMIZATION APPROACH

- Fixed sequence of phases are transformed to standard Optimal Control Problem (OCP)
- Mixed-Integer Optimization Problem (MIOP) is formulated for the unknown sequence of phases
- Bilevel Optimization Problem is solved with MIOP as upper level problem and OCP as lower level one

(2) EQUILIBRIUM CONSTRAINTS APPROACH

- Fixed sequence of phases are transformed to standard OCP and first order necessary conditions are formulated
- MIOP is formulated for the unknown sequence of phases
- Large scale Mixed-Integer Mathematical Program with Equilibrium Constraints is solved

Decision Variables

Problem:

- Two phases Φ_1, Φ_2 with starting times T_1, T_2 and phase lengths p_1, p_2
- · One of the states only starts when the other one is finished

Approach:

- Define "big" constant $N = T_1 + T_2 + p_1 + p_2$
- Define decision variable $x \in \{0, 1\}$
- Consider the constraints:

$$T_1 + p_1 - T_2 \le (1 - x) \cdot N$$

 $T_2 + p_2 - T_1 \le x \cdot N$

corresponding to

- $x = 1 \quad \Leftrightarrow \quad \Phi_1 \text{ occures before } \Phi_2$
- $x = 0 \quad \Leftrightarrow \quad \Phi_2 \text{ occures before } \Phi_1$

Denote with OCP(k) the Optimal Control Problem corresponding to the *k*-th phase (k = 1, 2), i.e.

$O\overline{CP(k)}$

$$Minimize \quad \varphi^k(x(T_k), x(T_k + p_k)) \tag{26}$$

with respect to $x \in W^{1,\infty}([T_k, T_k + p_k]; \mathbb{R}^{n_x}), u \in L^{\infty}([T_k, T_k + p_k]; \mathbb{R}^{n_u^k})$ and $p_k \in \mathbb{R}$, subject to

$$\dot{x}(t) - f^{k}(t, x(t), u(t)) = 0_{\mathbb{R}^{n_{x}}}$$
 a.a. $t \in (T_{k}, T_{k} + p_{k})$ (27)

$$g^{k}(x(t), u(t)) \leq 0_{\mathbb{R}^{n_{g}^{k}}} \quad \forall t \in (T_{k}, T_{k} + p_{k})$$

$$(28)$$

$$\phi^{k}(x(T_{k}), x(T_{k} + \rho_{k})) = 0_{\mathbb{R}^{n_{\phi}^{k}}}$$
⁽²⁹⁾

Let $p_1^*(T_1)$ and $p_2^*(T_2)$ be the optimal phase length of OCP(1) and OCP(2) respectively, and let $\frac{\partial p_1^*}{\partial T_1}(T_1)$ and $\frac{\partial p_2^*}{\partial T_2}(T_2)$ be their sensitivities.

MIOP

Minimize
$$\frac{\partial p_1^*}{\partial T_1}(T_1) \cdot d_1 + \frac{\partial p_2^*}{\partial T_2}(T_2) \cdot d_2$$
 (30)

with respect to $d_1, d_2 \in \mathbb{R}$ and $x \in \{0, 1\}$, subject to

$$T_1 + p_1^*(T_1) + \frac{\partial p_1^*}{\partial T_1}(T_1) \cdot d_1 - T_2 \le (1 - x) \cdot N$$
(31)

$$T_2 + \rho_2^*(T_2) + \frac{\partial \rho_2^*}{\partial T_2}(T_2) \cdot d_2 - T_1 \le x \cdot N$$
(32)

Algorithm

- (1) Choose feasible starting times T_1 and T_2 and phase lengths p_1 and p_2
- (2) Solve OCP(k) for each phase k, compute sensitivities
- (3) Evaluate stopping criteria
- (4) Solve *MIOP*, compute search directions d_1 and d_2
- (5) Update $T_1 = T_1 + d_1$, $T_2 = T_2 + d_2$ and GOTO (2)

Discretization

Define the discretization grid

$$\mathbb{G}_k = \left\{ t_0 + i \cdot h_k \mid t_0 = T_k, h_k = \frac{p_k}{N_k}, i = 0, \dots, N_k \right\}$$

where $N_k \in \mathbb{N}$. Let $x_i = x(t_i)$, $u_i = u(t_i)$ for $i = 0, ..., N_k$ be the discretized states and controls on \mathbb{G}_k .

DOCP(k)

$$Minimize \quad \varphi^k(x_0, x_{N_k}) \tag{33}$$

with respect to $x_i \in \mathbb{R}^{n_x}$, $u_i \in \mathbb{R}^{n_u^k}$ for $i = 0, \ldots, N_k$ and $p_k \in \mathbb{R}$, subject to

$$x_{i+1} - x_i - f^k(t_i, x_i, u_i) = 0_{\mathbb{R}^{n_k}} \quad \forall i = 0, \dots, N_k - 1$$
 (34)

$$\mathcal{Y}^{k}(x_{i}, u_{i}) \leq 0_{\mathbb{R}^{n_{g}^{k}}} \quad \forall i = 1, \dots, N_{k} - 1$$
 (35)

$$\phi^k(x_0, x_{N_k}) = 0_{\mathbb{R}^{n_{\phi}^k}}$$
(36)

Lagrangian Function

We define the Lagrangian function of the DOCP(k)

$$\mathcal{L}_k: \mathbb{R}^{(N_k+1) \cdot n_x} \times \mathbb{R}^{N_k \cdot n_u^k} \times \mathbb{R}^{N_k \cdot n_x} \times \mathbb{R}^{(N_k-1) \cdot n_g} \times \mathbb{R}^{n_{\phi}} \to \mathbb{R}$$

as

$$\mathcal{L}_{k}(x, u, \lambda, \mu, \sigma) = \varphi^{k}(x_{0}, x_{N_{k}}) + \sum_{i=0}^{N_{k}-1} \lambda_{i+1}^{T} \cdot \left[x_{i+1} - x_{i} - f^{k}(t_{i}, x_{i}, u_{i})\right] + \sum_{i=1}^{N_{k}-1} \mu_{i}^{T} \cdot g^{k}(x_{i}, u_{i}) + \sigma^{T} \cdot \phi^{k}(x_{0}, x_{N_{k}})$$
(37)

First Order Necessary Conditions for DOCP(k)

Let (x^*, u^*, ρ_k^*) be an optimal solution of DOCP(k), than there exist multipliers $\lambda^* \in \mathbb{R}^{N_k \cdot n_x}, \mu^* \in \mathbb{R}^{(N_k - 1) \cdot n_g}$ and $\sigma^* \in \mathbb{R}^{n_{\phi}}$, such that

Þ

$$\boldsymbol{\nabla}_{\boldsymbol{X}} \boldsymbol{\mathcal{L}}_{\boldsymbol{k}}(\boldsymbol{x}^*, \boldsymbol{u}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*, \boldsymbol{\sigma}^*) = \boldsymbol{0}_{\mathbb{R}^{n_{\boldsymbol{X}}}}$$
(38)

$$x_{i+1} - x_i - f^k(t_i, x_i, u_i) = 0_{\mathbb{R}^{n_x}} \quad \forall i = 0, \dots, N_k - 1$$
 (39)

$$g^{k}(x_{i}, u_{i}) \leq 0_{\mathbb{R}^{n_{g}^{k}}} \quad \forall i = 1, \dots, N_{k} - 1$$

$$(40)$$

$$u_i \ge 0_{\mathbb{R}^{n_g^k}} \quad \forall i = 1, \dots, N_k - 1$$
 (41)

$$\mu_i^T \cdot g^k(x_i, u_i) = 0 \quad \forall i = 1, \dots, N_k - 1$$
 (42)

$$\phi^{k}(x_{0}, x_{N_{k}}) = 0_{\mathbb{R}^{n_{\phi}^{k}}}$$

$$\tag{43}$$

Mixed-Integer Mathematical Program with Equilibrium Constraints

Minimize
$$p_1 + p_2$$
 (44)
if th respect to
 $T_1, T_2, p_1, p_2 \in \mathbb{R}$
 $x \in \{0, 1\}$
 $(x^{(k)}, u^{(k)}, \lambda^{(k)}, \mu^{(k)}, \sigma^{(k)}) \in \mathbb{R}^{(N_k+1) \cdot n_x} \times \mathbb{R}^{N_k \cdot n_u^k} \times \mathbb{R}^{N_k \cdot n_x} \times \mathbb{R}^{(N_k-1) \cdot n_g} \times \mathbb{R}^{n_{\phi}}$
ubject to
 $T_1 + p_1 - T_2 \leq (1 - x) \cdot N$ (45)

$$T_2 + p_2 - T_1 \le x \cdot N \tag{46}$$

with re

subje

Summary

- Introduction and Problem formulation
- SSOCP with fixed sequence of phases
- Models and test problems
- SSOCP with unknown sequence of phases
- Bilevel optimization approach
- Equilibrium constraints approach

Thank you for your attention!

konstantin.palagachev@unibw.de

